SECTION IX Welding, Brazing, and Fusing Qualifications ASME Boile

2019 ASME Boiler and Pressure Vessel Code An International Code

Qualification Standard for Welding, Brazing, and Fusing Procedures; Welders; Brazers; and Welding, Brazing, and Fusing Operators

Markings such as "ASME," "ASME Standard," or any other marking including "ASME," ASME logos, or the ASME Single Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code or Standard. Use of ASME's name or logos or of the ASME Single Certification Mark requires formal ASME certification; if no certification program is available, such ASME markings may not be used. (For Certification and Accreditation Programs, see <u>https://www.asme.org/shop/certification-accreditation</u>.)

Items produced by parties not formally possessing an ASME Certificate may not be described, either explicitly or implicitly, as ASME certified or approved in any code forms or other document.

AN INTERNATIONAL CODE 2019 ASME Boiler & Pressure Vessel Code

2019 Edition

July 1, 2019

IX QUALIFICATION STANDARD FOR WELDING, BRAZING, AND FUSING PROCEDURES; WELDERS; BRAZERS; AND WELDING, BRAZING, AND FUSING OPERATORS

ASME Boiler and Pressure Vessel Committee on Welding, Brazing, and Fusing

Two Park Avenue • New York, NY • 10016 USA

Date of Issuance: July 1, 2019

This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not "approve," "certify," "rate," or "endorse" any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

The endnotes and preamble in this document (if any) are part of this American National Standard.

ASME Collective Membership Mark

ASME Single Certification Mark

"ASME" and the above ASME symbols are registered trademarks of The American Society of Mechanical Engineers.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Library of Congress Catalog Card Number: 56-3934 Printed in the United States of America

Adopted by the Council of The American Society of Mechanical Engineers, 1914; latest edition 2019.

The American Society of Mechanical Engineers Two Park Avenue, New York, NY 10016-5990

Copyright © 2019 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All rights reserved

TABLE OF CONTENTS

		Х
		xii
	the Use of the ASME Single Certification Mark and Code Authorization in Advertising	xiv
	the Use of ASME Marking to Identify Manufactured Items	xiv
	Inquiries to the Boiler and Pressure Vessel Standards Committees	XV
		xviii
		xl
		xliii
	ord Number Order	xlix
Cross-Referencing and	Stylistic Changes in the Boiler and Pressure Vessel Code	lii
Part QG	General Requirements	1
QG-100	Scope	1
QG-109	Definitions	4
Part QW	Welding	15
-	-	
Article I	Welding General Requirements	15
QW-100	Scope	15
QW-110	Weld Orientation	15
QW-120	Test Positions for Groove Welds	15
QW-130	Test Positions for Fillet Welds	16
QW-140	Types and Purposes of Tests and Examinations	16
QW-150	Tension Tests	17
QW-160	Guided-Bend Tests	18
QW-170	Toughness Tests	19
QW-180	Fillet-Weld Tests	19
QW-190	Other Tests and Examinations	21
Article II	Welding Procedure Qualifications	29
QW-200	General	29
QW-210	Preparation of Test Coupon	32
QW-220	Hybrid Welding Procedure Variables	34
QW-250	Welding Variables	34
QW-290	Temper Bead Welding	68
Article III	Welding Performance Qualifications	72
QW-300	General	72
QW-310	Qualification Test Coupons	74
QW-320	Retests and Renewal of Qualification	75
QW-350	Welding Variables for Welders	76
QW-360	Welding Variables for Welding Operators	77
QW-380	Special Processes	78
Article IV	Welding Data	81
QW-400	Variables	81
QW-410	Technique	91
QW-420	Base Metal Groupings	95
QW-430	F-Numbers	171
QW-440	Weld Metal Chemical Composition	181
QW-450	Specimens	182
QW-460	Graphics	یک دو سه صنعت

QW-470	Etching — Processes and Reagents	229
Article V	Standard Welding Procedure Specifications (SWPSs)	231
QW-500	General	231
QW-510	Adoption of SWPSs	231
QW-520	Use of SWPSs Without Discrete Demonstration	231
OW-530	Forms	232
QW-540	Production Use of SWPSs	232
-		
Part QB	Brazing	233
Article XI	Brazing General Requirements	233
QB-100	Scope	233
QB-110	Braze Orientation	233
QB-120	Test Positions for Lap, Butt, Scarf, or Rabbet Joints	233
QB-140	Types and Purposes of Tests and Examinations	234
QB-150	Tension Tests	234
QB-160	Guided-Bend Tests	235
QB-170	Peel Tests	236
QB-180	Sectioning Tests and Workmanship Coupons	236
-		227
Article XII	Brazing Procedure Qualifications	237
QB-200	General	237
QB-210	Preparation of Test Coupon	239
QB-250	Brazing Variables	239
Article XIII	Brazing Performance Qualifications	243
QB-300	General	243
QB-310	Qualification Test Coupons	244
QB-320	Retests and Renewal of Qualification	244
QB-350	Brazing Variables for Brazers and Brazing Operators	244
Article XIV	Brazing Data	245
QB-400	Variables	245
QB-410	Technique	246
QB-420	P-Numbers	246
QB-430	F-Numbers	246
QB-450	Specimens	249
QB-460	Graphics	253
C	-	
Part QF	Plastic Fusing	272
Article XXI	Plastic Fusing General Requirements	272
QF-100	Scope	272
QF-110	Fused Joint Orientation	272
QF-120	Test Positions	272
QF-130	Data Acquisition and Evaluation	272
QF-140	Examinations and Tests	273
Article XXII	Fusing Procedure Qualifications	279
QF-200	General	279
QF-220	Standard Fusing Procedure Specifications	282
QF-250	Fusing Variables	286
-		
Article XXIII	Plastic Fusing Performance Qualifications	289
QF-300	General	289
QF-310	Qualification Test Coupons	290
QF-320	Retests and Renewal of Qualification	290
QF-360	Essential Variables for Performance Qualification of Fusing Operators	290
Article XXIV	Plastic Fusing Data	292
QF-400	Variables	یک دو سه صنعت
		يت دو سه صحت

QF-420 QF-450 QF-460 QF-480 QF-490		Material GroupingsPipe Fusing LimitsGraphicsFormsDefinitions	293 294 295 308 322
Nonmandatory Appe B-100	ndix B	Welding and Brazing Forms Forms	323 323
Nonmandatory Appen	ndix D	P-Number Listing	334
Mandatory Appendix	E	Permitted SWPSs	353
Mandatory Appendix	F	Standard Units for Use in Equations	356
Nonmandatory Appe	ndix G	Guidance for the Use of U.S. Customary and SI Units in the ASME Boiler and Pressure Vessel Code	357
G-100		Use of Units in Equations	357
G-200		Guidelines Used to Develop SI Equivalents	357
G-300		Soft Conversion Factors	359
Nonmandatory Appen	ndix H	Waveform Controlled Welding	360
H-100		Background	360
H-200		Waveform Controlled Welding and Heat Input Determination	360
H-300		New Procedures Qualifications	360
H-400		Existing Qualified Procedures	361
H-500		Performance Qualifications	361
Mandatory Appendix	I	Guideline for Requesting P-Number Assignments for Base Metals not	
, II		Listed in Table QW/QB-422	362
J-100		Introduction	362
J-200		Request Format	362
J-300		Submittals	362
Nonmandatory Appen	ndix K	Guidance on Invoking Section IX Requirements in Other Codes, Stan- dards, Specifications, and Contract Documents	363
K-100		Background and Purpose	363
K-200		Scope of Section IX and What Referencing Documents Must Address	363
K-300		Recommended Wording — General	363
Nonmandatory Appen	ndix L	Welders and Welding Operators Qualified Under ISO 9606-1:2012 and	
		ISO 14732-2013	366
L-100		Introduction	366
L-200		Administrative Requirements	366
L-300		Technical Requirements	366
L-400		Testing Requirements	366
FIGURES			
QG-109.2.1	Typical S	Single and Multibead Layers	14
QG-109.2.2		Single Bead Layers	14
QW-191.1.2.2(b)(4)		I Indication Charts	22
QW-461.1	Positions	s of Welds — Groove Welds	187
QW-461.2	Positions	s of Welds — Fillet Welds	188
QW-461.3	Groove V	Nelds in Plate — Test Positions	189
QW-461.4	Groove V	Nelds in Pipe — Test Positions	189
QW-461.5	Fillet We	elds in Plate — Test Positions	190
QW-461.6	Fillet We	elds in Pipe — Test Positions	191
QW-461.7		lds — Test Positions	192
QW-461.8		lds — Welding Positions	192
QW-461.10		Tool Design Characteristics (FSW) Referenced in QW-410	194
QW-462.1(a)		— Reduced Section — Plate	195
			یک دو سه صنعت

QW-462.1(b)	Tension — Reduced Section — Pipe 195
QW-462.1(c)	Tension — Reduced Section Alternate for Pipe196
QW-462.1(d)	Tension — Reduced Section — Turned Specimens196
QW-462.1(e)	Tension — Full Section — Small Diameter Pipe197
QW-462.2	Side Bend
QW-462.3(a)	Face and Root Bends — Transverse199
QW-462.3(b)	Face and Root Bends — Longitudinal
QW-462.4(a)	Fillet Welds in Plate — Procedure200
QW-462.4(b)	Fillet Welds in Plate — Performance201
QW-462.4(c)	Fillet Welds in Pipe — Performance 201
QW-462.4(d)	Fillet Welds in Pipe — Procedure202
QW-462.5(a)	Chemical Analysis and Hardness Specimen Corrosion-Resistant and Hard-Facing Weld Metal Overlay
QW-462.5(b)	Chemical Analysis Specimen, Hard-Facing Overlay Hardness, and Macro Test
QW-402.5(D)	Location(s) for Corrosion-Resistant and Hard-Facing Weld Metal Overlay 203
QW-462.5(c)	Pipe Bend Specimen — Corrosion-Resistant Weld Metal Overlay
QW-462.5(d)	Plate Bend Specimens — Corrosion-Resistant Weld Metal Overlay
QW-462.5(e)	Plate Macro, Hardness, and Chemical Analysis Specimens — Corrosion-Resistant and
QW-402.5(e)	Hard-Facing Weld Metal Overlay
QW-462.7.1	Resistance Seam Weld Test Coupon 206
QW-462.7.2	Seam Weld Section Specimen Removal 207
QW-462.7.2 QW-462.7.3	Resistance Weld Nugget Section Test Specimens 207 207 207
QW-462.7.5 QW-462.8.1	Spot Welds in Sheets
•	-
QW-462.8.2 QW-462.9	Seam Weld Peel Test Specimen and Method209Spot Welds in Sheet210
v	•
QW-462.12	1 0
QW-462.13	Measurement of Temper Bead Overlap213Distance A_{ij} (10 mm) This law as Decademy Overlife action212
QW-463.1(a)	Plates — Less Than $\frac{3}{4}$ in. (19 mm) Thickness Procedure Qualification
QW-463.1(b)	Plates $-\frac{3}{4}$ in. (19 mm) and Over Thickness and Alternate From $\frac{3}{8}$ in. (10 mm) but
OW A(2.1())	Less Than $\frac{3}{4}$ in. (19 mm) Thickness Procedure Qualification
QW-463.1(c)	Plates — Longitudinal Procedure Qualification 214
QW-463.1(d)	Procedure Qualification
QW-463.1(e)	Procedure Qualification
QW-463.1(f)	Toughness Test Specimen Location 215
QW-463.2(a)	Plates — Less Than $\frac{3}{4}$ in. (19 mm) Thickness Performance Qualification 216
QW-463.2(b)	Plates $-\frac{3}{4}$ in. (19 mm) and Over Thickness and Alternate From $\frac{3}{8}$ in. (10 mm) but
	Less Than $\frac{3}{4}$ in. (19 mm) Thickness Performance Qualification
QW-463.2(c)	Plates — Longitudinal Performance Qualification 217
QW-463.2(d)	Performance Qualification 217
QW-463.2(e)	Performance Qualification
QW-463.2(f)	Pipe — NPS 10 (DN 250) Assembly Performance Qualification218
QW-463.2(g)	NPS 6 (DN 150) or NPS 8 (DN 200) Assembly Performance Qualification219
QW-463.2(h)	Performance Qualification
QW-464.1	Procedure Qualification Test Coupon and Test Specimens
QW-464.2	Performance Qualification Test Coupons and Test Specimens 222
QW-466.1	Test Jig Dimensions 223
QW-466.2	Guided-Bend Roller Jig 225
QW-466.3	Guided-Bend Wrap Around Jig 225
QW-466.4	Stud-Weld Bend Jig 226
QW-466.5	Torque Testing Arrangement for Stud Welds 227
QW-466.6	Suggested Type Tensile Test Figure for Stud Welds 228
QW-469.1	Butt Joint 228
QW-469.2	Alternative Butt Joint 228
QB-461.1	Flow Positions 253
QB-461.2	Test Flow Positions 254
QB-462.1(a)	Tension — Reduced Section for Butt and Scarf Joints — Plate

QB-462.1(b)	Tension — Reduced Section for Butt, Lap, and Scarf Joints — Pipe	25
QB-462.1(c)	Tension — Reduced Section for Lap and Rabbet Joints — Plate	25
QB-462.1(e)	Tension — Full Section for Lap, Scarf, and Butt Joints — Small Diameter Pipe	25
QB-462.1(f)	Support Fixture for Reduced-Section Tension Specimens	25
QB-462.2(a)	Transverse First and Second Surface Bends — Plate and Pipe	26
QB-462.2(b)	Longitudinal First and Second Surface Bends — Plate	26
QB-462.3	Lap Joint Peel Specimen	26
QB-462.4	Lap Joint Section Specimen (See QB-181)	26
QB-462.5	Workmanship Coupons	26
QB-463.1(a)	Plates Procedure Qualification	26
QB-463.1(b)	Plates Procedure Qualification	26
QB-463.1(c)	Plates Procedure Qualification	26
QB-463.1(d)	Plates Procedure Qualification	26
QB-463.1(e)	Pipe — Procedure Qualification	26
	Plates Performance Qualification	26
QB-463.2(a)		26
QB-463.2(b)	Plates Performance Qualification	26
QB-463.2(c)	Pipe Performance Qualification	
QB-466.1	Guided-Bend Jig	27
QB-466.2	Guided-Bend Roller Jig	27
QB-466.3	Guided-Bend Wrap Around Jig	27
QF-221.1	Required Minimum Melt Bead Size	28
QF-461.1	Fusing Positions	29
QF-461.2	Fusing Test Positions	29
QF-462(a)	Cross Section of Upset Beads for Butt-Fused PE Pipe	29
QF-462(b)	Cross Section of Upset Beads for Sidewall-Fused Fitting (Profile at Crotch of Fitting)	29
QF-463	Bend Test Specimen Removal, Configuration, and Testing	29
QF-464	HSTIT Specimen Configuration and Dimensions	30
QF-465	HSTIT Specimen Failure Examples	30
QF-466	Electrofusion Crush Test	30
QF-467	Electrofusion Bend Test	30
QF-468	Fusion Zone Void Criteria	30
QF-469	Electrofusion Peel Test	30
QF-470	Short-Term Hydrostatic Test Specimen	30
K-305	Proposed Code Case Template	36
TABLES		
QW-252	Welding Variables Procedure Specifications (WPS) — Oxyfuel Gas Welding (OFW)	3
QW-252.1	Welding Variables Procedure Specifications (WPS) — Oxyfuel Gas Welding (OFW)	3
QW-253	Welding Variables Procedure Specifications (WPS) — Shielded Metal-Arc Welding (SMAW)	3
QW-253.1	Welding Variables Procedure Specifications (WPS) — Shielded Metal-Arc Welding (SMAW)	3
QW-254	Welding Variables Procedure Specifications (WPS) — Submerged-Arc Welding (SAW)	4
QW-254.1	Welding Variables Procedure Specifications (WPS) — Submerged-Arc Welding (SAW) \dots	4
QW-255	Welding Variables Procedure Specifications (WPS) — Gas Metal-Arc Welding (GMAW and	
	FCAW)	4
QW-255.1	Welding Variables Procedure Specifications (WPS) — Gas Metal-Arc Welding (GMAW and FCAW)	4
QW-256	Welding Variables Procedure Specifications (WPS) — Gas Tungsten-Arc Welding (GTAW)	4
QW-256.1	Welding Variables Procedure Specifications (WPS) — Gas Tungsten-Arc Welding (GTAW)	4
QW-257	Welding Variables Procedure Specifications (WPS) — Plasma-Arc Welding (PAW)	4
QW-257.1	Welding Variables Procedure Specifications (WPS) — Plasma-Arc Welding (PAW)	5
QW-258	Welding Variables Procedure Specifications (WPS) — Electroslag Welding (ESW)	5
QW-258.1	Welding Variables Procedure Specifications (WPS) — Electroslag Welding (ESW)	5
QW-259	Welding Variables Procedure Specifications (WPS) — Electrogas Welding (EGW)	5
QW-260	Welding Variables Procedure Specifications (WPS) — Electron Beam Welding (EBW)	5
QW-261	Welding Variables Procedure Specifications (WPS) — Stud Welding	5
-		

QW-263 Welding Variables Procedure Specifications (WPS) — Resistance Welding (LBW) 59 QW-264.1 Welding Variables Procedure Specifications (WPS) — Laser Beam Welding (LBW) 60 QW-264.2 Welding Variables Procedure Specifications (WPS) — Laser Beam Welding (LBW) 60 QW-264.2 Welding Variables Procedure Specifications (WPS) — Flash Welding (DPW) 64 QW-265 Welding Variables Procedure Specifications (WPS) — Flash Welding (DPW) 64 QW-267 Welding Variables Procedure Specifications (WPS) — Difusion Welding (DPW) 64 QW-268.2 Essential Variables Procedure Specifications of Tube-to-Tubesheet Welding (All Welding Processes Except Explosion Welding) 67 QW-280.4 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion Welding (SMW) 76 QW-353 Shielded Metal-Arc Welding (SMAW) 76 QW-354 Semiautomatic Submerged-Arc Welding (SMW) 76 QW-355 Semiautomatic Gas Mugatern-Arc Welding (GTAW) 77 QW-354 Samual and Semiautomatic Flasma-Arc Welding (CMAW) 77 QW-355 Semiautomatic Gas Tungstern-Arc Welding (CTAW) 77 QW-356 Semiautomatic Submerged-Arc Welding (CMAW) 76 QW-357 Manual and Semi	QW-262	Welding Variables Procedure Specifications (WPS) — Inertia and Continuous Drive Friction Welding 57
QW-264 Welding Variables Procedure Specifications (WPS) — Laser Beam Welding (LBW) 59 QW-264.2 Welding Variables Procedure Specifications (WPS) — Laser Beam Welding (LBW) 60 QW-264.2 Welding Variables Procedure Specifications (WPS) — Law-Power Density Laser Beam Welding (LBW) 61 QW-265 Welding Variables Procedure Specifications (WPS) — Diffusion Welding (DFW) 63 QW-266 Welding Variables Procedure Specifications — Friction Stir Welding (FSW) 65 QW-268.1 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (LBW) 67 QW-282.2 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (ESPlosion Welding) 67 QW-353 Shielded Metal-Arc Welding (SMW) 76 QW-354 Semiautomatic Gas Metal-Arc Welding (GMW) 76 QW-355 Manual and Semiautomatic Gas Metal-Arc Welding (GMW) 77 QW-356 Manual and Semiautomatic Gas Metal-Arc Welding (GMW) 77 QW-357 Samiatomatic Gas Metal-Arc Welding (GMW) 77 QW-358 Semiautomatic Gas Metal-Arc Welding (GMW) 77 QW-354 Semiautomatic Gas Metal-Arc Welding (GMW) 77 QW-355 Manual and Semiautomatic Gas Tube-to-Tubesheet Performance Qualificat	OW-263	
QW-264.1 Welding Variables Procedure Specifications (WPS) — Laser Beam Welding (LBW) 60 QW-264.2 Welding Variables Procedure Specifications (WPS) — Flash Welding (LBW) 61 QW-265 Welding Variables Procedure Specifications (WPS) — Flash Welding (DPW) 64 QW-266 Welding Variables Procedure Specifications (WPS) — Flash Welding (DPW) 64 QW-267 Welding Variables Procedure Specifications (WPS) — Difusion Welding (All Welding (PW) 65 QW-288.1 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (All Welding (PW) 67 QW-326 Oxytuel Gas Welding (SMAW) 67 QW-352 Oxytuel Gas Welding (SMAW) 76 QW-353 Shelded Metal-Arc Welding (SMW) 76 QW-355 Semiautomatic Sam Semiator-Arc Welding (GAW) 76 QW-355 Semiautomatic Sam Metal-Arc Welding (GMW) 77 QW-356 Manual and Semiautomatic Gas Tungstren-Arc Welding (GTAW) 77 QW-357 Manual and Semiautomatic Flass Metal-Arc Welding (CFAW) 77 QW-358 Semiautomatic Submerged-Arc Welding (GTAW) 77 QW-354 Welding Variables 97 QW-424 Ferous and Nonferrous P-Numbers 97		
QW-264.2 Welding Variables Procedure Specifications (WPS) — Low-Power Density Laser Beam 61 QW-265 Welding Variables Procedure Specifications (WPS) — Diffusion Welding (DFW) 63 QW-266 Welding Variables Procedure Specifications (WPS) — Diffusion Welding (DFW) 64 QW-267 Welding Variables Procedure Specifications — Prictons Stir Welding (FSW) 65 QW-288.1 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (All Welding Processes Except Explosion Welding) 67 QW-280.2 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion Welding) 67 QW-353 Shielded Metal-Arc Welding (SMAW) 76 QW-354 Semiautomatic Gas Metal-Arc Welding (GMAW) 76 QW-355 Semiautomatic Gas Tungsten-Arc Welding (GTAW) 77 QW-356 Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW) 77 QW-357 Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW) 77 QW-354 Semiautomatic Gas Metal-Arc Welding (GAW) 76 QW-355 Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW) 77 QW-356 Manual and Semiautomatic Gas Metal-Arc Welding (GAW) 76 QW-416 Welding Variables for Proceet Perfor	•	
QW-265 Welding Variables Procedure Specifications (WPS) — Diffusion Welding (DFW) 64 QW-267 Welding Variables Procedure Specifications (WPS) — Diffusion Welding (DFW) 64 QW-281 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (IAI Welding 64 QW-282. Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion 67 QW-282. Essential Variables for Temper Bead Procedure Qualification 69 QW-353 Shielded Metal-Arc Welding (SMAW) 76 QW-354 Semiautomatic Gas Metal-Arc Welding (GMW) 76 QW-355 Semiautomatic Gas Metal-Arc Welding (GMW) 76 QW-356 Manual and Semiautomatic Plasma-Arc Welding (GMW) 77 QW-368 Essential Variables for Tube-to-Tubesheet Performance Qualification 80 QW-416 Welding Variables 97 QW-384 Forumbers 97 QW-385 Groove-Weld Tension Tests and Transverse-Bend Tests 183 QW-451.1 Groove-Weld Tension Tests and Longitudinal-Bend Tests 183 QW-452.4 Smail Diameter Fillet-Weld Tests 183 QW-452.4 Smail Diameter Fillet-Weld Tests 185	•	Welding Variables Procedure Specifications (WPS) — Low-Power Density Laser Beam
QW-266 Welding Variables Procedure Specifications (WPS) — Diffusion Welding (PSW) 64 QW-267 Welding Variables Procedure Specifications — Friction Stir Welding (FSW) 65 QW-288.1 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (All Welding 67 QW-280.2 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion 67 QW-290.4 Welding Variables for Temper Bead Procedure Qualification 69 QW-352 Oxytuel Gas Welding (OFW) 76 QW-353 Shielded Metal-Arc Welding (SAW) 76 QW-354 Semiautomatic Gas Metal-Arc Welding (GAW) 76 QW-355 Semiautomatic Gas Metal-Arc Welding (CMW) 76 QW-355 Manual and Semiautomatic Gas Tungsthere-Arc Welding (GTAW) 77 QW-358 Manual and Semiautomatic Gas Tungsthere-Arc Welding (GTAW) 77 QW-358 Seniatutomatic Gas Tungsthere-Arc Welding (GTAW) 77 QW-351 Groove-Weld Tension Tests and Transverse-Bend Tests 80 QW-422 Ferrous and Nonferrous P-Numbers 97 QW-421 Fourobe-Weld Tension Tests and Longitudinal-Bend Tests 83 QW-451.1 Groove-Weld Tension Tests and Transverse-	OW-265	
QW-267 Welding Variables Procedure Qualification of Tube-to-Tubesheet Welding (ISW) 65 QW-268.1 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (All Welding) 67 QW-288.2 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion Welding) 67 QW-290.4 Welding Variables for Temper Bead Procedure Qualification 69 QW-352 Oxyfuel Gas Welding (OFW) 76 QW-353 Shielded Metal-Arc Welding (SAW) 76 QW-354 Semiautomatic Gas Metal-Arc Welding (GMAW) 76 QW-355 Samiautomatic Gas Tupsten-Arc Welding (GTAW) 77 QW-356 Manual and Semiautomatic Pasma-Arc Welding (GTAW) 77 QW-388 Essential Variables for Tube-to-Tubesheet Performance Qualification 80 QW/QB-422 Ferrous and Nonferrous P-Numbers 97 QW-432 F-humbers 11 QW-432 Fourbous and Nonferrous P-Numbers 121 QW-424 Foroose-Weld Tests and Longitudinal-Bend Tests 183 QW-451.1 Groove-Weld Tests 183 QW-452.3 Fillet Weld Qualified by Groove-Weld Tests 183 QW-452.4 Forumbers	•	
QW-288.1 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (All Welding Processes Except Explosion Welding) 67 QW-288.2 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion Welding) 67 QW-290.4 Welding Variables for Temper Bead Procedure Qualification 69 QW-352 Oxyfuel Gas Welding (OFW) 76 QW-353 Shielded Metal-Arc Welding (SAW) 76 QW-354 Semiautomatic Gas Metal-Arc Welding (MAW) 76 QW-355 Semiautomatic Gas Metal-Arc Welding (MAW) 76 QW-356 Manual and Semiautomatic Gas Metal-Arc Welding (MAW) 76 QW-357 Manual and Semiautomatic Gas Metal-Arc Welding (MAW) 76 QW-358 Essential Variables for Tube-to-Tubesheet Performance Qualification 80 QW-416 Welding Variables 94 QW-422 Ferous and Nonferrous P-Numbers 97 QW-424 A-Numbers 171 QW-4251 Groove-Weld Tension Tests and Transverse-Bend Tests 183 QW-451.3 Fillet-Weld Tests 183 QW-451.4 Fillet-Weld Tests 183 QW-451.3 Groove-Weld Tension Tests and Longitudinal-Ben	•	
QW-288.2 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion Welding) 67 QW-290.4 Welding Variables for Temper Bead Procedure Qualification 69 QW-352 Oxyfuel Gas Welding (OFW) 76 QW-353 Shielded Metal-Arc Welding (SAW) 76 QW-354 Semiautomatic Gas Metal-Arc Welding (MAW) 76 QW-355 Semiautomatic Gas Metal-Arc Welding (MAW) 76 QW-356 Manual and Semiautomatic Gas metal-Arc Welding (GTAW) 77 QW-357 Manual and Semiautomatic Gas metal-Arc Welding (PAW) 77 QW-358 Essential Variables for Tube-to-Tubesheet Performance Qualification 80 QW-422 Ferrous and Nonferrous P-Numbers 97 QW-432 Ferrous and Nonferrous P-Numbers 97 QW-442 A-Numbers 171 QW-451.1 Groove-Weld Tension Tests and Longitudinal-Bend Tests 183 QW-451.3 Fillet-Weld Tests 183 QW-452.4 Small Diameter Fillet Weld Tests 183 QW-452.1(a) Test specimens 184 QW-452.4 Small Diameter Fillet-Weld Tests 186 QW-452.4 Small Di	e	Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (All Welding
QW-290.4Welding Variables for Temper Bead Procedure Qualification69QW-352Oxyfuel Gas Welding (OFW)76QW-353Shielded Metal-Arc Welding (SMAW)76QW-354Semiautomatic Submerged-Arc Welding (GMAW)76QW-355Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW)77QW-356Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW)77QW-357Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW)77QW-357Manual and Semiautomatic Plasma-Arc Welding (PAW)77QW-358Essential Variables for Tube-to-Tubesheet Performance Qualification80QW-416Welding Variables94QW-422F-Numbers97QW-432F-Numbers97QW-441A-Numbers11QW-451.1Groove-Weld Tension Tests and Transverse-Bend Tests182QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.3Fillet-Weld Rest183QW-451.4Fillet-Weld Rest183QW-452.1(a)Test Specimens183QW-452.1(a)Test Specimens184QW-452.5Fillet-Weld Test185QW-452.4Small Diameter Fillet-Weld Tests185QW-452.5Fillet-Weld Test186QW-452.6Fillet-Weld Test186QW-452.7Fillet-Weld Test186QW-452.8Performance Qualification — Position and Diameter Limitations193QW-452.9Perormance Qualification — Position and Diameter Limitations <td>QW-288.2</td> <td>Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion</td>	QW-288.2	Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion
QW-352 Oxyfuel Gas Welding (OFW) 76 QW-353 Shielded Metal-Arc Welding (SAW) 76 QW-354 Semiautomatic Gas Metal-Arc Welding (GAW) 76 QW-355 Semiautomatic Gas Mugsten-Arc Welding (GAW) 76 QW-356 Manual and Semiautomatic Plasma-Arc Welding (GAW) 77 QW-387 Manual and Semiautomatic Plasma-Arc Welding (GAW) 77 QW-388 Essential Variables for Tube-to-Tubesheet Performance Qualification 80 QW/QB-422 Ferrous and Nonferrous P-Numbers 97 QW-441 Weiding Variables 97 QW-452 Forumsers 171 QW-451.1 Groove-Weld Tension Tests and Longitudinal-Bend Tests 181 QW-451.2 Groove-Weld Tension Tests and Longitudinal-Bend Tests 183 QW-451.4 Fillet Weld Squalified by Groove-Weld Tests 183 QW-452.1(b) Thickness of Weld Metal Qualified 184 QW-452.1(b) Thickness of Weld Metal Qualified 184 QW-452.4 Small Diameter Fillet-Weld Test 185 QW-452.4 Small Diameter Fillet-Weld Test 185 QW-452.4 Small Diameter Gualification The Specimens </td <td>OW-290.4</td> <td></td>	OW-290.4	
QW-353Shielded Metal-Arc Welding (SMAW)76QW-354Semiautomatic Submerged-Arc Welding (SAW)76QW-355Semiautomatic Gas Metal-Arc Welding (GNAW)76QW-356Manual and Semiautomatic Cas Tungsten-Arc Welding (CTAW)77QW-357Manual and Semiautomatic Cas Tungsten-Arc Welding (CTAW)77QW-358Essential Variables for Tube-to-Tubesheet Performance Qualification80QW-416Welding Variables for Tube-to-Tubesheet Performance Qualification80QW-422Ferrous and Nonferrous P-Numbers97QW-434A-Numbers97QW-442A-Numbers97QW-451.1Groove-Weld Tension Tests and Transverse-Bend Tests182QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.3Fillet-Weld Squalified by Groove-Weld Tests183QW-452.1(a)Test Specimens184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.4Small Diameter Fillet-Weld Test185QW-452.4Small Diameter Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-452.1(b)Thickness of Veld ITest186QW-452.6Fillet Weld Test185QW-452.6Fillet Weld Test186QW-452.6Fillet Weld Test186QW-452.1(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-452.1(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-452.1(•	
QW-354Semiautomatic Submerged-Arc Welding (SAW)76QW-355Semiautomatic Gas Metal-Arc Welding (GTAW)76QW-355Manual and Semiautomatic Cas Tungsten-Arc Welding (GTAW)77QW-358Essential Variables for Tube-to-Tubesheet Performance Qualification80QW-416Welding Variables94QW-422Ferrous and Nonferrous P-Numbers97QW-432F-Numbers97QW-443A-Numbers171QW-444A-Numbers181QW-451.1Groove-Weld Tension Tests and Transverse-Bend Tests182QW-451.2Groove-Weld Tension Tests and Transverse-Bend Tests183QW-451.3Fillet-Weld Tests183QW-452.4Fillet-Weld Tests183QW-452.4Test Specimens184QW-452.1(a)Test Specimens184QW-452.3Groove-Weld Metal Qualified184QW-452.4Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-452.6Fillet Qualification and Diameter Limits186QW-452.7Fillet Qualification - Position and Diameter Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462	•	
QW-355Semiautomatic Gas Metal-Arc Welding (GMAW)76QW-356Manual and Semiautomatic Cas Tungsten-Arc Welding (GTAW)77QW-357Manual and Semiautomatic Cas Tungsten-Arc Welding (PAW)77QW-388Essential Variables for Tube-to-Tubesheet Performance Qualification80QW-416Welding Variables94QW/QB-422Ferrous and Nonferrous P-Numbers97QW-432F-Numbers171QW-442A-Numbers181QW-451.1Groove-Weld Tension Tests and Transverse-Bend Tests183QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.3Fillet-Weld Tests183QW-452.1(a)Test Specimens183QW-452.1(a)Test Specimens184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.4Small Diameter Limits185QW-452.5Fillet-Weld Test185QW-452.6Fillet-Weld Test186QW-452.7Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wa-ar-Resistant) and Corrosion-Resistant Overlays186QW-452.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-452.3Furnace Qualification or Projection Weld Specimens211QW-452.4Induction Brazing (FB)240QB-253Furnace Brazing (FB)240QB-254Induction Brazing (FB)240 <tr< td=""><td>-</td><td></td></tr<>	-	
QW-356Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW)77QW-357Manual and Semiautomatic Plasma-Arc Welding (PAW)77QW-358Essential Variables for Tube-to-Tubesheet Performance Qualification80QW-416Welding Variables94QW-422Ferous and Nonferrous P-Numbers97QW-432Foumbers171QW-442A-Numbers171QW-442A-Numbers171QW-442A-Numbers181QW-451.1Groove-Weld Tension Tests and Transverse-Bend Tests183QW-451.3Fillet-Weld Tests183QW-452.16Toese-Weld Tension Tests and Longitudinal-Bend Tests183QW-452.10Test Specimens184QW-452.11Test Specimens184QW-452.12Groove-Weld Metal Qualified184QW-452.3Groove-Weld Tests185QW-452.4Small Diameter Limits185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-452.7Fillet Qualification by Groove-Weld Tests186QW-452.6Fillet Qualification in Thickness Limits and Test Specimens for Hard- Facing (Waer-Resistant) and Corrosion-Resistant Overlays186QW-452.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-452.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-452.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-452.10(c)<	•	0 00)
QW-357Manual and Semiautomatic Plasma-Årc Welding (PAW)77QW-388Essential Variables for Tube-to-Tubesheet Performance Qualification80QW-416Welding Variables94QW/QB-422Ferrous and Nonferrous P-Numbers97QW-432F-Numbers77QW-442A Numbers97QW-443Groove-Weld Tension Tests and Transverse-Bend Tests181QW-451.1Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.4Fillet Weld Tests183QW-452.1(a)Test Specimens184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.3Groove-Weld Diameter Limits185QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification - Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-253Furnace Brazing (TB)240QB-254Induction Brazing (RB)240QB-255	e e	
QW-388Essential Variables for Tube-to-Tubesheet Performance Qualification80QW-416Welding Variables94QW/QB-422Ferrous and Nonferrous P-Numbers97QW-432F-Numbers171QW-442A-Numbers171QW-442A-Numbers181QW-451.1Groove-Weld Tension Tests and Transverse-Bend Tests183QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.3Fillet-Weld Squalified by Groove-Weld Tests183QW-452.1(a)Test Specimens184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.3Groove-Weld Tests185QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet-Weld Test186QW-452.7Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)240QB-254Induction Brazing (B)240QB-255Resistance Brazing (RB)240	e e	
QW-416Welding Variables94QW/QB-422Ferrous and Nonferrous P-Numbers97QW-432F-Numbers171QW-432A-Numbers171QW-442A-Numbers181QW-451.1Groove-Weld Tension Tests and Transverse-Bend Tests182QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.3Fillet-Weld Tests183QW-451.4Fillet-Weld S Qualified by Groove-Weld Tests183QW-452.1(a)Test Specimens184QW-452.3Groove-Weld Diameter Limits184QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-452.6Fillet Qualification by Groove-Weld Tests186QW-452.6Fillet Qualification - Position and Diameter Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification Thickness Limits and Test Specimens211QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (FB)240QB-254Induction Brazing (RB)240QB-255Dip Brazing — Molten Metal Bath (DB)241QB-256Dip Brazing — Molten Metal Bath (DB)241Q	•	
QW/QB-422Ferrous and Nonferrous P-Numbers97QW-432F-Numbers171QW-432A-Numbers181QW-432Groove-Weld Tension Tests and Transverse-Bend Tests181QW-451.1Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.2Groove-Weld Tests183QW-451.4Fillet-Weld Zests183QW-452.1(a)Test Specimens183QW-452.1(a)Test Specimens184QW-452.1(a)Test Specimens185QW-452.4Small Diameter Limits185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests185QW-452.6Fillet Qualification on Projection Weld Specimens of Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.0Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-253Furace Brazing (FB)240QB-254Induction Brazing (B)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Salt or Flux Bath (DB)242QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Perlost — Lab Joints240QB-451.3Tension Tests and Perlost — Lab Joints <td>•</td> <td>e e e e e e e e e e e e e e e e e e e</td>	•	e e e e e e e e e e e e e e e e e e e
QW-432F-Numbers171QW-442A-Numbers181QW-442A-Numbers181QW-451.1Groove-Weld Tension Tests and Longitudinal-Bend Tests182QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.3Fillet-Weld Tests183QW-451.4Fillet Welds Qualified by Groove-Weld Tests183QW-452.1(a)Test Specimens184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.3Groove-Weld Diameter Limits185QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-452.5Furnace Brazing (TB)240QB-252Torch Brazing (TB)240QB-253Furnace Brazing (RB)241QB-254Induction Brazing (RB)241QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)241QB-451.1Tension Tests an	•	0
QW-442A-Numbers181QW-4451.1Groove-Weld Tension Tests and Transverse-Bend Tests182QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.3Fillet-Weld Tests183QW-451.4Fillet-Weld Tests183QW-452.1(a)Test Specimens184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.3Groove-Weld Diameter Limits185QW-452.4Small Diameter Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)240QB-254Induction Brazing (IB)241QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Salt or Flux Bath (DB)241QB-254Induction Brazing (IB)242QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests		
QW-451.1Groove-Weld Tension Tests and Transverse-Bend Tests182QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.3Fillet-Weld Tests183QW-451.4Fillet Welds Qualified by Groove-Weld Tests183QW-452.1(a)Test Specimens184QW-452.3Groove-Weld Diameter Limits184QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet Qualification by Groove-Weld Tests185QW-452.6Fillet Qualification by Groove-Weld Tests185QW-452.7Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)240QB-255Resistance Brazing (RB)241QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Salt or Flux Bath (DB)242QB-451.1Tension Tests and Congitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Dengitudinal Bend Tests — Butt and Scarf Joints249QB-451.4Tension Tests and Section Tests — Abet Joints	•	
QW-451.2Groove-Weld Tension Tests and Longitudinal-Bend Tests183QW-451.3Fillet-Weld Tests183QW-451.4Fillet Welds Qualified by Groove-Weld Tests183QW-452.1(a)Test Specimens184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.3Groove-Weld Diameter Limits185QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-452.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)240QB-254Induction Brazing (IB)241QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.4Tension Tests and Section Tests — Abbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	•	
QW-451.3Fillet-Weld Tests183QW-451.4Fillet Welds Qualified by Groove-Weld Tests183QW-452.1 (a)Test Specimens184QW-452.1 (b)Thickness of Weld Metal Qualified184QW-452.3Groove-Weld Diameter Limits185QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet Qualification by Groove-Weld Tests186QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)240QB-255Resistance Brazing (RB)241QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Molten Metal Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-451.1Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Section Tests — Rabbet Joints240QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints250	5 T	
QW-451.4Fillet Welds Qualified by Groove-Weld Tests183QW-452.1(a)Test Specimens184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.3Groove-Weld Diameter Limits185QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-4525Furnace Brazing (TB)239QB-252Torch Brazing (TB)240QB-254Induction Brazing (TB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Molten Metal Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Section Tests — Rabbet Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	, •	8
QW-452.1(a)Test Specimens184QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.1(b)Thickness of Weld Metal Qualified185QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Furnace Brazing (TB)240QB-255Resistance Brazing (RB)240QB-254Induction Brazing (IB)241QB-255Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.4Tension Tests and Peel Tests — LAP Joints250QB-451.5Section Tests — Rabbel Joints250QB-451.5Section Tests — Norkmanship Coupon Joints251	-	
QW-452.1(b)Thickness of Weld Metal Qualified184QW-452.3Groove-Weld Diameter Limits185QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-451.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)240QB-254Induction Brazing (RB)241QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Deal Tests — But and Scarf Joints249QB-451.3Tension Tests and Deel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251		
QW-452.3Groove-Weld Diameter Limits185QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)240QB-254Induction Brazing (IB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.2Tension Tests and Dransverse-Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Congitudinal Bend Tests — Butt and Scarf Joints249QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Kabbet Joints250		1
QW-452.4Small Diameter Fillet-Weld Test185QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)240QB-254Induction Brazing (FB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.4Tension Tests and Lepiters — LAP Joints250QB-451.5Section Tests — Workmanship Coupon Joints251		
QW-452.5Fillet-Weld Test185QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)240QB-254Induction Brazing (IB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers249QB-451.1Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Section Tests — Rabbet Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251		
QW-452.6Fillet Qualification by Groove-Weld Tests186QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)239QB-253Furnace Brazing (FB)240QB-254Induction Brazing (IB)241QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Peel Tests — LAP Joints249QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	•	
QW-453Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard- Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)239QB-253Furnace Brazing (FB)240QB-254Induction Brazing (IB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Peel Tests — LAP Joints240QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	e e	
Facing (Wear-Resistant) and Corrosion-Resistant Overlays186QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)239QB-253Furnace Brazing (FB)240QB-254Induction Brazing (B)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Molten Metal Bath (DB)242QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Section Tests — Rabbet Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	•	
QW-461.9Performance Qualification — Position and Diameter Limitations193QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)239QB-253Furnace Brazing (FB)240QB-254Induction Brazing (IB)241QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	QUI 100	
QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)239QB-253Furnace Brazing (FB)240QB-254Induction Brazing (IB)241QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	OW-461.9	
QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)239QB-253Furnace Brazing (FB)240QB-254Induction Brazing (IB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints249QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	•	
QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens211QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)239QB-253Furnace Brazing (FB)240QB-254Induction Brazing (IB)240QB-255Resistance Brazing (RB)241QB-256Dip BrazingSalt or Flux Bath (DB)241QB-257Dip BrazingMolten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend TestsButt and Scarf Joints249QB-451.3Tension Tests and Peel TestsLAP Joints249QB-451.4Tension Tests and Section TestsRabbet Joints250QB-451.5Section TestsWorkmanship Coupon Joints251		
QW-473.3-1Makeup of Equations for Aqua Regia and Lepito's Etch229QB-252Torch Brazing (TB)239QB-253Furnace Brazing (FB)240QB-254Induction Brazing (IB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Peel Tests — LAP Joints249QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251		
QB-252Torch Brazing (TB)239QB-253Furnace Brazing (FB)240QB-254Induction Brazing (IB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Peel Tests — LAP Joints249QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251		
QB-253Furnace Brazing (FB)240QB-254Induction Brazing (IB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Peel Tests — LAP Joints249QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	•	
QB-254Induction Brazing (IB)240QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	•	5 C 7
QB-255Resistance Brazing (RB)241QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	•	
QB-256Dip Brazing — Salt or Flux Bath (DB)241QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	-	
QB-257Dip Brazing — Molten Metal Bath (DB)242QB-432F-Numbers246QB-431Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	-	
QB-432F-Numbers246QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	-	
QB-451.1Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints249QB-451.2Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	-	
QB-451.2Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints249QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	•	
QB-451.3Tension Tests and Peel Tests — LAP Joints250QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	-	
QB-451.4Tension Tests and Section Tests — Rabbet Joints250QB-451.5Section Tests — Workmanship Coupon Joints251	-	
QB-451.5 Section Tests — Workmanship Coupon Joints 251	•	
	-	
	QB-452.1	Peel or Section Tests — Butt, Scarf, Lap, Rabbet Joints 252

Section Tests — Workmanship Specimen Joints	252
Procedure and Performance Qualification Position Limitations	255
Testing Speed Requirements	276
	277
Electrofusion Procedure Qualification Test Coupons Required	282
Maximum Heater Plate Removal Time for Pipe-to-Pipe Butt and Sidewall Fusing	285
Electrofusion Material Combinations	286
Fusing Variables Procedure Specification	287
Fusing Variables Procedure Specification	287
Manual Butt-Fusing Variables Procedure Specification	288
Fusing Variables Procedure Specification	288
Essential Variables Applicable to Fusing Operators	291
Material Grouping	293
Pipe Fusing Diameter Limits	294
Standard Units for Use in Equations	356
	Procedure and Performance Qualification Position Limitations Testing Speed Requirements Electrofusion Procedure Qualification Test Coupons Required Maximum Heater Plate Removal Time for Pipe-to-Pipe Butt and Sidewall Fusing Electrofusion Material Combinations Fusing Variables Procedure Specification Fusing Variables Procedure Specification Manual Butt-Fusing Variables Procedure Specification Fusing Variables Procedure Specification Essential Variables Applicable to Fusing Operators Material Grouping Pipe Fusing Diameter Limits

FORMS

QF-482(a)	Suggested Format for Butt-Fusing Procedure Specifications (FPS or SFPS)	308
QF-482(b)	Suggested Format for Electrofusion Fusing Procedure Specification (FPS or MEFPS)	309
QF-482(c)	Suggested Format for Sidewall-Fusing Procedure Specification (FPS or SFPS)	310
QF-483(a)	Suggested Format for Butt-Fusing Procedure Qualification Records (PQR)	311
QF-483(b)	Suggested Format for Electrofusion Fusing Procedure Qualification Records (PQR)	313
QF-483(c)	Suggested Format for Sidewall-Fusing Procedure Qualification Records (PQR)	316
QF-484(a)	Suggested Format for Butt-Fusing Machine Operator Performance Qualifications (FPQ)	318
QF-484(b)	Suggested Format for Electrofusion Fusing Operator Performance Qualification (FPQ)	319
QF-484(c)	Suggested Format for Sidewall-Fusing Machine Operator Performance Qualifications (FPQ) \ldots	320
QF-485	Suggested Format for Plastic Pipe Fusing Data Acquisition Log Review	321
QW-482	Suggested Format for Welding Procedure Specifications (WPS)	324
QW-483	Suggested Format for Procedure Qualification Records (PQR)	326
QW-484A	Suggested Format A for Welder Performance Qualifications (WPQ)	328
QW-484B	Suggested Format B for Welding Operator Performance Qualifications (WOPQ)	329
QW-485	Suggested Format for Demonstration of Standard Welding Procedure Specifications (SWPS) .	330
QB-482	Suggested Format for a Brazing Procedure Specification (BPS)	331
QB-483	Suggested Format for a Brazing Procedure Qualification Record (PQR)	332
QB-484	Suggested Format for a Brazer/Brazing Operator Performance Qualification (BPQ)	333

LIST OF SECTIONS

(**19**)

SECTIONS

- Rules for Construction of Power Boilers
- II Materials
 - Part A Ferrous Material Specifications
 - Part B Nonferrous Material Specifications
 - Part C Specifications for Welding Rods, Electrodes, and Filler Metals
 - Part D Properties (Customary)
 - Part D Properties (Metric)
- III Rules for Construction of Nuclear Facility Components
 - Subsection NCA General Requirements for Division 1 and Division 2
 - Appendices
 - Division 1
 - Subsection NB Class 1 Components
 - Subsection NC Class 2 Components
 - Subsection ND Class 3 Components
 - Subsection NE Class MC Components
 - Subsection NF Supports
 - Subsection NG Core Support Structures
 - Division 2 Code for Concrete Containments
 - Division 3 Containment Systems for Transportation and Storage of Spent Nuclear Fuel and High-Level Radioactive Material
 - Division 5 High Temperature Reactors
- IV Rules for Construction of Heating Boilers
- V Nondestructive Examination
- VI Recommended Rules for the Care and Operation of Heating Boilers
- VII Recommended Guidelines for the Care of Power Boilers
- VIII Rules for Construction of Pressure Vessels
 - Division 1
 - Division 2 Alternative Rules
 - Division 3 Alternative Rules for Construction of High Pressure Vessels
- IX Welding, Brazing, and Fusing Qualifications
- X Fiber-Reinforced Plastic Pressure Vessels
- XI Rules for Inservice Inspection of Nuclear Power Plant Components
 - Division 1 Rules for Inspection and Testing of Components of Light-Water-Cooled Plants
 - Division 2 Requirements for Reliability and Integrity Management (RIM) Programs for Nuclear Power Plants
- XII Rules for Construction and Continued Service of Transport Tanks

INTERPRETATIONS

Interpretations are issued in real time in ASME's Interpretations Database at http://go.asme.org/Interpretations. Historical BPVC interpretations may also be found in the Database.

CODE CASES

The Boiler and Pressure Vessel Code committees meet regularly to consider proposed additions and revisions to the Code and to formulate Cases to clarify the intent of existing requirements or provide, when the need is urgent, rules for materials or constructions not covered by existing Code rules. Those Cases that have been adopted will appear in the appropriate 2019 Code Cases book: "Boilers and Pressure Vessels" or "Nuclear Components." Each Code Cases book is updated with seven Supplements. Supplements will be sent or made available automatically to the purchasers of the Code Cases books up to the publication of the 2021 Code. Code Case users can check the current status of any Code Case at http://go.asme.org/BPVCCDatabase. Code Cases at http://go.asme.org/BPVCC.

FOREWORD^{*}

In 1911, The American Society of Mechanical Engineers established the Boiler and Pressure Vessel Committee to formulate standard rules for the construction of steam boilers and other pressure vessels. In 2009, the Boiler and Pressure Vessel Committee was superseded by the following committees:

- (a) Committee on Power Boilers (I)
- (b) Committee on Materials (II)

(c) Committee on Construction of Nuclear Facility Components (III)

- (d) Committee on Heating Boilers (IV)
- (e) Committee on Nondestructive Examination (V)
- (f) Committee on Pressure Vessels (VIII)
- (g) Committee on Welding, Brazing, and Fusing (IX)
- (h) Committee on Fiber-Reinforced Plastic Pressure Vessels (X)
- (i) Committee on Nuclear Inservice Inspection (XI)
- (j) Committee on Transport Tanks (XII)
- (k) Technical Oversight Management Committee (TOMC)

Where reference is made to "the Committee" in this Foreword, each of these committees is included individually and collectively.

The Committee's function is to establish rules of safety relating only to pressure integrity, which govern the construction^{**} of boilers, pressure vessels, transport tanks, and nuclear components, and the inservice inspection of nuclear components and transport tanks. The Committee also interprets these rules when questions arise regarding their intent. The technical consistency of the Sections of the Code and coordination of standards development activities of the Committees is supported and guided by the Technical Oversight Management Committee. This Code does not address other safety issues relating to the construction of boilers, pressure vessels, transport tanks, or nuclear components, or the inservice inspection of nuclear components or transport tanks. Users of the Code should refer to the pertinent codes, standards, laws, regulations, or other relevant documents for safety issues other than those relating to pressure integrity. Except for Sections XI and XII, and with a few other exceptions, the rules do not, of practical necessity, reflect the likelihood and consequences of deterioration in service related to specific service fluids or external operating environments. In formulating the rules, the Committee considers the needs of users, manufacturers, and inspectors of pressure vessels. The objective of the rules is to afford reasonably certain protection of life and property, and to provide a margin for deterioration in service to give a reasonably long, safe period of usefulness. Advancements in design and materials and evidence of experience have been recognized.

This Code contains mandatory requirements, specific prohibitions, and nonmandatory guidance for construction activities and inservice inspection and testing activities. The Code does not address all aspects of these activities and those aspects that are not specifically addressed should not be considered prohibited. The Code is not a handbook and cannot replace education, experience, and the use of engineering judgment. The phrase *engineering judgment* refers to technical judgments made by knowledgeable engineers experienced in the application of the Code. Engineering judgments must be consistent with Code philosophy, and such judgments must never be used to overrule mandatory requirements or specific prohibitions of the Code.

The Committee recognizes that tools and techniques used for design and analysis change as technology progresses and expects engineers to use good judgment in the application of these tools. The designer is responsible for complying with Code rules and demonstrating compliance with Code equations when such equations are mandatory. The Code neither requires nor prohibits the use of computers for the design or analysis of components constructed to the

یک دو سه صنعت 123sanat.com

^{*} The information contained in this Foreword is not part of this American National Standard (ANS) and has not been processed in accordance with ANSI's requirements for an ANS. Therefore, this Foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the Code.

^{**} *Construction*, as used in this Foreword, is an all-inclusive term comprising materials, design, fabrication, examination, inspection, testing, certification, and pressure relief.

requirements of the Code. However, designers and engineers using computer programs for design or analysis are cautioned that they are responsible for all technical assumptions inherent in the programs they use and the application of these programs to their design.

The rules established by the Committee are not to be interpreted as approving, recommending, or endorsing any proprietary or specific design, or as limiting in any way the manufacturer's freedom to choose any method of design or any form of construction that conforms to the Code rules.

The Committee meets regularly to consider revisions of the rules, new rules as dictated by technological development, Code Cases, and requests for interpretations. Only the Committee has the authority to provide official interpretations of this Code. Requests for revisions, new rules, Code Cases, or interpretations shall be addressed to the Secretary in writing and shall give full particulars in order to receive consideration and action (see Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees). Proposed revisions to the Code resulting from inquiries will be presented to the Committee for appropriate action. The action of the Committee becomes effective only after confirmation by ballot of the Committee and approval by ASME. Proposed revisions to the Code approved by the Committee are submitted to the American National Standards Institute (ANSI) and published at http://go.asme.org/BPVCPublicReview to invite comments from all interested persons. After public review and final approval by ASME, revisions are published at regular intervals in Editions of the Code.

The Committee does not rule on whether a component shall or shall not be constructed to the provisions of the Code. The scope of each Section has been established to identify the components and parameters considered by the Committee in formulating the Code rules.

Questions or issues regarding compliance of a specific component with the Code rules are to be directed to the ASME Certificate Holder (Manufacturer). Inquiries concerning the interpretation of the Code are to be directed to the Committee. ASME is to be notified should questions arise concerning improper use of the ASME Single Certification Mark.

When required by context in this Section, the singular shall be interpreted as the plural, and vice versa, and the feminine, masculine, or neuter gender shall be treated as such other gender as appropriate. (**19**)

STATEMENT OF POLICY ON THE USE OF THE ASME SINGLE CERTIFICATION MARK AND CODE AUTHORIZATION IN ADVERTISING

ASME has established procedures to authorize qualified organizations to perform various activities in accordance with the requirements of the ASME Boiler and Pressure Vessel Code. It is the aim of the Society to provide recognition of organizations so authorized. An organization holding authorization to perform various activities in accordance with the requirements of the Code may state this capability in its advertising literature.

Organizations that are authorized to use the ASME Single Certification Mark for marking items or constructions that have been constructed and inspected in compliance with the ASME Boiler and Pressure Vessel Code are issued Certificates of Authorization. It is the aim of the Society to maintain the standing of the ASME Single Certification Mark for the benefit of the users, the enforcement jurisdictions, and the holders of the ASME Single Certification Mark who comply with all requirements.

Based on these objectives, the following policy has been established on the usage in advertising of facsimiles of the ASME Single Certification Mark, Certificates of Authorization, and reference to Code construction. The American Society of Mechanical Engineers does not "approve," "certify," "rate," or "endorse" any item, construction, or activity and there shall be no statements or implications that might so indicate. An organization holding the ASME Single Certification Mark and/or a Certificate of Authorization may state in advertising literature that items, constructions, or activities "are built (produced or performed) or activities conducted in accordance with the requirements of the ASME Boiler and Pressure Vessel Code," or "meet the requirements of the ASME Boiler and Pressure Vessel Code." An ASME corporate logo shall not be used by any organization other than ASME.

The ASME Single Certification Mark shall be used only for stamping and nameplates as specifically provided in the Code. However, facsimiles may be used for the purpose of fostering the use of such construction. Such usage may be by an association or a society, or by a holder of the ASME Single Certification Mark who may also use the facsimile in advertising to show that clearly specified items will carry the ASME Single Certification Mark.

(19) STATEMENT OF POLICY ON THE USE OF ASME MARKING TO IDENTIFY MANUFACTURED ITEMS

The ASME Boiler and Pressure Vessel Code provides rules for the construction of boilers, pressure vessels, and nuclear components. This includes requirements for materials, design, fabrication, examination, inspection, and stamping. Items constructed in accordance with all of the applicable rules of the Code are identified with the ASME Single Certification Mark described in the governing Section of the Code.

Markings such as "ASME," "ASME Standard," or any other marking including "ASME" or the ASME Single Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code.

Items shall not be described on ASME Data Report Forms nor on similar forms referring to ASME that tend to imply that all Code requirements have been met when, in fact, they have not been. Data Report Forms covering items not fully complying with ASME requirements should not refer to ASME or they should clearly identify all exceptions to the ASME requirements.

SUBMITTAL OF TECHNICAL INQUIRIES TO THE BOILER AND (19) PRESSURE VESSEL STANDARDS COMMITTEES

1 INTRODUCTION

(*a*) The following information provides guidance to Code users for submitting technical inquiries to the applicable Boiler and Pressure Vessel (BPV) Standards Committee (hereinafter referred to as the Committee). See the guidelines on approval of new materials under the ASME Boiler and Pressure Vessel Code in Section II, Part D for requirements for requests that involve adding new materials to the Code. See the guidelines on approval of new welding and brazing materials in Section II, Part C for requirements for requests that involve adding new welding and brazing materials ("consumables") to the Code.

Technical inquiries can include requests for revisions or additions to the Code requirements, requests for Code Cases, or requests for Code Interpretations, as described below:

(1) *Code Revisions.* Code revisions are considered to accommodate technological developments, to address administrative requirements, to incorporate Code Cases, or to clarify Code intent.

(2) Code Cases. Code Cases represent alternatives or additions to existing Code requirements. Code Cases are written as a Question and Reply, and are usually intended to be incorporated into the Code at a later date. When used, Code Cases prescribe mandatory requirements in the same sense as the text of the Code. However, users are cautioned that not all regulators, jurisdictions, or Owners automatically accept Code Cases. The most common applications for Code Cases are as follows:

(-a) to permit early implementation of an approved Code revision based on an urgent need

(-b) to permit use of a new material for Code construction

(-c) to gain experience with new materials or alternative requirements prior to incorporation directly into the Code

(3) Code Interpretations

(-a) Code Interpretations provide clarification of the meaning of existing requirements in the Code and are presented in Inquiry and Reply format. Interpretations do not introduce new requirements.

(-b) If existing Code text does not fully convey the meaning that was intended, or conveys conflicting requirements, and revision of the requirements is required to support the Interpretation, an Intent Interpretation will be issued in parallel with a revision to the Code.

(*b*) Code requirements, Code Cases, and Code Interpretations established by the Committee are not to be considered as approving, recommending, certifying, or endorsing any proprietary or specific design, or as limiting in any way the freedom of manufacturers, constructors, or Owners to choose any method of design or any form of construction that conforms to the Code requirements.

(c) Inquiries that do not comply with the following guidance or that do not provide sufficient information for the Committee's full understanding may result in the request being returned to the Inquirer with no action.

2 INQUIRY FORMAT

Submittals to the Committee should include the following information:

(a) Purpose. Specify one of the following:

- (1) request for revision of present Code requirements
- (2) request for new or additional Code requirements
- (3) request for Code Case
- (4) request for Code Interpretation

(b) Background. The Inquirer should provide the information needed for the Committee's understanding of the Inquiry, being sure to include reference to the applicable Code Section, Division, Edition, Addenda (if applicable), paragraphs, figures, and tables. Preferably, the Inquirer should provide a copy of, or relevant extracts from, the specific referenced portions of the Code. (c) Presentations. The Inquirer may desire to attend or be asked to attend a meeting of the Committee to make a formal presentation or to answer questions from the Committee members with regard to the Inquiry. Attendance at a BPV Standards Committee meeting shall be at the expense of the Inquirer. The Inquirer's attendance or lack of attendance at a meeting will not be used by the Committee as a basis for acceptance or rejection of the Inquiry by the Committee. However, if the Inquirer's request is unclear, attendance by the Inquirer or a representative may be necessary for the Committee to understand the request sufficiently to be able to provide an Interpretation. If the Inquirer desires to make a presentation at a Committee meeting, the Inquirer should provide advance notice to the Committee Secretary, to ensure time will be allotted for the presentation in the meeting agenda. The Inquirer should consider the need for additional audiovisual equipment that might not otherwise be provided by the Committee. With sufficient advance notice to the Committee Secretary, such equipment may be made available.

3 CODE REVISIONS OR ADDITIONS

Requests for Code revisions or additions should include the following information:

(a) Requested Revisions or Additions. For requested revisions, the Inquirer should identify those requirements of the Code that they believe should be revised, and should submit a copy of, or relevant extracts from, the appropriate requirements as they appear in the Code, marked up with the requested revision. For requested additions to the Code, the Inquirer should provide the recommended wording and should clearly indicate where they believe the additions should be located in the Code requirements.

(b) Statement of Need. The Inquirer should provide a brief explanation of the need for the revision or addition.

(c) Background Information. The Inquirer should provide background information to support the revision or addition, including any data or changes in technology that form the basis for the request, that will allow the Committee to adequately evaluate the requested revision or addition. Sketches, tables, figures, and graphs should be submitted, as appropriate. The Inquirer should identify any pertinent portions of the Code that would be affected by the revision or addition and any portions of the Code that reference the requested revised or added paragraphs.

4 CODE CASES

Requests for Code Cases should be accompanied by a statement of need and background information similar to that described in 3(b) and 3(c), respectively, for Code revisions or additions. The urgency of the Code Case (e.g., project underway or imminent, new procedure) should be described. In addition, it is important that the request is in connection with equipment that will bear the ASME Single Certification Mark, with the exception of Section XI applications. The proposed Code Case should identify the Code Section and Division, and should be written as a Question and a Reply, in the same format as existing Code Cases. Requests for Code Cases should also indicate the applicable Code Editions and Addenda (if applicable) to which the requested Code Case applies.

5 CODE INTERPRETATIONS

(a) Requests for Code Interpretations should be accompanied by the following information:

(1) Inquiry. The Inquirer should propose a condensed and precise Inquiry, omitting superfluous background information and, when possible, composing the Inquiry in such a way that a "yes" or a "no" Reply, with brief limitations or conditions, if needed, can be provided by the Committee. The proposed question should be technically and editorially correct.

(2) *Reply.* The Inquirer should propose a Reply that clearly and concisely answers the proposed Inquiry question. Preferably, the Reply should be "yes" or "no," with brief limitations or conditions, if needed.

(3) Background Information. The Inquirer should provide any need or background information, such as described in 3(b) and 3(c), respectively, for Code revisions or additions, that will assist the Committee in understanding the proposed Inquiry and Reply.

If the Inquirer believes a revision of the Code requirements would be helpful to support the Interpretation, the Inquirer may propose such a revision for consideration by the Committee. In most cases, such a proposal is not necessary.

(*b*) Requests for Code Interpretations should be limited to an Interpretation of a particular requirement in the Code or in a Code Case. Except with regard to interpreting a specific Code requirement, the Committee is not permitted to consider consulting-type requests such as the following:

(1) a review of calculations, design drawings, welding qualifications, or descriptions of equipment or parts to determine compliance with Code requirements (2) a request for assistance in performing any Code-prescribed functions relating to, but not limited to, material selection, designs, calculations, fabrication, inspection, pressure testing, or installation

(3) a request seeking the rationale for Code requirements

6 SUBMITTALS

(a) Submittal. Requests for Code Interpretation should preferably be submitted through the online Interpretation Submittal Form. The form is accessible at http://go.asme.org/InterpretationRequest. Upon submittal of the form, the Inquirer will receive an automatic e-mail confirming receipt. If the Inquirer is unable to use the online form, the Inquirer may mail the request to the following address:

Secretary ASME Boiler and Pressure Vessel Committee Two Park Avenue New York, NY 10016-5990

All other Inquiries should be mailed to the Secretary of the BPV Committee at the address above. Inquiries are unlikely to receive a response if they are not written in clear, legible English. They must also include the name of the Inquirer and the company they represent or are employed by, if applicable, and the Inquirer's address, telephone number, fax number, and e-mail address, if available.

(b) Response. The Secretary of the appropriate Committee will provide a written response, via letter or e-mail, as appropriate, to the Inquirer, upon completion of the requested action by the Committee. Inquirers may track the status of their Interpretation Request at http://go.asme.org/Interpretations.

(**19**)

PERSONNEL ASME Boiler and Pressure Vessel Standards Committees, Subgroups, and Working Groups

January 1, 2019

TECHNICAL OVERSIGHT MANAGEMENT COMMITTEE (TOMC)

T. P. Pastor, Chair S. C. Roberts, Vice Chair S. J. Rossi, Staff Secretary R. W. Barnes R. J. Basile T. L. Bedeaux D. L. Berger D. A. Bowers J. Cameron A. Chaudouet D. B. DeMichael R. P. Deubler P. D. Edwards J. G. Feldstein N. A. Finney J. A. Hall

T. E. Hansen G. W. Hembree J. F. Henry R. S. Hill III W. M. Lundy R. E. McLaughlin G. C. Park M. D. Rana R. F. Reedy, Sr. F. J. Schaaf, Jr. G. Scribner B. F. Shelley W. J. Sperko D. Srnic R. W. Swavne J. E. Batey, Contributing Member

Subgroup on Research and Development (TOMC)

- R. W. Barnes, *Chair* S. J. Rossi, *Staff Secretary* D. A. Canonico J. F. Henry R. S. Hill III
- W. Hoffelner B. Hrubala T. P. Pastor S. C. Roberts D. Andrei, *Contributing Member*

HONORARY MEMBERS (MAIN COMMITTEE)

F. P. Barton T. M. Cullen G. E. Feigel O. F. Hedden M. H. Jawad A. J. Justin W. G. Knecht J. LeCoff T. G. McCarty G. C. Millman R. A. Moen R. F. Reedy, Sr.

ADMINISTRATIVE COMMITTEE

T. P. Pastor, *Chair* S. C. Roberts, *Vice Chair* S. J. Rossi, *Staff Secretary* R. J. Basile D. A. Bowers J. Cameron D. B. DeMichael J. A. Hall G. W. Hembree R. S. Hill III R. E. McLaughlin M. D. Rana B. F. Shelley R. R. Stevenson R. W. Swayne

MARINE CONFERENCE GROUP

H. N. Patel*, Chair* S. J. Rossi, *Staff Secretary* J. G. Hungerbuhler, Jr. G. Nair N. Prokopuk J. D. Reynolds

Subgroup on Strategic Initiatives (TOMC)

S. C. Roberts, Chair
S. J. Rossi, Staff Secretary
R. W. Barnes
T. L. Bedeaux
G. W. Hembree
J. F. Henry
R. S. Hill III

B. Hrubala M. H. Jawad R. E. McLaughlin G. C. Park T. P. Pastor R. F. Reedy, Sr.

Special Working Group on High Temperature Technology (TOMC)

D. Dewees, Chair	B. F. Hantz
F. W. Brust	J. F. Henry
T. D. Burchell	R. I. Jetter
P. R. Donavin	P. Smith

CONFERENCE COMMITTEE

C. B. Cantrell — Nebraska, Chair J. LeSage, Jr. — Louisiana J. T. Amato — Minnesota, Vice Chair D. A. Douin — Ohio, Secretary M. J. Adams — Ontario, Canada W. Anderson — Mississippi R. Becker — Colorado R. J. Brockman — Missouri R. J. Bunte — Iowa J. H. Burpee — Maine M. J. Byrum — Alabama S. Chapman — Tennessee D. C. Cook — California B. I. Crawford — Georgia E. L. Creaser — New Brunswick, Canada J. J. Dacanay — Hawaii C. Dautrich — North Carolina R. DeLury — Manitoba, Canada D. Eastman — Newfoundland and Labrador, Canada D. A. Ehler — Nova Scotia, Canada J. J. Esch — Delaware T. J. Granneman II — Oklahoma E. G. Hilton — Virginia C. Jackson — City of Detroit, Michigan M. L. Jordan — Kentucky E. Kawa, Jr. — Massachusetts A. Khssassi — Quebec, Canada J. Klug — City of Milwaukee, Wisconsin K. J. Kraft — Maryland K. S. Lane — Alaska L. C. Leet — City of Seattle, Washington

A. M. Lorimor — South Dakota M. Mailman — Northwest Territories, Canada D. E. Mallory — New Hampshire W. McGivney — City of New York, New York A. K. Oda — Washington L. E. Parkey — Indiana M. Poehlmann — Alberta, Canada J. F. Porcella — West Virginia C. F. Reves — California M. J. Ryan — City of Chicago, Illinois D. A. Sandfoss - Nevada M. H. Sansone — New York A. S. Scholl — British Columbia. Canada T. S. Seime — North Dakota C. S. Selinger — Saskatchewan, Canada J. E. Sharier — Ohio N. Smith — Pennsylvania R. Spiker — North Carolina D. J. Stenrose — Michigan R. J. Stimson II — Kansas R. K. Sturm — Utah D. K. Sullivan — Arkansas R. Tomka — Oregon S. R. Townsend — Prince Edward Island, Canada R. D. Troutt — Texas M. C. Vogel — Illinois T. J. Waldbillig — Wisconsin D. M. Warburton — Florida M. Washington - New Jersey

INTERNATIONAL INTEREST REVIEW GROUP

C. Minu

V. Felix		
YG. Kim		
S. H. Leong		
W. Lin		
O. F. Manafa		

Y.-W. Park A. R. R. Nogales P. Williamson

COMMITTEE ON POWER BOILERS (BPV I)

R. E. McLaughlin, Chair J. M. Tanzosh E. M. Ortman, Vice Chair D. E. Tompkins U. D'Urso, Staff Secretary D. E. Tuttle D. I. Anderson J. Vattappilly J. L. Arnold M. Wadkinson R. V. Wielgoszinski D. L. Berger K. K. Coleman F. Zeller H. Michael, Delegate P. D. Edwards J. G. Feldstein D. A. Canonico, Honorary Member G. W. Galanes D. N. French, Honorary Member T. E. Hansen J. Hainsworth, Honorary Member J. F. Henry C. Jeerings, Honorary Member I. S. Hunter W. L. Lowry. Honorary Member G. B. Komora J. R. MacKay, Honorary Member T. C. McGough, Honorary Member F. Massi L. Moedinger B. W. Roberts, Honorary Member P. A. Molvie R. D. Schueler, Jr., Honorary Y. Oishi Member I. T. Pillow R. L. Williams, Honorary Member M. Slater L. W. Yoder, Honorary Member

Subgroup on Design (BPV I)

L. Krupp

L. S. Tsai

P. A. Molvie

M. Wadkinson

C. F. Jeerings, Contributing Member

J. Vattappilly, Chair G. B. Komora, Vice Chair D. I. Anderson, Secretary D. Dewees H. A. Fonzi, Jr. J. P. Glaspie

Subgroup on Fabrication and Examination (BPV I)

- J. L. Arnold, Chair P. F. Gilston, Vice Chair P. Becker, Secretary D. L. Berger S. Fincher G. W. Galanes I. Hainsworth T. E. Hansen
- P. Jennings C. T. McDaris R. E. McLaughlin R. J. Newell Y. Oishi J. T. Pillow R. V. Wielgoszinski

Subgroup on General Requirements and Piping (BPV I)

E. M. Ortman, Chair R. E. McLaughlin D. E. Tompkins, Vice Chair B. J. Mollitor F. Massi, Secretary J. T. Pillow P. Becker D. E. Tuttle D. L. Berger M. Wadkinson P. D. Edwards R. V. Wielgoszinski T. E. Hansen C. F. Jeerings, Contributing Member M. Ishikawa W. L. Lowry, Contributing Member M. Lemmons

Subgroup on Locomotive Boilers (BPV I)

P. Boschan, Chair S. D. Jackson J. R. Braun, Vice Chair M. A. Janssen S. M. Butler, Secretary S. A. Lee A. Biesecker L. Moedinger C. Cross G. M. Ray R. C. Franzen, Jr. R. B. Stone G. W. Galanes M. W. Westland D. W. Griner

Subgroup on Materials (BPV I)

K. K. Coleman, *Chair* K. Hayes, *Vice Chair* M. Lewis, *Secretary* S. H. Bowes D. A. Canonico G. W. Galanes P. F. Gilston J. F. Henry J. S. Hunter E. Liebl F. Masuyama M. Ortolani D. W. Rahoi J. M. Tanzosh J. Vattappilly F. Zeller M. Gold, *Contributing Member* B. W. Roberts, *Contributing Member*

Subgroup on Solar Boilers (BPV I)

P. Jennings, Chair	J. S. Hunter
R. E. Hearne, Secretary	F. Massi
H. A. Fonzi, Jr.	E. M. Ortman

Task Group on Modernization (BPV I)

D. I. Anderson, *Chair* U. D'Urso, *Staff Secretary* J. L. Arnold D. Dewees G. W. Galanes J. P. Glaspie T. E. Hansen J. F. Henry R. E. McLaughlin P. A. Molvie E. M. Ortman D. E. Tuttle J. Vattappilly

Germany International Working Group (BPV I)

A. Spangenberg, Chair	H. Michael
M. Bremicker	F. Miunske
P. Chavdarov	B. Müller
B. Daume	H. Schroeder
J. Fleischfresser	M. Sykora
R. Helmholdt	J. Henrichsmeyer, Contributing
R. Kauer	Member
D. Koelbl	P. Paluszkiewicz, Contributing
S. Krebs	Member
T. Ludwig	R. Uebel, Contributing Member
R. A. Meyers	

India International Working Group (BPV I)

H. Dalal, *Chair* A. R. Patil, *Vice Chair* T. Dhanraj, *Secretary* P. Brahma M. R. Kalahasthi S. A. Kumar A. J. Patil S. Purkait orking Group (BP S. Radhakrishnan G. V. S. Rao M. G. Rao U. Revisankaran G. U. Shanker D. K. Shrivastava K. Singha

S. Venkataramana

COMMITTEE ON MATERIALS (BPV II)

J. Cameron, Chair D. A. Canonico, Contributing J. F. Grubb, Vice Chair Member C. E. O'Brien, Staff Secretary D. B. Denis, Contributing Member A. Appleton J. D. Fritz, Contributing Member A. Chaudouet M. Gold, Contributing Member W. Hoffelner, Contributing Member J. R. Foulds D. W. Gandy M. Katcher. Contributing Member J. A. Hall R. K. Nanstad, Contributing J. F. Henry Member K. M. Hottle M. L. Nayyar, Contributing Member M. Ishikawa D. T. Peters, Contributing Member F. Masuyama B. W. Roberts, Contributing K. E. Orie Member D. W. Rahoi J. J. Sanchez-Hanton, Contributing E. Shapiro Member M. J. Slater R. W. Swindeman, Contributing R. C. Sutherlin Memher J. M. Tanzosh E. Upitis, Contributing Member R. G. Young T. M. Cullen, Honorary Member F. Zeller W. D. Edsall. Honorary Member 0. Oldani, Delegate G. C. Hsu, Honorary Member F. Abe, Contributing Member R. A. Moen, Honorary Member H. D. Bushfield, Contributing C. E. Spaeder, Jr., Honorary Member Member A. W. Zeuthen, Honorary Member

Executive Committee (BPV II)

J. Cameron, *Chair* C. E. O'Brien, *Staff Secretary* A. Appleton A. Chaudouet M. Gold J. F. Grubb J. F. Henry M. Ishikawa D. L. Kurle R. W. Mikitka E. Shapiro M. J. Slater R. C. Sutherlin R. W. Swindeman

Subgroup on External Pressure (BPV II)

D. L. Kurle, ChairM. H. JawadS. Guzey, Vice ChairS. KrishnamurthyJ. A. A. Morrow, SecretaryR. W. MikitkaL. F. CampbellC. R. ThomasH. ChenM. WadkinsonD. S. GriffinM. Katcher, Contributing MemberJ. F. GrubbJ. S. Griffin

Subgroup on Ferrous Specifications (BPV II)

I. Gundlach

D. S. Janikowski

A. Appleton, *Chair* K. M. Hottle, *Vice Chair* C. Hyde, *Secretary* H. Chen B. M. Dingman M. J. Dosdourian O. Elkadim D. Fialkowski M. Gold T. Graham J. M. Grocki J. F. Grubb

L. J. Lavezzi S. G. Lee W. C. Mack A. S. Melilli K. E. Orie D. Poweleit J. Shick E. Upitis R. Zawierucha J. D. Fritz, *Contributing Member*

Subgroup on International Material Specifications (BPV II)

M. Ishikawa, Chair	W. M. Lundy
A. R. Nywening, Vice Chair	E. Upitis
B. Mruk, Secretary	F. Zeller
A. Chaudouet	O. Oldani, Delegate
P. Chavdarov	D. A. Canonico, Contributing
H. Chen	Member
A. F. Garbolevsky	H. Lorenz, Contributing Member
D. O. Henry	T. F. Miskell, Contributing Member

Subgroup on Nonferrous Alloys (BPV II)

E. Shapiro <i>, Chair</i>	D. W. Rahoi
S. Yem, Vice Chair	W. Ren
J. Robertson, Secretary	R. C. Sutherlin
R. Beldyk	J. Weritz
J. Calland	R. Wright
J. M. Downs	D. B. Denis, Contributing Member
J. F. Grubb	M. Katcher, Contributing Member
D. Maitra	D. T. Peters, Contributing Member
J. A. McMaster	

Subgroup on Physical Properties (BPV II)

J. F. Grubb <i>, Chair</i>	D. W. Rahoi
G. Aurioles, Sr.	P. K. Rai
D. Chandiramani	E. Shapiro
P. Chavdarov	M. S. Shelton
H. Eshraghi	D. K. Verma
B. F. Hantz	S. Yem
R. D. Jones	H. D. Bushfield, Contributing
P. K. Lam	Member
S. Neilsen	D. B. Denis, Contributing Member

Subgroup on Strength, Ferrous Alloys (BPV II)

M. J. Slater, Chair	D. W. Rahoi
S. W. Knowles, Vice Chair	M. S. Shelton
D. A. Canonico	J. M. Tanzosh
A. Di Rienzo	R. G. Young
J. R. Foulds	F. Zeller
J. A. Hall	F. Abe, Contributing Member
J. F. Henry	M. Gold, Contributing Member
F. Masuyama	M. Nair, Contributing Member
T. Ono	B. W. Roberts, Contributing
M. Ortolani	Member

Subgroup on Strength of Weldments (BPV II & BPV IX)

G. W. Galanes, Chair
K. L. Hayes, Vice Chair
S. H. Bowes
K. K. Coleman
M. Denault
P. D. Flenner
J. R. Foulds
D. W. Gandy
M. Ghahremani
J. F. Henry
E. Liebl

W. F. Newell, Jr. J. Penso D. W. Rahoi B. W. Roberts W. J. Sperko J. P. Swezy, Jr. J. M. Tanzosh M. Gold, Contributing Member J. J. Sanchez-Hanton, Contributing Member

Working Group on Materials Database (BPV II)

J. F. Henry, Chair	J. Grimes, Contributing Member
C. E. O'Brien, Staff Secretary	W. Hoffelner, Contributing Member
F. Abe	D. T. Peters, Contributing Member
J. R. Foulds	W. Ren, Contributing Member
M. J. Slater	B. W. Roberts, Contributing
R. C. Sutherlin	Member
D. Andrei, Contributing Member	R. W. Swindeman, Contributing
J. L. Arnold, Contributing Member	Member

Working Group on Creep Strength Enhanced Ferritic Steels (BPV II)

J. F. Henry, Chair	J. Parker
M. Ortolani, Vice Chair	J. J. Sanchez-Hanton
J. A. Siefert, Secretary	W. J. Sperko
S. H. Bowes	J. M. Tanzosh
D. A. Canonico	R. H. Worthington
K. K. Coleman	R. G. Young
P. D. Flenner	F. Zeller
J. R. Foulds	F. Abe, Contributing Member
G. W. Galanes	G. Cumino, Contributing Member
M. Lang	B. W. Roberts, Contributing
F. Masuyama	Member
T. Melfi	R. W. Swindeman, Contributing
W. F. Newell, Jr.	Member

Working Group on Data Analysis (BPV II)

J. F. Grubb <i>, Chair</i>	M. Gold, Contributing Member
J. R. Foulds	W. Hoffelner, Contributing Member
J. F. Henry	M. Katcher, Contributing Member
F. Masuyama	D. T. Peters, Contributing Member
M. Ortolani	B. W. Roberts, Contributing
W. Ren	Member
M. Subanovic	R. W. Swindeman, Contributing
M. J. Swindeman	Member
F. Abe, Contributing Member	

China International Working Group (BPV II)

A. T. Xu, Secretary W. Fang Q. C. Feng S. Huo F. Kong H. Li J. Li S. Li Z. Rongcan S. Tan C. Wang J. Wang OI. Wang	F. Yang G. Yang HC. Yang J. Yang R. Ye L. Yin D. Zhang H. Zhang XH. Zhang Yingkai Zhang Yong Zhang Q. Zhao S. Zhao
QJ. Wang	S. Zhao
X. Wang	

COMMITTEE ON CONSTRUCTION OF NUCLEAR FACILITY COMPONENTS (BPV III)

R. S. Hill III, Chair R. B. Keating, Vice Chair J. C. Minichiello, Vice Chair A. Byk, Staff Secretary T. M. Adams A. Appleton R. W. Barnes W. H. Borter C. W. Bruny T. D. Burchell R. P. Deubler P. R. Donavin A. C. Eberhardt J. V. Gardiner J. Grimm S. Hunter R. M. Jessee R. I. Jetter C. C. Kim G. H. Koo V. Kostarev M. A. Lockwood K. A. Manoly D. E. Matthews

M. N. Mitchell M. Morishita D. K. Morton T. Nagata J. E. Nestell E. L. Pleins R. F. Reedy, Sr. I. Saito S. Sham G. J. Solovey W. K. Sowder, Jr. W. J. Sperko I. P. Tucker C. S. Withers H.-T. Wang, Delegate C. T. Smith, Contributing Member M. Zhou, Contributing Member E. B. Branch, Honorary Member G. D. Cooper. Honorary Member D. F. Landers, Honorary Member R. A. Moen, Honorary Member C. J. Pieper, Honorary Member K. R. Wichman, Honorary Member

Executive Committee (BPV III)

R. S. Hill III, *Chair* A. Byk, *Staff Secretary* T. M. Adams C. W. Bruny P. R. Donavin J. V. Gardiner J. Grimm R. B. Keating J. C. Minichiello J. A. Munshi J. E. Nestell S. Sham G. J. Solovey W. K. Sowder, Jr.

Subcommittee on Design (BPV III)

P. R. Donavin, *Chair* T. M. Adams, *Vice Chair* R. L. Bratton C. W. Bruny R. P. Deubler M. A. Gray S. Horowitz R. I. Jetter R. B. Keating K. A. Manoly R. J. Masterson D. E. Matthews S. McKillop M. N. Mitchell W. J. O'Donnell, Sr. S. Sham J. P. Tucker W. F. Weitze T. Yamazaki J. Yang R. S. Hill III, Contributing Member G. L. Hollinger, Contributing Member M. H. Jawad, Contributing Member K. Wright, Contributing Member

Subgroup on Component Design (SC-D) (BPV III)

T. M. Adams, Chair J. C. Minichiello R. B. Keating, Vice Chair D. K. Morton S. Pellet, Secretary T. M. Musto D. J. Ammerman T. Nagata G. A. Antaki I. Saito S. Asada G. C. Slagis I. F. Ball I. R. Stinson G. Z. Tokarski C. Basavaraju D. Chowdhury J. P. Tucker R. P. Deubler P. Vock P. Hirschberg C. Wilson M. Kassar J. Yang O.-S. Kim C. W. Bruny, Contributing Member H. Kobayashi A. A. Dermenjian, Contributing K. A. Manoly Member R. J. Masterson K. R. Wichman, Honorary Member

Working Group on Core Support Structures (SG-CD) (BPV III)

J. Yang, ChairM. NakajimaD. Keck, SecretaryM. D. SnyderL. C. HartlessR. VollmerJ. F. KielbT. M. WigerT. LiszkaiY. WongH. S. MehtaR. Z. Ziegler

Working Group on Design of Division 3 Containment Systems (SG-CD) (BPV III)

D. J. Ammerman, *Chair* G. Bjorkman V. Broz S. Horowitz S. Klein D. W. Lewis I. C. Minichiello

D. E. Matthews

D. K. Morton X. Zhai X. Zhang D. Dunn, Alternate I. D. McInnes, Contributing Member H. P. Shrivastava, Contributing Member

Working Group on HDPE Design of Components (SG-CD) (BPV III)

T. M. Musto, *Chair* J. Ossmann, *Secretary* T. M. Adams T. A. Bacon M. Brandes S. Choi J. R. Hebeisen P. Krishnaswamy K. A. Manoly

M. Martin J. C. Minichiello D. P. Munson F. J. Schaaf, Jr. R. Stakenborghs J. Wright M. T. Audrain, *Alternate* D. Burwell, *Contributing Member*

Working Group on Piping (SG-CD) (BPV III)

J. Kawahata

G. A. Antaki, Chair
G. Z. Tokarski, Secretary
T. M. Adams
T. A. Bacon
C. Basavaraju
J. Catalano
F. Claeys
C. M. Faidy
R. G. Gilada
N. M. Graham
M. A. Gray
R. J. Gurdal
R. W. Haupt
A. Hirano
P. Hirschberg
M. Kassar

R. B. Keating V. Kostarev D. Lieb T. B. Littleton J. F. McCabe J. C. Minichiello I.-K. Nam G. C. Slagis N. C. Sutherland C.-I. Wu Y. Liu, Contributing Member A. N. Nguyen, Contributing Member M. S. Sills, Contributing Member E. A. Wais, Contributing Member

Working Group on Pressure Relief (SG-CD) (BPV III)

J. F. Ball, Chair	K. Shores
J. W. Dickson	I. H. Tseng
S. Jones	J. Yu
R. Krithivasan	N. J. Hansing, Alternate
R. Lack	B. J. Yonsky, Alternate
K. R. May	S. T. French, Contributing Member
D. Miller	D. B. Ross, Contributing Member
T. Patel	-

Working Group on Pumps (SG-CD) (BPV III)

D. Chowdhury, *Chair* J. V. Gregg, Jr., *Secretary* X. Di M. D. Eftychiou C. Gabhart J. Kikushima R. Klein

R. Ladefian W. Lienau K. J. Noel R. A. Patrick J. Sulley A. G. Washburn Y. Wong

Working Group on Supports (SG-CD) (BPV III)

S. Pellet
I. Saito
C. Stirzel
G. Z. Tokarski
A. Tsirigotis
L. Vandership
P. Wiseman
J. Huang, Alternate

Working Group on Valves (SG-CD) (BPV III)

P. Vock <i>, Chair</i>
S. Jones, Secretary
M. C. Buckley
R. Farrell
G. A. Jolly
J. Lambin
T. Lippucci
C. A. Mizer

H. O'Brien J. O'Callaghan K. E. Reid II J. Sulley I. H. Tseng J. P. Tucker N. J. Hansing, *Alternate*

Working Group on Vessels (SG-CD) (BPV III)

D. E. Matthews, Chair	M. C. Scott
S. Willoughby, Secretary	P. K. Shah
J. Arthur	J. Shupert
C. Basavaraju	C. Turylo
M. Kassar	D. Vlaicu
R. B. Keating	C. Wilson
D. Keck	T. Yamazaki
J. I. Kim	R. Z. Ziegler
OS. Kim	B. Basu, Contributing Member
T. Mitsuhashi	A. Kalnins, Contributing Member
D. Murphy	W. F. Weitze, Contributing Member
T. J. Schriefer	

Subgroup on Design Methods (SC-D) (BPV III)

C. W. Bruny, Chair	J. I. Kim
P. R. Donavin, Vice Chair	M. N. Mitchell
S. McKillop, Secretary	W. J. O'Donnell, Sr.
K. Avrithi	W. D. Reinhardt
L. Davies	P. Smith
S. R. Gosselin	S. D. Snow
M. A. Gray	R. Vollmer
J. V. Gregg, Jr.	W. F. Weitze
H. T. Harrison III	K. Wright
K. Hsu	T. M. Adams, Contributing Member
D. Keck	

Working Group on Design Methodology (SG-DM) (BPV III)

S. McKillop, Chair	T. Liszkai
R. Vollmer, Secretary	J. F. McCabe
K. Avrithi	S. Ranganath
C. Basavaraju	W. D. Reinhardt
D. L. Caldwell	P. K. Shah
C. M. Faidy	S. D. Snow
R. Farrell	S. Wang
H. T. Harrison III	W. F. Weitze
C. F. Heberling II	J. Wen
P. Hirschberg	T. M. Wiger
M. Kassar	K. Wright
R. B. Keating	J. Yang
J. I. Kim	R. D. Blevins, Contributing Member
H. Kobayashi	M. R. Breach, Contributing Member

Working Group on Environmental Effects (SG-DM) (BPV III)

L. Davies, Chair	J. E. Nestell
B. D. Frew, Secretary	M. Osterfoss
P. J. Dobson	T. J. Schriefer
J. I. Kim	I. H. Tseng

Working Group on Environmental Fatigue Evaluation Methods (SG-DM) (BPV III)

M. A. Gray, Chair	P. Hirschberg
W. F. Weitze, Secretary	H. S. Mehta
T. M. Adams	T. Metais
S. Asada	JS. Park
K. Avrithi	B. Pellereau
R. C. Cipolla	I. Saito
T. M. Damiani	D. Vlaicu
C. M. Faidy	K. Wang
T. D. Gilman	K. Wright
S. R. Gosselin	R. Z. Ziegler
Y. He	

Working Group on Fatigue Strength (SG-DM) (BPV III)

P. R. Donavin, Chair	S. H. Kleinsmith
M. S. Shelton, Secretary	S. Majumdar
T. M. Damiani	S. N. Malik
C. M. Faidy	H. S. Mehta
P. Gill	S. Mohanty
S. R. Gosselin	S. Ranganath
R. J. Gurdal	A. Tsirigotis
C. F. Heberling II	D. Dewees, Contributing Member
C. E. Hinnant	W. J. O'Donnell, Sr., Contributing
P. Hirschberg	Member
K. Hsu	K. Wright, Contributing Member

Working Group on Graphite and Composite Design (SG-DM) (BPV III)

M. N. Mitchell, Chair	Y. Katoh
T. D. Burchell, Secretary	J. Ossmann
A. Appleton	W. Windes
SH. Chi	A. Yeshnik
W. J. Geringer	S. Yu
S. T. Gonczy	G. L. Zeng
M. G. Jenkins	N. McMurray, Alternate

Working Group on Probabilistic Methods in Design (SG-DM) (BPV III)

M. Golliet, <i>Chair</i>	D. O. Henry
T. Asayama	R. S. Hill III
K. Avrithi	M. Morishita
G. Brouette	P. J. O'Regan
J. Hakii	I. Saito

Special Working Group on Computational Modeling for Explicit Dynamics (SG-DM) (BPV III)

G. Bjorkman, <i>Chair</i>	W. D. Reinhardt
D. J. Ammerman, Vice Chair	P. YK. Shih
V. Broz, Secretary	S. D. Snow
M. R. Breach	CF. Tso
J. M. Jordan	M. C. Yaksh
S. Kuehner	U. Zencker
D. Molitoris	A. Rigato, Alternate

Subgroup on Elevated Temperature Design (SC-D) (BPV III)

S. Sham, Chair
T. Asayama
C. Becht IV
F. W. Brust
P. Carter
M. E. Cohen
B. F. Hantz
M. H. Jawad
R. I. Jetter
K. Kimura
G. H. Koo
T. Le

J. E. Nestell R. Wright A. B. Hull, Alternate D. S. Griffin, Contributing Member S. Majumdar, Contributing Member D. L. Marriott, Contributing Member W. J. O'Donnell, Sr., Contributing Member R. W. Swindeman, Contributing Member

W. Ren M. J. Swindeman, Secretary S. Sham X. Wei S. N. Malik, Alternate

Working Group on Allowable Stress Criteria (SG-ETD) (BPV III)

R. Wright, Chair

C. J. Johns

K. Kimura

D. Maitra

M. McMurtrev

J. E. Nestell

T. Le

- J. R. Foulds, Contributing Member
- R. W. Swindeman, Contributing
 - Member

Working Group on Analysis Methods (SG-ETD) (BPV III)

P. Carter, Chair	S. Sham
M. J. Swindeman, Secretary	X. Wei
M. E. Cohen	A. Tsirigotis, Alternate
R. I. Jetter	S. Krishnamurthy, Contributing
T. Le	Member
M. C. Messner	

Working Group on Creep-Fatigue and Negligible Creep (SG-ETD) (BPV III)

T. Asayama, Chair M. McMurtrey F. W. Brust M. C. Messner H. Qian P. Carter M. E. Cohen S. Sham Y. Wang R. I. Jetter G. H. Koo X. Wei T. Le N. McMurray, Alternate B.-L. Lyow

Working Group on Elevated Temperature Construction (SG-ETD) (BPV III)

A. Mann, Chair	M. N. Mitchell
C. Nadarajah, Secretary	P. Prueter
D. I. Anderson	M. J. Swindeman
D. Dewees	N. McMurray, Alternate
B. F. Hantz	J. P. Glaspie, Contributing Member
M. H. Jawad	D. L. Marriott, Contributing
R. I. Jetter	Member
S. Krishnamurthy	B. J. Mollitor, Contributing Member
T. Le	

Working Group on High Temperature Flaw Evaluation (SG-ETD) (BPV III)

F. W. Brust, Chair	
P. Carter	
S. Kalyanam	
T. Le	
M. C. Messner	
H. Qian	

P. J. Rush D.-J. Shim X. Wei S. X. Xu N. McMurray, Alternate

Special Working Group on Inelastic Analysis Methods (SG-ETD) (BPV III)

M. C. Messner, Chair S. X. Xu, Secretary R. W. Barnes J. A. Blanco T. Hassan G. H. Koo

123sanat.com

Subgroup on General Requirements (BPV III)

J. V. Gardiner, Chair	E. C. Renaud
J. Rogers, Secretary	T. N. Rezk
V. Apostolescu	D. J. Roszman
A. Appleton	W. K. Sowder, Jr.
S. Bell	R. Spuhl
J. R. Berry	G. E. Szabatura
G. Brouette	D. M. Vickery
J. W. Highlands	C. S. Withers
E. V. Imbro	J. DeKleine, Contributing Member
K. A. Kavanagh	H. Michael, Contributing Member
YS. Kim	C. T. Smith, Contributing Member
B. McGlone	

Working Group on Duties and Responsibilities (SG-GR) (BPV III)

S. Bell, Chair	E. V. Imbro
N. DeSantis, Secretary	K. A. Kavanagh
J. R. Berry	D. J. Roszman
P. J. Coco	B. S. Sandhu
Y. Diaz-Castillo	J. L. Williams
J. V. Gardiner	J. DeKleine, Contributing Member

Working Group on Quality Assurance, Certification, and Stamping (SG-GR) (BPV III)

B. McGlone, Chair	R. B. Patel
J. Grimm, Secretary	E. C. Renaud
V. Apostolescu	T. N. Rezk
A. Appleton	J. Rogers
G. Brouette	W. K. Sowder, Jr.
O. Elkadim	R. Spuhl
S. M. Goodwin	J. F. Strunk
J. Harris	G. E. Szabatura
J. W. Highlands	D. M. Vickery
K. A. Kavanagh	C. S. Withers
YS. Kim	C. A. Spletter, Contributing Member
D. T. Meisch	

Special Working Group on General Requirements Consolidation (SG-GR) (BPV III)

J. V. Gardiner, Chair	J. Rogers
C. T. Smith, Vice Chair	D. J. Roszman
S. Bell	B. S. Sandhu
M. B. Cusick	G. J. Solovey
Y. Diaz-Castillo	R. Spuhl
J. Grimm	G. E. Szabatura
J. M. Lyons	J. L. Williams
B. McGlone	C. S. Withers
R. B. Patel	S. F. Harrison, Jr., Contributing
E. C. Renaud	Member
T. N. Rezk	

Working Group on General Requirements for Graphite and Ceramic Composite Core Components and Assemblies (SG-GR) (BPV III)

A. Appleton, Chair
W. J. Geringer, Secretary
J. R. Berry
T. D. Burchell
M. N. Mitchell

E. C. Renaud W. Windes A. Yeshnik N. McMurray, Alternate

Subgroup on Materials, Fabrication, and Examination (BPV III)

J. Grimm, <i>Chair</i>	T. Melfi
B. D. Frew, Vice Chair	IK. Nam
S. Hunter, Secretary	J. Ossmann
W. H. Borter	J. E. O'Sullivan
T. D. Burchell	M. C. Scott
S. Cho	W. J. Sperko
P. J. Coco	J. R. Stinson
R. H. Davis	J. F. Strunk
G. B. Georgiev	W. Windes
S. E. Gingrich	R. Wright
M. Golliet	S. Yee
L. S. Harbison	H. Michael, Delegate
R. M. Jessee	R. W. Barnes, Contributing Member
J. Johnston, Jr.	G. R. Cannell, Contributing Member
C. C. Kim	D. B. Denis, Contributing Member
M. Lashley	

Working Group on Graphite and Composite Materials (SG-MFE) (BPV III)

T. D. Burchell, Chair M. G. Jenkins Y. Katoh M. N. Mitchell, Secretary A. Appleton J. Ossmann R. L. Bratton M. Roemmler S. R. Cadell N. Salstrom S.-H. Chi T. Shibata A. Covac W. Windes S. W. Doms A. Yeshnik S. F. Duffy S. Yu W. J. Geringer G. L. Zeng S. T. Gonzcy N. McMurray, Alternate

Working Group on HDPE Materials (SG-MFE) (BPV III)

G. Brouette, Chair D. P. Munson M. A. Martin, Secretary T. M. Musto W. H. Borter S. Patterson M. C. Buckley S. Schuessler R. Stakenborghs M. Golliet J. Hakii M. Troughton J. Johnston, Jr. J. Wright B. Hauger, Contributing Member P. Krishnaswamy

Joint ACI-ASME Committee on Concrete Components for Nuclear Service (BPV III)

J. A. Munshi <i>, Chair</i>	N. Orbovic
J. McLean, Vice Chair	J. F. Strunk
J. Cassamassino, Staff Secretary	G. Thomas
C. J. Bang	T. Tonyan
L. J. Colarusso	S. Wang
A. C. Eberhardt	J. F. Artuso, Contributing Member
F. Farzam	S. Bae, Contributing Member
P. S. Ghosal	JB. Domage, Contributing Member
B. D. Hovis	B. B. Scott, Contributing Member
T. C. Inman	M. R. Senecal, Contributing
C. Jones	Member
O. Jovall	Z. Shang, Contributing Member
T. Kang	M. Sircar, Contributing Member
NH. Lee	C. T. Smith, Contributing Member
T. Muraki	

Copyright ASME International (BPVC)

Working Group on Design (BPV III-2)

NH. Lee, Chair	T. Muraki
S. Wang, Vice Chair	G. Thomas
M. Allam	M. Diaz, Contributing Member
S. Bae	A. Istar, Contributing Member
L. J. Colarusso	SY. Kim, Contributing Member
A. C. Eberhardt	J. Kwon, Contributing Member
F. Farzam	B. R. Laskewitz, Contributing
P. S. Ghosal	Member
B. D. Hovis	B. B. Scott, Contributing Member
T. C. Inman	Z. Shang, Contributing Member
C. Jones	M. Shin, Contributing Member
0. Jovall	M. Sircar, Contributing Member
J. A. Munshi	

Working Group on Materials, Fabrication, and Examination (BPV III-2)

T. Tonyan, <i>Chair</i>	T. Kang
A. Eberhardt, Vice Chair	NH. Lee
M. Allam	Z. Shang
C. J. Bang	J. F. Strunk
B. Birch	I. Zivanovic
JB. Domage	J. F. Artuso, Contributing Member
P. S. Ghosal	B. B. Scott, Contributing Member
C. Jones	

Special Working Group on Modernization (BPV III-2)

N. Orbovic, <i>Chair</i>	S. Wang
J. McLean, Vice Chair	I. Zivanovic
A. Adediran	JB. Domage, Contributing Member
0. Jovall	F. Lin, Contributing Member
N. Stoeva	M. A. Ugalde, Contributing Member

Subgroup on Containment Systems for Spent Nuclear Fuel and High-Level Radioactive Material (BPV III)

G. J. Solovey, Chair	J. Wellwood
D. J. Ammerman, Vice Chair	X. J. Zhai
G. Bjorkman	D. Dunn, Alternate
V. Broz	W. H. Borter, Contributing Member
S. Horowitz	P. E. McConnell, Contributing
S. Klein	Member
D. W. Lewis	N. M. Simpson, Contributing
D. K. Morton	Member
E. L. Pleins	R. H. Smith, Contributing Member

Subgroup on Fusion Energy Devices (BPV III)

W. K. Sowder, Jr., Chair	X. Li
D. Andrei, Staff Secretary	P. Mokaria
D. J. Roszman, Secretary	T. R. Muldoon
M. Bashir	M. Porton
L. C. Cadwallader	F. J. Schaaf, Jr.
B. R. Doshi	P. Smith
G. Holtmeier	Y. Song
K. A. Kavanagh	M. Trosen
K. Kim	C. Waldon
I. Kimihiro	I. J. Zatz
S. Lee	R. W. Barnes, Contributing Member
G. Li	

Working Group on In-Vessel Components (BPV III-4)

M. Kalsey

Y. Carin

M. Bashir, Chair

Working Group on Magnets (BPV III-4)

S. Lee, Chair

M. Porton, Chair

K. Kim, Vice Chair

Working Group on Materials (BPV III-4)

	P. 1
--	-------------

P. Mummery

Working Group on Vacuum Vessels (BPV III-4)

I. Kimihiro, Chair	Q. Shijun
L. C. Cadwallader	Y. Song
B. R. Doshi	

Subgroup on High Temperature Reactors (BPV III)

J. E. Nestell, Chair W. Windes N. Broom A. Yeshnik T. D. Burchell G. L. Zeng M. E. Cohen N. McMurray, Alternate R. I. Jetter X. Li, Contributing Member G. H. Koo M. Morishita, Contributing Member D. K. Morton L. Shi, Contributing Member S. Sham

Working Group on High Temperature Gas-Cooled Reactors (BPV III-5)

J. E. Nestell, *Chair* D. K. Morton N. Broom S. Sham T. D. Burchell G. L. Zeng R. I. Jetter S. N. Malik, *Alternate* Y. W. Kim X. Li, *Contributing Member* T. Le L. Shi, *Contributing Member*

Working Group on High Temperature Liquid-Cooled Reactors (BPV III-5)

S. Sham, Chair	G. H. Koo
M. Arcaro	T. Le
T. Asayama	J. E. Nestell
R. W. Barnes	X. Wei
P. Carter	C. Moyer, Alternate
M. E. Cohen	S. Majumdar, Contributing Member
A. B. Hull	M. Morishita, Contributing Member
R. I. Jetter	G. Wu, Contributing Member

Working Group on General Requirements (BPV III-4)

D. J. Roszman, Chair W. K. Sowder, Jr.

Argentina International Working Group (BPV III)

L Formándon Chain	S. A. Echeverria
J. Fernández, <i>Chair</i>	
A. Politi, Vice Chair	E. P. Fresquet
O. Martinez, Staff Secretary	M. M. Gamizo
A. Gomez, Secretary	I. M. Guerreiro
A. Acrogliano	R. S. Hill III
W. Agrelo	I. A. Knorr
G. O. Anteri	M. F. Liendo
M. Anticoli	L. R. Miño
C. A. Araya	J. Monte
J. P. Balbiani	R. L. Morard
A. A. Betervide	A. E. Pastor
D. O. Bordato	E. Pizzichini
G. Bourguigne	J. L. Racamato
M. L. Cappella	H. C. Sanzi
A. Claus	G. J. Scian
R. G. Cocco	G. G. Sebastian
A. Coleff	M. E. Szarko
A. J. Dall'Osto	P. N. Torano
L. M. De Barberis	A. Turrin
D. P. Delfino	O. A. Verastegui
D. N. Dell'Erba	M. D. Vigliano
F. G. Diez	P. Yamamoto
A. Dominguez	M. Zunino

China International Working Group (BPV III)

J. Yan, <i>Chair</i>	G. Sun
W. Tang, Vice Chair	Z. Sun
Y. He, Secretary	G. Tang
L. Guo	L. Ting
Y. Jing	Y. Tu
D. Kang	Y. Wang
Y. Li	H. Wu
B. Liang	X. Wu
H. Lin	S. Xue
S. Liu	Z. Yin
W. Liu	G. Zhang
J. Ma	W. Zhang
К. Мао	W. Zhao
D. E. Matthews	Y. Zhong
W. Pei	Z. Zhong

German International Working Group (BPV III)

J. Wendt, <i>Chair</i>	HW. Lange
D. Koelbl, Vice Chair	T. Ludwig
R. Gersinska, Secretary	X. Pitoiset
HR. Bath	M. Reichert
P. R. Donavin	G. Roos
R. Döring	J. Rudolph
A. Huber	H. Schau
R. E. Hueggenberg	L. Sybert
C. Huttner	R. Trieglaff
E. Iacopetta	F. Wille
M. H. Koeppen	S. Zickler
C. Kuschke	

India International Working Group (BPV III)

R. N. Sen, Chair	D. Kulkarni
S. B. Parkash, Vice Chair	R. Kumar
A. D. Bagdare, Secretary	E. I. Pleins
S. Aithal	M. Ponnusamy
H. Dalal	K. R. Shah
S. Kovalai	B. K. Sreedhar

Korea International Working Group (BPV III)

G. H. Koo, Chair	D. Kwon
,	
S. S. Hwang, Vice Chair	B. Lee
OS. Kim, Secretary	D. Lee
H. S. Byun	Sanghoon Lee
S. Cho	Sangil Lee
GS. Choi	SG. Lee
S. Choi	H. Lim
J. Y. Hong	IK. Nam
NS. Huh	B. Noh
JK. Hwang	CK. Oh
C. Jang	C. Park
I. I. Jeong	H. Park
H. J. Kim	JS. Park
JI. Kim	Y. S. Pyun
JS. Kim	T. Shin
K. Kim	S. Song
MW. Kim	W. J. Sperko
SS. Kim	J. S. Yang
YB. Kim	0. Yoo
YS. Kim	

Special Working Group on Editing and Review (BPV III)

D. E. Matthews, Chair	S. Horowitz
R. L. Bratton	J. C. Minichiello
R. P. Deubler	R. F. Reedy, Sr.
A. C. Eberhardt	C. Wilson

Special Working Group on HDPE Stakeholders (BPV III)

M. Brandes, Chair D. P. Munson S. Patterson, Secretary T. M. Musto T. M. Adams J. E. O'Sullivan S. Choi V. Rohatgi C. M. Faidy F. J. Schaaf, Jr. M. Golliet R. Stakenborghs R. M. Jessee M. Troughton J. Johnston, Jr. J. Wright D. Burwell, Contributing Member M. Lashley K. A. Manoly

Special Working Group on Honors and Awards (BPV III)

R. M. Jessee, Chair	D. E. Matthews
A. Appleton	J. C. Minichiello
R. W. Barnes	

Special Working Group on Industry Experience for New Plants (BPV III & BPV XI)

- J. T. Lindberg, *Chair* J. Ossmann, *Chair* M. C. Buckley, *Secretary* A. Cardillo T. L. Chan P. J. Hennessey D. O. Henry J. Honcharik C. G. Kim
- O.-S. Kim K. Matsunaga D. E. Matthews R. E. McLaughlin D. W. Sandusky T. Tsuruta R. M. Wilson S. M. Yee A. Tsirigotis, *Alternate*

Special Working Group on International Meetings (BPV III)

D. E. Matthews, Chair
A. Byk, Staff Secretary
R. W. Barnes
T. D. Burchell
R. L. Crane
P. R. Donavin

R. S. Hill III M. N. Mitchell E. L. Pleins R. F. Reedy, Sr. C. A. Sanna W. J. Sperko

Special Working Group on New Plant Construction Issues (BPV III)

E. L. Pleins, Chair	J. C. Minichiello
M. C. Scott, Secretary	D. W. Sandusky
A. Cardillo	R. R. Stevenson
P. J. Coco	M. L. Wilson
J. Honcharik	H. Xu
E. V. Imbro	J. Yan
OS. Kim	N. J. Hansing, Alternate
M. Kris	A. Byk, Contributing Member

Special Working Group on Regulatory Interface (BPV III)

E. V. Imbro, ChairK. MatsunagaP. Malouines, SecretaryD. E. MatthewsS. BellB. McGloneA. CardilloA. T. Roberts IIIP. J. CocoR. R. StevensonJ. GrimmM. L. WilsonJ. HoncharikN. J. Hansing, Alternate

COMMITTEE ON HEATING BOILERS (BPV IV)

J. A. Hall, *Chair* T. L. Bedeaux, *Vice Chair* C. R. Ramcharran, *Staff Secretary* B. Calderon J. Calland J. P. Chicoine J. M. Downs J. L. Kleiss J. Klug P. A. Molvie

R. D. Troutt M. Wadkinson R. V. Wielgoszinski H. Michael, *Delegate* D. Picart, *Delegate* B. J. Iske, *Alternate* A. Heino, *Contributing Member* S. V. Voorhees, *Contributing Member*

Subgroup on Care and Operation of Heating Boilers (BPV IV)

R. D. Troutt, Chair	J. A. Hall
C. R. Ramcharran, Staff Secretary	J. L. Kleiss
B. Ahee	P. A. Molvie
T. L. Bedeaux	M. Wadkinson
J. Calland	C. Lasarte, Contributing Member
J. M. Downs	

Subgroup on Cast Boilers (BPV IV)

J. P. Chicoine, Chair	J. A. Hall
C. R. Ramcharran, Staff Secretary	J. L. Kleiss
T. L. Bedeaux	M. Mengon
J. M. Downs	

Subgroup on Materials (BPV IV)

M. Wadkinson, Chair	J. Calland
C. R. Ramcharran, Staff Secretary	J. M. Downs
L. Badziagowski	J. A. Hall
T. L. Bedeaux	B. J. Iske

Subgroup on Water Heaters (BPV IV)

J. Calland <i>, Chair</i>	B. J. Iske
C. R. Ramcharran, Staff Secretary	J. L. Kleiss
B. Ahee	P. A. Molvie
L. Badziagowski	M. A. Taylor
J. P. Chicoine	T. E. Trant
C. Dinic	R. D. Troutt

Subgroup on Welded Boilers (BPV IV)

P. A. Molvie, ChairC. DinicC. R. Ramcharran, Staff SecretaryJ. L. KleissB. AheeM. MengonL. BadziagowskiR. D. TrouttT. L. BedeauxM. WadkinsonB. CalderonR. V. WielgoszinskiJ. CallandK. Salara

COMMITTEE ON NONDESTRUCTIVE EXAMINATION (BPV V)

G. W. Hembree, Chair T. L. Plasek N. A. Finney, Vice Chair F. J. Sattler C. R. Ramcharran, Staff Secretary P. B. Shaw J. Bennett C. Vorwald G. M. Gatti, Delegate P. L. Brown M. A. Burns X. Guiping, Delegate N. Carter S. J. Akrin, Contributing Member C. Emslander J. E. Batey, Contributing Member A. F. Garbolevsky A. S. Birks, Contributing Member J. F. Halley N. Y. Faransso, Contributing P. T. Hayes Member S. A. Johnson R. W. Kruzic, Contributing Member F. B. Kovacs H. C. Graber, Honorary Member B. D. Laite O. F. Hedden, Honorary Member C. May J. R. MacKay, Honorary Member L. E. Mullins T. G. McCarty, Honorary Member A. B. Nagel

Executive Committee (BPV V)

N. A. Finney, Chair	S. A. Johnson
G. W. Hembree, Vice Chair	F. B. Kovacs
C. R. Ramcharran, Staff Secretary	A. B. Nagel
C. Emslander	C. Vorwald

Subgroup on General Requirements/Personnel Qualifications and Inquiries (BPV V)

C. Emslander, Chair D. I. Morris N. Carter, Vice Chair A. B. Nagel S. J. Akrin, Contributing Member J. Bennett T. Clausing J. E. Batey, Contributing Member N. A. Finney A. S. Birks, Contributing Member G. W. Hembree N. Y. Faransso, Contributing S. A. Johnson Member F. B. Kovacs J. P. Swezy, Jr., Contributing K. Krueger Member

C. May

Subgroup on Surface Examination Methods (BPV V)

Nagel
Sattler
Shaw
/olf
oodward
. Gatti, <i>Delegate</i>
Akrin, Contributing Member
Batey, Contributing Member
Birks, Contributing Member
Faransso, Contributing
ember
. Kruzic, Contributing Member

Subgroup on Volumetric Methods (BPV V)

C. Magruder

L. E. Mullins T. L. Plasek F. J. Sattler

C. Vorwald G. M. Gatti, Delegate

Member

S. J. Akrin, Contributing Member

J. E. Batey, Contributing Member

R. W. Kruzic, Contributing Member

N. Y. Faransso, Contributing

A. B. Nagel, Chair
C. May, Vice Chair
P. L. Brown
J. M. Davis
N. A. Finney
A. F. Garbolevsky
J. F. Halley
R. W. Hardy
P. T. Hayes
G. W. Hembree
S. A. Johnson
E B Kowacc

- F. B. Kovacs

Special Working Group on Advanced Ultrasonic Testing Technique (BPV V)

L. E. Mullins, Chair K. Krueger, Vice Chair D. Adkins D. Bajula N. A. Finney J. L. Garner

J. F. Haley P. T. Hayes M. Lozev C. Magruder M. Sens

Special Working Group on Full Matrix Capture (FMC) Ultrasonic Testing (BPV V)

P. T. Hayes, Chair	F. Laprise
K. Hayes, Vice Chair	M. Lozev
D. Adkins	C. Magruder
D. Bajula	F. Morrow
D. Braconnier	L. E. Mullins
J. Catty	A. B. Nagel
B. Erne	E. Peloquin
S. Falter	D. Richard
N. A. Finney	M. Sens
J. L. Garner	D. Tompkins
R. T. Grotenhuis	J. Vinyard
J. F. Halley	O. Volf
G. W. Hembree	C. Wassink
B. D. Laite	

Special Working Group on the Use of Unmanned Aerial Vehicles/ Systems for Inspection (BPV V)

G. W. Hembree, Chair	P. C. Prahl
P. J. Coco, Vice Chair	J. Schroeter
L. Pulgarin, Staff Secretary	K. Schupp
A. Bloye	M. Sens
T. Cinson	A. T. Taggart
J. DiPalma	R. Vayda
M. Ellis	K. H. Kim, Delegate
S. Flash	R. J. Winn, Delegate
R. T. Grotenhuis	L. Zhang, <i>Delegate</i>
K. Hayes	Q. Chen, Contributing Member
P. T. Hayes	A. Cook, Contributing Member
R. Janowiak	A. E. Krauser, Contributing Member
C. May	X. Wen, Contributing Member
L. E. Mullins	F. Wu, Contributing Member
M. Orihuela	Y. Yang, Contributing Member
L. Petrosky	

Working Group on Acoustic Emissions (SG-VM) (BPV V)

N. Y. Faransso, Chair R. K. Miller S. R. Doctor, Vice Chair M. A. Gonzalez, Alternate J. Catty J. E. Batey, Contributing Member V. F. Godinez-Azcuaga

Working Group on Radiography (SG-VM) (BPV V)

C. Vorwald, Chair	R. J. Mills
F. B. Kovacs, Vice Chair	A. B. Nagel
J. Anderson	T. L. Plasek
P. L. Brown	T. Vidimos
C. Emslander	B. White
A. F. Garbolevsky	D. Woodward
R. W. Hardy	S. J. Akrin, Contributing Member
G. W. Hembree	J. E. Batey, Contributing Member
C. Johnson	N. Y. Faransso, Contributing
S. A. Johnson	Member
B. D. Laite	R. W. Kruzic, Contributing Member
C. May	

Working Group on Ultrasonics (SG-VM) (BPV V)

N. A. Finney, Chair	L. E. Mullins
J. F. Halley, Vice Chair	A. B. Nagel
D. Adkins	K. Page
C. Brown	F. J. Sattler
J. M. Davis	D. Tompkins
C. Emslander	D. Van Allen
P. T. Hayes	J. Vinyard
S. A. Johnson	C. Vorwald
K. Krueger	N. Y. Faransso, Contributing
B. D. Laite	Member
C. Magruder	R. W. Kruzic, Contributing Member
C. May	

Working Group on Guided Wave Ultrasonic Testing (SG-VM) (BPV V)

N. Y. Faransso, Chair	P. Mudge
S. A. Johnson, Vice Chair	M. J. Quarry
D. Alleyne	J. Vanvelsor
J. F. Halley	J. E. Batey, Contributing Member
G. M. Light	

Italy International Working Group (BPV V)

P. L. Dinelli, <i>Chair</i>
A. Veroni, Secretary
T. Aldo
R. Bertolotti
F. Bresciani
G. Campos
N. Caputo
M. Colombo
F. Ferrarese

E. Ferrari M. A. Grimoldi G. Luoni 0. Oldani U. Papponetti P. Pedersoli M. Zambon G. Gobbi, Contributing Member G. Pontiggia, Contributing Member

COMMITTEE ON PRESSURE VESSELS (BPV VIII)

R. I. Basile. Chair S. C. Roberts, Vice Chair E. Lawson, Staff Secretary S. J. Rossi, Staff Secretary G. Aurioles, Sr. J. Cameron A. Chaudouet D. B. DeMichael J. P. Glaspie J. F. Grubb B. F. Hantz L. E. Hayden, Jr. M. Kowalczyk D. L. Kurle M. D. Lower R. Mahadeen S. A. Marks R. W. Mikitka G. M. Mital B. R. Morelock T. P. Pastor D. T. Peters M. J. Pischke M. D. Rana G. B. Rawls. Ir.

F. L. Richter C. D. Rodery J. C. Sowinski D. Srnic D. B. Stewart P. L. Sturgill D. A. Swanson J. P. Swezy, Jr. S. Terada E. Upitis A. Viet K. Xu P. A. McGowan, Delegate H. Michael, Delegate K. Oyamada, Delegate M. E. Papponetti, Delegate X. Tang, Delegate W. S. Jacobs, Contributing Member G. G. Karcher, Contributing Member K. T. Lau, Contributing Member U. R. Miller, Contributing Member K. Mokhtarian, Contributing

Executive Committee (BPV VIII)

S. C. Roberts, Chair S. J. Rossi, Staff Secretary G. Aurioles, Sr. R. J. Basile M. Kowalczyk D. L. Kurle

M. D. Lower R. Mahadeen S. A. Marks G. M. Mital D. A. Swanson A. Viet

Member

K. K. Tam. Honorary Member

Subgroup on Design (BPV VIII)

D. A. Swanson, Chair M. D. Rana J. C. Sowinski, Vice Chair G. B. Rawls, Jr. M. Faulkner, Secretary S. C. Roberts G. Aurioles, Sr. C. D. Rodery S. R. Babka T. G. Seipp O. A. Barsky D. Srnic R. I. Basile S. Terada M. R. Breach J. Vattappilly F. L. Brown R. A. Whipple D. Chandiramani K. Xu B. F. Hantz K. Oyamada, Delegate C. E. Hinnant M. E. Papponetti, Delegate C. S. Hinson W. S. Jacobs. Contributing Member M. H. Jawad P. K. Lam, Contributing Member S. Krishnamurthy K. Mokhtarian, Contributing D. L. Kurle Member M. D. Lower R. W. Mikitka B. Millet T. P. Pastor

S. C. Shah, Contributing Member K. K. Tam, Contributing Member

- E. Upitis, Contributing Member
- Z. Wang, Contributing Member

Working Group on Design-By-Analysis (BPV VIII)

B. F. Hantz, Chair S. Krishnamurthy T. W. Norton, Secretary A. Mann D. A. Arnett N. McKie R. G. Brown G. A. Miller D. Dewees C. Nadarajah C. F. Heberling II P. Prueter C. E. Hinnant M. D. Rana M. H. Jawad T. G. Seipp S. Kataoka M. A. Shah S. Kilambi S. Terada K. D. Kirkpatrick K. Saboda, Contributing Member

Subgroup on Fabrication and Examination (BPV VIII)

S. A. Marks, Chair J. P. Swezy, Jr. E. A. Whittle, Vice Chair E. Upitis T. Halligan, Secretary K. Oyamada, Delegate B. R. Morelock, Secretary W. J. Bees, Contributing Member L. F. Campbell, Contributing N. Carter D. I. Morris Member O. Mulet W. S. Jacobs, Contributing Member M. J. Pischke J. Lee, Contributing Member M. I. Rice J. Si, Contributing Member C. D. Rodery R. Uebel, Contributing Member B. F. Shelley X. Xue, Contributing Member P. L. Sturgill B. Yang, Contributing Member

Subgroup on General Requirements (BPV VIII)

M. D. Lower, Chair	D. K. Peetz
J. P. Glaspie, Vice Chair	G. B. Rawls, Jr.
F. L. Richter, Secretary	S. C. Roberts
R. J. Basile	J. C. Sowinski
T. P. Beirne	P. Speranza
D. T. Davis	D. Srnic
D. B. DeMichael	D. B. Stewart
M. Faulkner	D. A. Swanson
F. Hamtak	R. Uebel
L. E. Hayden, Jr.	Z. Wang, Contributing Member
J. Hoskinson	Y. Yang, Contributing Member
T. P. Pastor	

Task Group on Fired Heater Pressure Vessels (BPV VIII)

J. Rust E. Smith D. Srnic J. P. Swezy, Jr.

F. Hamtak, Chair	
J. Hoskinson	
W. Kim	
S. Kirk	
T. P. Pastor	

Task Group on Subsea Applications (BPV VIII)

K. Karpanan, <i>Chair</i>	F. Kirkemo
M. Sarzynski, Vice Chair	C. Lan
L. P. Antalffy	N. McKie
R. C. Biel	S. K. Parimi
P. Bunch	J. R. Sims
J. Ellens	Y. Wada
A. J. Grohmann	R. Cordes, Contributing Member
S. Harbert	D. T. Peters, Contributing Member
X. Kaculi	

Task Group on UG-20(f) (BPV VIII)

B. R. Macejko S. Krishnamurthy, Chair T. L. Anderson J. Penso K. E. Bagnoli M. Prager R. P. Deubler M. D. Rana B. F. Hantz Task Group on U-2(g) (BPV VIII)

D. A. Swanson, Chair	T. P. Pastor
G. Aurioles, Sr.	R. F. Reedy, Sr.
S. R. Babka	S. C. Roberts
R. J. Basile	D. Srnic
D. K. Chandiramani	J. P. Swezy, Jr.
R. Mahadeen	R. Uebel
T. W. Norton	K. K. Tam, Contributing Member

Subgroup on Heat Transfer Equipment (BPV VIII)

G. Aurioles, Sr., Chair	S. Neilsen
P. Matkovics, Vice Chair	E. Smith
M. D. Clark, Secretary	A. M. Voytko
D. Angstadt	R. P. Wiberg
S. R. Babka	I. G. Campbell, Contributing
J. H. Barbee	Member
O. A. Barsky	G. G. Karcher, Contributing
L. Bower	Member
T. Bunyarattaphantu	T. W. Norton, Contributing Member
A. Chaudouet	J. Pasek, Contributing Member
D. L. Kurle	D. Srnic, Contributing Member
R. Mahadeen	Z. Tong, Contributing Member
S. Marrouw	

S. Mayeux

Working Group on Plate Heat Exchangers (BPV VIII)

P. Matkovics, Chair	R. Mahadeen
S. R. Babka	S. A. Marks
K. Devlin	D. I. Morris
J. F. Grubb	M. J. Pischke
V. Gudge	D. Srnic
F. Hamtak	S. Sullivan

Subgroup on High Pressure Vessels (BPV VIII)

G. M. Mital, Chair	F. W. Tatar
K. Subramanian, Vice Chair	S. Terada
A. P. Maslowski, Staff Secretary	C. Tipple
L. P. Antalffy	J. L. Traud
R. C. Biel	R. Wink
P. N. Chaku	Y. Xu
L. Fridlund	R. Cordes, Contributing Member
R. T. Hallman	R. D. Dixon, Contributing Member
Ј. А. Карр	R. M. Hoshman, Contributing
K. Karpanan	Member
A. K. Khare	Y. Huang, Contributing Member
S. C. Mordre	J. Keltjens, Contributing Member
G. T. Nelson	F. Kirkemo, Contributing Member
D. T. Peters	KJ. Young, Contributing Member
E. A. Rodriguez	D. J. Burns, Honorary Member
E. D. Roll	D. M. Fryer, Honorary Member
K. C. Simpson, Jr.	G. J. Mraz, Honorary Member
J. R. Sims	E. H. Perez, Honorary Member
E. Smith	

Subgroup on Materials (BPV VIII)

M. Kowalczyk, Chair	E. Upitis
J. Cameron, Vice Chair	J. D. Fritz, Contributing Member
K. Xu, Secretary	M. Katcher, Contributing Member
P. Chavdarov	W. M. Lundy, Contributing Member
A. Di Rienzo	J. A. McMaster, Contributing
J. F. Grubb	Member
S. Kilambi	B. Pletcher, Contributing Member
D. Maitra	R. Schiavi, Jr., Contributing Member
J. Penso	P. G. Wittenbach, Contributing
D. W. Rahoi	Member
J. Robertson	X. Wu, Contributing Member
R. C. Sutherlin	-

Subgroup on Toughness (BPV VIII)

D. L. Kurle, Chair K. Xu, Vice Chair N. Carter T. Halligan W. S. Jacobs S. Krishnamurthy K. E. Orie M. D. Rana F. L. Richter

K. Subramanian D. A. Swanson J. P. Swezy, Jr. S. Terada E. Upitis J. Vattappilly K. Oyamada, Delegate K. Mokhtarian, Contributing Member

Subgroup on Graphite Pressure Equipment (BPV VIII)

A. Viet, Chair
C. W. Cary, Vice Chair
G. C. Becherer
F. L. Brown

J. D. Clements R. W. Dickerson E. Soltow A. A. Stupica

China International Working Group (BPV VIII)

X. Chen, <i>Chair</i> B. Shou, <i>Vice Chair</i> Z. Fan, <i>Secretary</i> Y. Chen Z. Chen J. Cui R. Duan W. Guo B. Han J. Hu Q. Hu H. Hui	C. Miao X. Qian L. Sun B. Wang C. Wu F. Xu F. Xuan Y. Yang K. Zhang Yanfeng Zhang Yijun Zhang S. Zhao
t i i i i i i i i i i i i i i i i i i i	, 0
D. Luo	J. Zheng
Y. Luo	G. Zhu

Germany International Working Group (BPV VIII)

T. Ludwig

R. A. Mevers

H. Michael

G. Naumann

S. Reich

M. Svkora

Member

P. Paluszkiewicz, Contributing

R. Uebel, Contributing Member

M. Sharma, Contributing Member

- P. Chavdarov, Chair A. Spangenberg, Vice Chair H. P. Schmitz, Secretary B. Daume A. Emrich I. Fleischfresser R. Helmholdt R. Kauer D. Koelbl S. Krebs
 - India International Working Group (BPV VIII)

P. C. Pathak D. Chandiramani, Chair D. Kulkarni, Vice Chair S. B. Patil A. D. Dalal, Secretary V. V. P. Kumar P. Arulkumar M. P. Shah B. Basu P. G. Shah P. U. Gandhi V. T. Valavan

V. Jayabalan

Italy International Working Group (BPV VIII)

A. Teli, Chair	M. Guglielmetti
A. Veroni, Secretary	A. F. Magri
B. G. Alborali	P. Mantovani
P. Aliprandi	M. Massobrio
A. Avogadri	M. Millefanti
R. Boatti	L. Moracchioli
A. Camanni	P. Pacor
M. Colombo	G. Pontiggia
P. Conti	C. Sangaletti
P. L. Dinelli	S. Sarti
F. Finco	G. Gobbi, Contributing Member

Special Working Group on Bolted Flanged Joints (BPV VIII)

R. W. Mikitka, Chair
G. Aurioles, Sr.
D. Bankston, Jr.
W. Brown
H. Chen
A. Mann

W. McDaniel M. Osterfoss J. R. Payne G. B. Rawls, Jr. R. Wacker

Task Group on Impulsively Loaded Vessels (BPV VIII)

A. M. Clayton, Chair	E. A. Rodriguez
G. A. Antaki	C. Romero
D. D. Barker	N. Rushton
J. E. Didlake, Jr.	J. H. Stofleth
T. A. Duffey	Q. Dong, Contributing Member
K. Hayashi	HP. Schildberg, Contributing
K. W. King	Member
R. Kitamura	J. E. Shepherd, Contributing
R. A. Leishear	Member
P. O. Leslie	M. Yip, Contributing Member
F. Ohlson	

Subgroup on Interpretations (BPV VIII)

G. M. Mital R. Mahadeen, Chair D. I. Morris E. Lawson, Staff Secretary G. Aurioles, Sr. D. T. Peters S. R. Babka S. C. Roberts R. I. Basile C. D. Roderv J. Cameron T. G. Seipp N. Carter D. B. Stewart C. W. Cary P. L. Sturgill D. B. DeMichael D. A. Swanson R. D. Dixon J. P. Swezy, Jr. J. Vattappilly M. Kowalczyk D. L. Kurle A. Viet M. D. Lower P. G. Wittenbach A. Mann K. Xu P. Matkovics T. P. Pastor, Contributing Member

COMMITTEE ON WELDING, BRAZING, AND FUSING (BPV IX)

D. A. Bowers, Chair W. J. Sperko M. J. Pischke, Vice Chair P. L. Sturgill E. Lawson, Staff Secretary J. P. Swezy, Jr. M. Bernasek E. W. Woelfel M. A. Boring A. Roza, Delegate M. Consonni, Contributing Member J. G. Feldstein P. D. Flenner S. A. Jones, Contributing Member S. E. Gingrich A. S. Olivares, Contributing K. L. Hayes Member S. Raghunathan, Contributing R. M. Jessee Member W. M. Lundy M. J. Stanko, Contributing Member P. L. Van Fosson, Contributing W. F. Newell, Jr. Member D. K. Peetz R. K. Brown, Jr., Honorary Member M. L. Carpenter, Honorary Member E. G. Reichelt B. R. Newmark, Honorary Member M. I. Rice S. D. Reynolds, Jr., Honorary M. B. Sims Member

Subgroup on Brazing (BPV IX)

M. J. Pischke, Chair E. W. Beckman A. F. Garbolevsky S. A. Marks

I. S. Lee

T. Melfi

J. Pillow

N. Mohr A. R. Nywening J. P. Swezy, Jr.

Subgroup on General Requirements (BPV IX)

P. L. Sturgill, Chair	R. M. Jessee
S. A. Marks, Secretary	D. K. Peetz
E. W. Beckman	J. Pillow
J. P. Bell	H. B. Porter
D. A. Bowers	J. P. Swezy, Jr.
P. Gilston	E. W. Woelfel
F. Hamtak	E. Molina, Delegate
A. Howard	B. R. Newmark, Honorary Member

Subgroup on Materials (BPV IX)

M. Bernasek, Chair	A. Roza
T. Anderson	C. E. Sainz
J. L. Arnold	W. J. Sperko
E. Cutlip	P. L. Sturgill
S. E. Gingrich	J. Warren
L. S. Harbison	C. Zanfir
R. M. Jessee	V. G. V. Giunto, Delegate
T. Melfi	B. Krueger, Contributing Member
S. D. Nelson	M. J. Stanko, Contributing Member
M. J. Pischke	

Subgroup on Plastic Fusing (BPV IX)

E. G. Reichelt

S. Schuessler

M. Troughton

M. J. Rice

J. Wright

E. W. Woelfel. Chair D. Burwell K. L. Hayes R. M. Jessee J. Johnston, Jr. J. E. O'Sullivan

Subgroup on Welding Qualifications (BPV IX)

M. J. Rice, Chair	S. Raghunathan
J. S. Lee, Vice Chair	E. G. Reichelt
K. L. Hayes, Secretary	M. B. Sims
M. Bernasek	W. J. Sperko
M. A. Boring	S. A. Sprague
D. A. Bowers	P. L. Sturgill
R. B. Corbit	J. P. Swezy, Jr.
P. D. Flenner	T. C. Wiesner
L. S. Harbison	A. D. Wilson
M. Heinrichs	D. Chandiramani, Contributing
W. M. Lundy	Member
T. Melfi	M. Consonni, Contributing Member
W. F. Newell, Jr.	M. Dehghan, Contributing Member
B. R. Newton	

Germany International Working Group (BPV IX)

P. Chavdarov, Chair
A. Spangenberg, Vice Chair
E. Lawson, Staff Secretary
P. Thiebo, Secretary
J. Daldrup
B. Daume
E. Floer

R. Helmholdt S. Krebs T. Ludwig G. Naumann A. Roza K.-G. Toelle F. Wodke

Italy International Working Group (BPV IX)

A. Camanni, Chair M. Massobrio A. Veroni, Secretary A. S. Monastra P. Angelini L. Moracchioli M. Bernasek P. Pacor R. Boatti G. Pontiggia P. L. Dinelli S. Verderame F. Ferrarese A. Volpi G. Gobbi, Contributing Member E. Lazzari M. Mandina

COMMITTEE ON FIBER-REINFORCED PLASTIC PRESSURE VESSELS (BPV X)

B. Linnemann, Chair	B. Hebb
B. F. Shelley, Vice Chair	L. E. Hunt
P. D. Stumpf, Staff Secretary	D. L. Keeler
A. L. Beckwith	D. H. McCauley
F. L. Brown	N. L. Newhouse
J. L. Bustillos	G. Ramirez
B. R. Colley	J. R. Richter
T. W. Cowley	D. O. Yancey, Jr.
I. L. Dinovo	P. H. Ziehl
D. Eisberg	D. H. Hodgkinson, Contributing
M. R. Gorman	Member

COMMITTEE ON NUCLEAR INSERVICE INSPECTION (BPV XI)

	· · · · ·
R. W. Swayne, Chair	G. Navratil
S. D. Kulat, Vice Chair	S. A. Norman
D. W. Lamond, Vice Chair	J. E. O'Sullivan
K. Verderber, Staff Secretary	N. A. Palm
V. L. Armentrout	G. C. Park
J. F. Ball	A. T. Roberts III
W. H. Bamford	D. A. Scarth
M. L. Benson	F. J. Schaaf, Jr.
J. M. Boughman	J. C. Spanner, Jr.
S. B. Brown	D. J. Tilly
T. L. Chan	D. E. Waskey
R. C. Cipolla	J. G. Weicks
D. R. Cordes	H. D. Chung, <i>Delegate</i>
D. D. Davis	C. Ye, Delegate
H. Do	W. C. Holston, Alternate
R. L. Dyle	R. O. McGill, Alternate
E. V. Farrell, Jr.	T. Nuoffer, Alternate
M. J. Ferlisi	B. R. Newton, Contributing Member
P. D. Fisher	C. D. Cowfer, Honorary Member
E. B. Gerlach	R. E. Gimple, Honorary Member
T. J. Griesbach	F. E. Gregor, Honorary Member
J. Hakii	O. F. Hedden, Honorary Member
M. L. Hall	R. D. Kerr, Honorary Member
D. O. Henry	P. C. Riccardella, Honorary Member
D. R. Lee	R. A. West, Honorary Member
J. T. Lindberg	C. J. Wirtz, Honorary Member
G. A. Lofthus	R. A. Yonekawa, Honorary Member
H. Malikowski	

Executive Committee (BPV XI)

S. D. Kulat <i>, Chair</i>	D. W. Lamond
R. W. Swayne, Vice Chair	J. T. Lindberg
K. Verderber, Staff Secretary	G. Navratil
W. H. Bamford	T. Nuoffer
M. L. Benson	G. C. Park
R. L. Dyle	J. C. Spanner, Jr.
M. J. Ferlisi	W. C. Holston, Alternate
E. B. Gerlach	

Argentina International Working Group (BPV XI)

F. M. Schroeter, Chair	F. Llorente
M. F. Liendo, Vice Chair	R. J. Lopez
O. Martinez, Staff Secretary	M. Magliocchi
D. A. Cipolla	L. R. Miño
A. Claus	J. Monte
D. Costa	M. D. Pereda
D. P. Delfino	A. Politi
D. N. Dell'Erba	C. G. Real
A. Dominguez	G. J. Scian
S. A. Echeverria	M. J. Solari
E. P. Fresquet	P. N. Torano
M. M. Gamizo	P. Yamamoto
I. M. Guerreiro	

China International Working Group (BPV XI)

J. H. Liu, Chair	W. N. Pei
Y. Nie, Vice Chair	L. Shiwei
C. Ye, Vice Chair	Y. X. Sun
M. W. Zhou, Secretary	G. X. Tang
J. F. Cai	Q. Wang
H. Chen	Q. W. Wang
H. D. Chen	Z. S. Wang
Y. Cheng	L. Xing
Y. B. Guo	F. Xu
Y. Hongqi	Q. Yin
D. R. Horn	K. Zhang
Y. Hou	Y. Zhang
D. M. Kang	Y. Zhe
S. X. Lin	Z. M. Zhong
Y. Liu	

German International Working Group (BPV XI)

N. Legl T. Ludwig X. Pitoiset

M. Reichert

H. Schau L. Sybertz

J. Wendt

S. Zickler

R. Döring, Chair
R. Trieglaff, Vice Chair
R. Piel, Secretary
HR. Bath
A. Casse
S. Dugan
M. Hagenbruch
E. Iacopetta
HW. Lange

Special Working Group on Editing and Review (BPV XI)

R. W. Swayne, Chair M. Orihuela

K. R. Rao D. J. Tilly

Task Group on Inspectability (BPV XI)

J. T. Lindberg, Chair	C. Latiolais
M. J. Ferlisi, Secretary	D. Lieb
W. H. Bamford	G. A. Lofthus
A. Cardillo	D. E. Matthews
D. R. Cordes	P. J. O'Regan
P. Gionta	J. Ossmann
D. O. Henry	S. A. Sabo
E. Henry	P. Sullivan
J. Honcharik	C. Thomas
J. Howard	J. Tucker
R. Klein	

Task Group on ISI of Spent Nuclear Fuel Storage and Transportation Containment Systems (BPV XI)

K. Hunter, Chair K. Mauskar M. Orihuela, Secretary R. M. Meyer D. J. Ammerman B. L. Montgomery W. H. Borter T. Nuoffer J. Broussard R. M. Pace S. Brown E. L. Pleins C. R. Bryan M. A. Richter T. Carraher B. Sarno D. Dunn R. Sindelar N. Fales J. C. Spanner, Jr. R. C. Folley M. Staley G. Grant I. Wellwood B. Gutherman X. J. Zhai S. Horowitz P.-S. Lam, Alternate M. W. Joseph G. White, Alternate M. Keene J. Wise, Alternate M. Liu H. Smith, Contributing Member

Subgroup on Evaluation Standards (SG-ES) (BPV XI)

H. S. Mehta

W. H. Bamford, Chair N. A. Palm, Secretary M. Brumovsky H. D. Chung R. C. Cipolla C. M. Faidy B. R. Ganta T. J. Griesbach K. Hasegawa K. Hojo D. N. Hopkins D. R. Lee Y. S. Li R. O. McGill

K. Miyazaki R. M. Pace J. C. Poehler S. Ranganath D. A. Scarth D.-J. Shim G. L. Stevens A. Udyawar T. V. Vo G. M. Wilkowski S. X. Xu M. L. Benson, Alternate

Task Group on Evaluation of Beyond Design Basis Events (SG-ES) (BPV XI)

R. M. Pace, Chair S. X. Xu, Secretary G. A. Antaki P. R. Donavin R. G. Gilada T. J. Griesbach M. Hayashi K. Hojo

S. A. Kleinsmith H. S. Mehta D. V. Sommerville T. V. Vo K. R. Wichman G. M. Wilkowski T. Weaver, Contributing Member

Working Group on Flaw Evaluation (SG-ES) (BPV XI)

R. C. Cipolla <i>, Chair</i>	Y. S. Li
S. X. Xu, Secretary	M. Liu
W. H. Bamford	H. S. Mehta
M. L. Benson	G. A. A. Miessi
B. Bezensek	K. Miyazaki
M. Brumovsky	S. Noronha
H. D. Chung	R. K. Qashu
T. E. Demers	S. Ranganath
M. A. Erickson	P. J. Rush
C. M. Faidy	D. A. Scarth
M. M. Farooq	W. L. Server
B. R. Ganta	DJ. Shim
R. G. Gilada	S. Smith
F. D. Hayes	M. Uddin
P. H. Hoang	A. Udyawar
К. Нојо	T. V. Vo
D. N. Hopkins	B. Wasiluk
Y. Kim	K. R. Wichman
V. Lacroix	G. M. Wilkowski
D. R. Lee	

Working Group on Flaw Evaluation Reference Curves (BPV XI)

G. L. Stevens, Chair	K. Koyama
A. Udyawar, Secretary	D. R. Lee
W. H. Bamford	H. S. Mehta
M. L. Benson	K. Miyazaki
F. W. Brust	B. Pellereau
R. C. Cipolla	S. Ranganath
M. M. Farooq	D. A. Scarth
A. E. Freed	DJ. Shim
K. Hasegawa	S. Smith
D. N. Hopkins	T. V. Vo
R. Janowiak	S. X. Xu
K. Kashima	

Working Group on Operating Plant Criteria (SG-ES) (BPV XI)

N. A. Palm, Chair	H. S. Mehta
A. E. Freed, Secretary	A. D. Odell
K. R. Baker	R. M. Pace
W. H. Bamford	J. C. Poehler
M. Brumovsky	S. Ranganath
T. L. Dickson	W. L. Server
R. L. Dyle	C. A. Tomes
M. A. Erickson	A. Udyawar
T. J. Griesbach	T. V. Vo
M. Hayashi	D. P. Weakland
R. Janowiak	H. Q. Xu
S. A. Kleinsmith	T. Hardin, Alternate
H. Kobayashi	

Working Group on Pipe Flaw Evaluation (SG-ES) (BPV XI)

D. A. Scarth, <i>Chair</i>	R. Janowiak
,	,
G. M. Wilkowski, Secretary	S. Kalyanam
K. Azuma	K. Kashima
M. L. Benson	V. Lacroix
M. Brumovsky	Y. S. Li
F. W. Brust	R. O. McGill
H. D. Chung	H. S. Mehta
R. C. Cipolla	G. A. A. Miessi
N. G. Cofie	K. Miyazaki
T. E. Demers	S. H. Pellet
C. M. Faidy	P. J. Rush
M. M. Farooq	W. L. Server
B. R. Ganta	DJ. Shim
S. R. Gosselin	S. Smith
C. E. Guzman-Leong	A. Udyawar
K. Hasegawa	T. V. Vo
P. H. Hoang	B. Wasiluk
К. Нојо	S. X. Xu
D. N. Hopkins	A. Alleshwaram, Alternate
E. J. Houston	

Task Group on Evaluation Procedures for Degraded Buried Pipe (WG-PFE) (BPV XI)

R. O. McGill, Chair R. Janowiak S. X. Xu, Secretary M. Kassar F. G. Abatt M. Moenssens G. A. Antaki D. P. Munson R. C. Cipolla R. M. Pace R. G. Gilada P. J. Rush K. Hasegawa D. A. Scarth K. M. Hoffman

Subgroup on Nondestructive Examination (SG-NDE) (BPV XI)

J. C. Spanner, Jr., Chair D. R. Cordes, Secretary M. Briley C. Brown T. L. Chan S. E. Cumblidge K. J. Hacker J. Harrison

D. O. Henry J. T. Lindberg G. A. Lofthus S. A. Sabo F. J. Schaaf, Jr. R. V. Swain C. A. Nove, Alternate

Working Group on Personnel Qualification and Surface Visual and Eddy Current Examination (SG-NDE) (BPV XI)

J. T. Lindberg, <i>Chair</i>	N. Farenbaugh
C. Brown, Secretary	D. O. Henry
J. E. Aycock	C. Shinsky
J. Bennett	J. C. Spanner, Jr.
S. E. Cumblidge	T. Thulien
A. Diaz	J. T. Timm

Working Group on Procedure Qualification and Volumetric Examination (SG-NDE) (BPV XI)

G. A. Lofthus, Chair	D. A. Kull
J. Harrison, Secretary	C. A. Nove
M. Briley	S. A. Sabo
A. Bushmire	R. V. Swain
D. R. Cordes	S. J. Todd
S. R. Doctor	D. K. Zimmerman
K. J. Hacker	B. Lin, Alternate
W. A. Jensen	

Subgroup on Repair/Replacement Activities (SG-RRA) (BPV XI)

E. B. Gerlach, Chair	B. I
E. V. Farrell, Jr., Secretary	J. E
J. F. Ball	G. (
M. Brandes	P. I
S. B. Brown	R. I
R. Clow	R. V
P. D. Fisher	D. J
M. L. Hall	D. I
S. L. McCracken	J. G
A. B. Meichler	W.

R. Newton E. O'Sullivan C. Park Raynaud R. Stevenson W. Swayne I. Tillv E. Waskey G. Weicks W. C. Holston, Alternate

Working Group on Welding and Special Repair Processes (SG-RRA) (BPV XI)

D. E. Waskey, Chair	M. Kris
D. J. Tilly, Secretary	S. E. Marlette
D. Barborak	S. L. McCracken
S. J. Findlan	D. B. Meredith
P. D. Fisher	B. R. Newton
R. C. Folley	J. E. O'Sullivan
M. L. Hall	D. Segletes
W. C. Holston	J. G. Weicks
C. C. Kim	

Task Group on Temper Bead Welding (BPV XI)

S. J. Findlan, Chair D. Barborak M. L. Hall S. L. McCracken D. B. Meredith N. Mohr B. R. Newton

J. E. O'Sullivan D. Segletes J. Tatman D. J. Tilly D. E. Waskey J. G. Weicks

D. B. Meredith

P. Raynaud D. Segletes

D. E. Waskey

J. G. Weicks

T. M. Musto

S. Patterson A. Pridmore

P. Raynaud

F. J. Schaaf, Jr.

R. Stakenborghs

Task Group on Weld Overlay (BPV XI)

S. L. McCracken, Chair
S. J. Findlan
M. L. Hall
S. Hunter
S. E. Marlette

Working Group on Non-Metals Repair/Replacement Activities (SG-RRA) (BPV XI)

J. E. O'Sullivan <i>, Chair</i>	
S. Schuessler, Secretary	
M. Brandes	
J. Johnston, Jr.	
M. Lashley	
M. P. Marohl	

Task Group on Repair by Carbon Fiber Composites (WGN-MRR) (BPV XI)

J. E. O'Sullivan <i>, Chair</i>	A. Pridmore
S. F. Arnold	P. Raynaud
S. W. Choi	S. Rios
D. R. Dechene	V. Roy
M. Golliet	J. Sealey
L. S. Gordon	N. Stoeva
M. Kuntz	M. F. Uddin
M. P. Marohl	J. Wen
C. A. Nove	B. Davenport, Alternate
R. P. Ojdrovic	C. W. Rowley, Alternate

Working Group on Design and Programs (SG-RRA) (BPV XI)

S. B. Brown, Chair A. B. Meichler, Secretary 0. Bhatty R. Clow R. R. Croft E. V. Farrell, Jr. E. B. Gerlach

H. Malikowski G. C. Park M. A. Pyne P. Raynaud R. R. Stevenson R. W. Swayne

Task Group on Risk-Informed Categorization and Treatment (BPV XI)

S. L. McCracken, Chair T. Anselmi H Do M. J. Ferlisi E. B. Gerlach K. W. Hall A. E. Keyser S. D. Kulat D. W. Lamond

A. B. Meichler G. Navratil S. A. Norman P. J. O'Regan J. E. O'Sullivan M. Ralstin T. V. Vo J. G. Weicks

K. W. Hall

Subgroup on Water-Cooled Systems (SG-WCS) (BPV XI)

G. Navratil, Chair J. Nygaard, Secretary J. M. Agold V. L. Armentrout J. M. Boughman S. B. Brown S. T. Chesworth D. D. Davis H. Q. Do R. L. Dyle M. J. Ferlisi

P. J. Hennessey K. M. Hoffman S. D. Kulat D. W. Lamond T. Nomura T. Nuoffer H. M. Stephens, Jr. M. Weis M. J. Homiack, Alternate

Task Group on High Strength Nickel Alloys Issues (SG-WCS) (BPV XI)

H. Malikowski, Chair W. H. Bamford K. Dietrich P. R. Donavin R. L. Dyle K. M. Hoffman C. Lohse

S. E. Marlette B. L. Montgomery G. C. Park W. Sims J. C. Spanner, Jr. D. E. Waskey

Working Group on Containment (SG-WCS) (BPV XI)

H. M. Stephens, Jr., Chair S. G. Brown, Secretary P. S. Ghosal H. T. Hill B. Lehman J. A. Munshi

M. Sircar P. C. Smith F. Syed R. Thames S. Walden

Working Group on Inspection of Systems and Components (SG-WCS) (BPV XI)

M. J. Ferlisi, Chair
M. Weis, Secretary
J. M. Agold
R. W. Blyde
K. Caver
C. Cueto-Felgueroso
H. Q. Do
K. W. Hall
M. L. G. Heras

J. Howard S. D. Kulat E. Lantz G. J. Navratil T. Nomura J. C. Nygaard J. C. Younger

K. M. Hoffman

Working Group on Pressure Testing (SG-WCS) (BPV XI)

J. M. Boughman <i>, Chair</i>	A. E. Keyser
S. A. Norman, Secretary	D. W. Lamond
T. Anselmi	J. K. McClanahan
B. Casey	T. P. McClure
YK. Chung	B. L. Montgomery
M. J. Homiack	C. Thomas

Task Group on Buried Components Inspection and Testing (WG-PT) (BPV XI)

D. W. Lamond, Chair	B. Davenport
J. M. Boughman, Secretary	A. Hiser
M. Moenssens, Secretary	J. Ossmann
T. Anselmi	S. Rios
V. L. Armentrout	

Working Group on Risk-Informed Activities (SG-WCS) (BPV XI)

M. A. Pyne, Chair	S. D. Kulat
S. T. Chesworth, Secretary	D. W. Lamond
J. M. Agold	E. Lantz
C. Cueto-Felgueroso	G. J. Navratil
A. E. Freed	P. J. O'Regan
J. Hakii	N. A. Palm
K. W. Hall	D. Vetter
M. J. Homiack	J. C. Younger

Working Group on General Requirements (BPV XI)

T. Nuoffer, Chair	T. L. Chan
J. Mayo, Secretary	P. J. Hennessey
J. F. Ball	A. T. Roberts III

Subgroup on Reliability and Integrity Management Program (SG-RIM) (BPV XI)

F. J. Schaaf, Jr., Chair
A. T. Roberts III, Secretary
T. Anselmi
N. Broom
S. R. Doctor
J. D. Fletcher
J. T. Fong
T. Graham
J. Grimm

B. Heald D. M. Jones D. R. Lee B. Lin R. K. Miller R. W. Swayne S. Takaya R. Vayda

Working Group on MANDE (BPV XI)

H. M. Stephens, Jr., Chair	D. O. Henry
S. R. Doctor	L. E. Mullins
N. A. Finney	M. Turnbow
J. T. Fong	

JSME/ASME Joint Task Group for System-Based Code (SWG-RIM) (BPV XI)

T. Asayama, Chair S. R. Doctor K. Dozaki M. Hayashi D. M. Iones Y. Kamishima

D. R. Lee H. Machida A. T. Roberts III F. J. Schaaf, Jr. S. Takava D. Watanabe

COMMITTEE ON TRANSPORT TANKS (BPV XII)

N. J. Paulick, Chair T. A. Rogers M. D. Rana, Vice Chair S. Staniszewski J. Oh, Staff Secretary A. P. Varghese A. N. Antoniou Y. Doron, Contributing Member P. Chilukuri R. Meyers, Contributing Member W. L. Garfield M. R. Ward, Contributing Member M. Pitts

Executive Committee (BPV XII)

M. D. Rana <i>, Chair</i>	M. Pitts
N. J. Paulick, Vice Chair	S. Staniszewski
. Oh, Staff Secretary	A. P. Varghese

Subgroup on Design and Materials (BPV XII)

A. P. Varghese, Chair M. Shah R. C. Sallash, Secretary S. Staniszewski D. K. Chandiramani K. Xu P. Chilukuri A. T. Duggleby, Contributing Y. Doron Member R. D. Hayworth G. G. Karcher, Contributing S. L. McWilliams Member N. J. Paulick M. R. Ward, Contributing Member M. D. Rana J. Zheng, Contributing Member T. A. Rogers

Subgroup on Fabrication, Inspection, and Continued Service (BPV XII)

M. Pitts, Chair M. Rudek P. Chilukuri R. C. Sallash Y. Doron L. Selensky W. Garfield S. Staniszewski R. D. Hayworth S. E. Benet, Contributing Member 0. Mulet G. McRae, Contributing Member J. Roberts A. S. Olivares, Contributing T. A. Rogers Member

Subgroup on General Requirements (BPV XII)

S. Staniszewski, Chair A. N. Antoniou Y Doron J. L. Freiler W. L. Garfield 0 Mulet B. F. Pittel M. Pitts T. Rummel R. C. Sallash

- L. Selensky
- P. Chilukuri, Contributing Member
- T. J. Hitchcock, Contributing
- Member
- G. McRae, Contributing Member
- S. L. McWilliams, Contributing Member
- T. A. Rogers, Contributing Member
- D. G. Shelton, Contributing Member M. R. Ward, Contributing Member

S. E. Benet, Contributing Member

Subgroup on Nonmandatory Appendices (BPV XII)

N. I. Paulick. Chair S. Staniszewski, Secretary P. Chilukuri M. Pitts T. A. Rogers D. G. Shelton

- D. D. Brusewitz, Contributing Member Y. Doron, Contributing Member
- T. J. Hitchcock, Contributing

R. W. Barnes, Contributing Member

R. D. Danzy, Contributing Member

A. Frigerio, Contributing Member

A. Hassan, Contributing Member

P. K. Lam, Contributing Member

J. M. Levy, Contributing Member

J. Mize, Contributing Member M. Mullavey, Contributing Member

M. Mengon, Contributing Member

S. K. Parimi, Contributing Member J. Phillips, Contributing Member

R. Raman, Contributing Member

M. Reddy, Contributing Member

K. Shores, Contributing Member

D. E. Tezzo, Contributing Member

M. Elias, Contributing Member D. Felix, Contributing Member

Member

COMMITTEE ON OVERPRESSURE PROTECTION (BPV XIII)

D. B. DeMichael, Chair J. P. Glaspie, Vice Chair C. E. O'Brien, Staff Secretary J. F. Ball J. Burgess J. W. Dickson A. Donaldson S. F. Harrison, Jr. D. Miller B. K. Nutter T. Patel M. Poehlmann D. E. Tompkins Z. Wang J. A. West A. Wilson B. Calderon, Alternate H. Aguilar, Contributing Member

Executive Committee (BPV XIII) A. Donaldson

J. P. Glaspie, Chair C. E. O'Brien, Staff Secretary J. F. Ball D. B. DeMichael

Subgroup on Design and Materials (BPV XIII)

D. Miller

J. A. West

B. K. Nutter

D. Miller, Chair C. E. Beair A. Biesecker W. E. Chapin J. L. Freiler B. Joergensen V. Kalyanasundaram B. J. Mollitor B. Mruk T. Patel A. C. Ramirez

G. Ramirez J. A. West A. Williams D. J. Azukas, Contributing Member R. D. Danzy, Contributing Member A. Hassan, Contributing Member R. Miyata, Contributing Member M. Mullavey, Contributing Member S. K. Parimi, Contributing Member K. Shores, Contributing Member

A. Donaldson, Chair M. Poehlmann D. J. Azukas K Shores I. F. Ball M. Z. Brown J. Burgess D. B. DeMichael M. Elias

T. M. Fabiani S. T. French I. Gillham J. P. Glaspie R. Klimas, Jr. Z. E. Kumana P. K. Lam J. M. Levy K. R. May J. Mize L. Moedinger M. Mullavey

J. Phillips B. F. Pittel

Subgroup on General Requirements (BPV XIII)

D. E. Tezzo
D. E. Tompkins
J. F. White
B. Calderon, <i>Contributing Member</i>
P. Chavdarov, Contributing
Member
J. L. Freiler, Contributing Member
G. D. Goodson, Contributing
Member
C. Haldiman, Contributing Member
B. Joergensen, Contributing
Member
C. Lasarte, Contributing Member
M. Mengon, Contributing Member
D. E. Miller, Contributing Member
R. Miyata, Contributing Member
B. Mruk, Contributing Member

- R. Raman, Contributing Member
- M. Reddy, Contributing Member

Subgroup on Nuclear (BPV XIII)

J. F. Ball <i>, Chair</i>	K. Shores
J. W. Dickson	I. H. Tseng
S. Jones	J. Yu
R. Krithivasan	N. J. Hansing, Alternate
K. R. May	B. J. Yonsky, Alternate
D. Miller	S. T. French, Contributing Member
T. Patel	D. B. Ross, Contributing Member

Subgroup on Testing (BPV XIII)

B. K. Nutter, Chair
T. P. Beirne
B. Calderon
V. Chicola
J. W. Dickson
B. Engman
R. J. Garnett
R. Houk
D. T. Kelley
R. Lack
M. Mengon
C. Sharpe
J. R. Thomas
Z. Wang
A. Wilson

S. Alessandro, Contributing Member

- J. Britt, Contributing Member
- W. E. Chapin, Contributing Member
- J. Cockerham, Contributing
- Member
- R. Miyata, Contributing Member J. Mize, Contributing Member
- M. Mullavey, Contributing Member
- R. Raman, Contributing Member
- A. C. Ramirez, Contributing Member
- G. Ramirez, Contributing Member K. Shores, Contributing Member

COMMITTEE ON BOILER AND PRESSURE VESSEL CONFORMITY ASSESSMENT (CBPVCA)

R. V. Wielgoszinski, Chair G. Scribner, Vice Chair G. Moino, Staff Secretary P. Murray, Staff Secretary J. P. Chicoine D. C. Cook P. D. Edwards T. E. Hansen B. L. Krasiun P. F. Martin L. E. McDonald D. Miller I. Powell D. E. Tuttle R. Uebel E. A. Whittle P. Williams

T. P. Beirne, Alternate M. Blankinship, Alternate J. W. Dickson, Alternate J. M. Downs, Alternate B. J. Hackett, Alternate W. Hibdon, Alternate Y.-S. Kim, Alternate B. Morelock, Alternate M. Poehlmann, Alternate R. Rockwood, Alternate L. Skarin, Alternate R. D. Troutt. Alternate B. C. Turczvnski. Alternate S. V. Voorhees, Alternate D. Cheetham, Contributing Member A. J. Spencer, Honorary Member

R. R. Stevenson, Chair J. DeKleine, Vice Chair L. Powers, Staff Secretary S. Andrews G. Gobbi S. M. Goodwin J. W. Highlands K. A. Huber K. A. Kavanagh J. C. Krane M. A. Lockwood L. M. Plante T. E. Quaka G. Szabatura C. Turylo D. M. Vickery E. A. Whittle C. S. Withers

J. Ball, Alternate

P. J. Coco, Alternate N. DeSantis, Alternate C. Dinic, Alternate P. D. Edwards, Alternate D. P. Gobbi, Alternate K. M. Hottle, Alternate P. Krane, Alternate M. Martin, Alternate D. Nenstiel, Alternate M. Paris, Alternate E. L. Pleins, Alternate P. F. Prescott, Alternate A. Torosyan, Alternate S. V. Voorhees, Alternate M. Wilson, Alternate S. Yang, Alternate S. F. Harrison, Jr., Contributing Member

COMMITTEE ON NUCLEAR CERTIFICATION (CNC)

INTRODUCTION

The following is provided as a brief introduction to Section IX, and cannot be considered as a substitute for the actual review of the document. However, this introduction is intended to give the reader a better understanding of the purpose and organization of Section IX.

Section IX of the ASME Boiler and Pressure Vessel Code relates to the qualification of welders, welding operators, brazers, brazing operators, and fusing operators, and the procedures employed in welding, brazing, or plastic fusing in accordance with the ASME Boiler and Pressure Vessel Code and the ASME B31 Code for Pressure Piping. As such, this is an active document subject to constant review, interpretation, and improvement to recognize new developments and research data. Section IX is a document referenced for the qualification of material joining processes by various construction codes such as Section I, III, IV, VIII, XII, etc. These particular construction codes apply to specific types of fabrication and may impose additional requirements or exemptions to Section IX qualifications. Qualification in accordance with Section IX is not a guarantee that procedures and performance qualifications will be acceptable to a particular construction code.

Section IX does not contain rules for production joining, nor does it contain rules to cover all factors affecting production material joining properties under all circumstances. Where such factors are determined by the organization to affect material joining properties, the organization shall address those factors in the Procedure Specification to ensure that the required properties are achieved in the production material joining process.

The purpose of the Procedure Specification and the Procedure Qualification Record (PQR) is to ensure the material joining process proposed for construction is capable of producing joints having the required mechanical properties for the intended application. Personnel performing the material joining procedure qualification test shall be sufficiently skilled. The purpose of the procedure qualification test is to establish the mechanical properties of the joint produced by the material joining process and not the skill of the personnel using the material joining process. In addition, special consideration is given when toughness testing is required by other Sections of the Code. The toughness supplementary essential variables do not apply unless referenced by the construction codes.

The purpose of Performance Qualification is to determine the ability of the person using a material joining process to produce a sound joint. In Operator Performance Qualification, the basic criterion is to determine the ability of the operator to properly operate the equipment to produce a sound joint.

In developing Section IX, each material joining process that is included was reviewed with regard to those factors (called variables) which have an effect upon the material joining operations as applied to procedure or performance criteria.

The user of Section IX should be aware of how Section IX is organized. It is divided into four Parts: general requirements, welding, brazing, and plastic fusing. Each Part addressing a material joining process is then divided into Articles. The Articles for each material joining process deal with the following:

(*a*) general requirements specifically applicable to the material joining process (Article I Welding, Article XI Brazing, and Article XXI Plastic Fusing)

(b) procedure qualifications (Article II Welding, Article XII Brazing, and Article XXII Plastic Fusing)

(c) performance qualifications (Article III Welding, Article XIII Brazing, and Article XXIII Plastic Fusing)

- (d) data (Article IV Welding, Article XIV Brazing, and Article XXIV Plastic Fusing)
- (e) standard welding procedure specifications (Article V Welding)

These articles contain general references and guides that apply to procedure and performance qualifications such as positions, type and purpose of various mechanical tests, acceptance criteria, and the applicability of Section IX, which previously appeared in the Preamble of the 1980 Edition of Section IX (the Preamble has since been deleted). The general requirement articles reference the data articles for specific details of the testing equipment and removal of the mechanical test specimens.

PROCEDURE QUALIFICATIONS

Each material joining process that has been evaluated and adopted by Section IX is listed separately with the essential and nonessential variables as they apply to that particular process. In general, the Procedure Specifications are required to list all essential and nonessential variables for each process that is included under that particular procedure

specification. When an essential variable must be changed beyond the range qualified and the change is not an editorial revision to correct an error, requalification of the procedure specification is required. If a change is made in a nonessential variable, the procedure need only be revised or amended to address the nonessential variable change. When toughness testing is required for Welding Procedure Specification (WPS) qualification by the construction code, the supplementary essential variables become additional essential variables, and a change in these variables requires requalification of the procedure specification.

In addition to covering various processes, there are also rules for procedure qualification of corrosion-resistant weld metal overlay and hard-facing weld metal overlay.

Beginning with the 2000 Addenda, the use of Standard Welding Procedure Specifications (SWPSs) was permitted. Article V provides the requirements and limitations that govern the use of these documents. The SWPSs approved for use are listed in Mandatory Appendix E.

In the 2004 Edition, rules for temper bead welding were added.

With the incorporation of the new Creep-Strength Enhanced Ferritic (CSEF) alloys in the 1986 Edition, using the existing P-Number groupings to specify PWHT parameters can lead to variations in heat treatments that may significantly degrade the mechanical properties of these alloys. CSEF alloys are a family of ferritic steels whose creep strength is enhanced by the creation of a precise condition of microstructure, specifically martensite or bainite, which is stabilized during tempering by controlled precipitation of temper-resistant carbides, carbo-nitrides, or other stable phases.

In the 2007 Edition of the Code, only P-No. 5B, Group 2 base metals met this definition and were approved for Code construction. Looking forward, a number of CSEF alloys are already in use in Code Cases and drawing near to incorporation. To facilitate addressing their special requirements, P-No. 15A through P-No. 15F have been established for CSEF alloys.

In the 2013 Edition, Part QG General Requirements and Part QF Plastic Fusing were added.

PERFORMANCE QUALIFICATIONS

These articles list separately the various processes with the essential variables that apply to the performance qualifications of each process. The performance qualifications are limited by essential variables.

The performance qualification articles have numerous paragraphs describing general applicable variables for all processes. QW-350, QB-350, and QF-360 list additional essential variables that are applicable for specific processes. The QW-350 variables do not apply to welding operators. QW-360 lists the additional essential variables for welding operators.

Generally, a welder or welding operator may be qualified by mechanical bending tests, or volumetric NDE of a test coupon, or the initial production weld. Brazers or brazing operators and fusing operators may not be qualified by volumetric NDE.

WELDING, BRAZING, AND FUSING DATA

The data articles include the variables grouped into categories such as joints, base materials and filler materials, positions, preheat/postweld heat treatment, gas, electrical characteristics, and technique. They are referenced from other articles as they apply to each process.

These articles are frequently misused by selecting variables that do not apply to a particular process. Variables only apply as referenced for the applicable process in Article II or III for welding, Article XII or XIII for brazing, and Article XXII or XXIII for plastic fusing. The user of Section IX should not apply any variable that is not referenced for that process.

These articles also include assignments of welding and brazing P-Numbers to particular base materials and F-Numbers to filler materials. Article IV also includes A-Number tables for reference by the Code user.

Beginning with the 1994 Addenda, welding P-Numbers, brazing P-Numbers, and nonmandatory S-Numbers were consolidated into one table identified as QW/QB-422. Both the QB-422 table (brazing P-Numbers) and Appendix C table (S-Numbers) were deleted. The new Table QW/QB-422 was divided into ferrous and nonferrous sections. Metals were listed in numerical order by material specification number to aid users in locating the appropriate grouping number. An abbreviated listing of metals grouped by P-Numbers, Nonmandatory Appendix D, has been included for users still wishing to locate groupings of metals by welding P-Number.

In the 2009 Addenda, S-Number base metals listed in the QW/QB-422 table were reassigned as P-Numbers and the S-Number listings and references were deleted.

The QW-451 and QB-451 tables for procedure qualification thickness requirements and the QW-452 and QB-452 tables for performance qualification thickness are given and may be used only as referenced by other paragraphs. Generally, the appropriate essential variables reference these tables.

Revisions to the 1980 Edition of Section IX introduced new definitions for position and added a fillet-weld orientation sketch to complement the groove-weld orientation sketch. The new revision to position indicates that a welder qualifies in the 1G, 2G, 3G, etc., position and is then qualified to weld, in production, in the F, V, H, or O positions as appropriate. QW-461.9 is a revised table that summarizes these new qualifications.

The data articles also give sketches of coupon orientations, removal of test specimens, and test jig dimensions. These are referenced by Articles I, XI, and XXI.

QW-470 describes etching processes and reagents.

Within Part QG is a list of general definitions applicable to Section IX–adopted material joining processes. These may differ slightly from other welding documents.

Nonmandatory Forms for documenting procedure and performance qualifications are provided for the aid of those who do not wish to design their own forms. Any form(s) that address all applicable requirements of Section IX may be used.

SUMMARY OF CHANGES

Errata to the BPV Code may be posted on the ASME website to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in the BPV Code. Such Errata shall be used on the date posted.

Information regarding Special Notices and Errata is published by ASME at http://go.asme.org/BPVCerrata.

Changes given below are identified on the pages by a margin note, (19), placed next to the affected area.

The Record Numbers listed below are explained in more detail in "List of Changes in Record Number Order" following this Summary of Changes.

Page	Location	Change (Record Number)
Х	List of Sections	Updated
xii	Foreword	Penultimate paragraph revised
xiv	Statement of Policy on the Use of the ASME Single Certification Mark and Code Authorization in Advertising	Revised
xiv	Statement of Policy on the Use of ASME Marking to Identify Manufactured Items	Revised
XV	Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees	In para. 4, third sentence revised
xviii	Personnel	Updated
1	QG-100	Subparagraph (b) revised (18-2107)
1	QG-101	In first paragraph, last sentence added (16-2981)
1	QG-102	Second paragraph revised (16-2981)
2	QG-104	Revised (15-179, 16-2981)
2	QG-106	First paragraph added (16-3033)
4	QG-107	First paragraph and subpara. (b) revised (17-2527)
4	QG-109.2	 (1) Definitions of butt-fusing pressure and Standard Fusing Procedure Specification (SFPS) revised (15-108, 15-109) (2) Definitions of clad or cladding; header; instantaneous power; instantaneous energy; sidewall fusion (SWF); and welding gun, electron beam added (15-109, 16-2501, 16-2576, 17-2061) (3) Definitions of composite, instantaneous power or energy, and ferrite number deleted (16-2501, 16-2576, 16-2675)
15	QW-101	Title and last paragraph added (17-2167, 17-2168)
15	QW-102	Title added <i>(17-2168)</i>
18	QW-161	Revised (15-2775)

Page	Location	Change (Record Number)
19	QW-171.3	In second paragraph, "notch-toughness" corrected by errata to "toughness" (17-2141)
20	QW-181.1.1	Revised (15-2775)
20	QW-181.2.1	First paragraph revised (15-2775)
23	QW-191.2	 (1) QW-191.2.1 revised (17-674) (2) Former QW-191.2.2 deleted, and remaining paragraphs redesignated (17-674)
23	QW-191.4	Added (17-674)
24	QW-193	Revised in its entirety (16-2262)
25	QW-196.1.2	First paragraph revised (13-1312)
26	QW-196.2.1	Revised (13-1312)
29	QW-200	(1) QW-200.1(e) deleted (16-2981) (2) QW-200.2(b) and QW-200.2(e) revised (16-2981, 17-1260)
31	QW-202.2	Subparagraphs (a) and (b) revised (17-1962)
32	QW-214	Revised in its entirety (15-2775)
33	QW-216	New QW-216.2 added, and former QW-216.2 through QW-216.4 redesignated as QW-216.3 through QW-216.5, respectively (15-2775)
33	QW-217	Title and subpara. (a) revised (16-2576)
38	Table QW-253	Entry for QW-405.2 deleted (17-861)
42	Table QW-255	Entry for QW-405.2 deleted (17-861)
45	Table QW-256	Entry for QW-405.2 deleted (17-861)
48	Table QW-257	Entry for QW-405.2 deleted (17-861)
61	Table QW-264.2	Entries for QW-405.2 and QW-407.4 deleted (17-861, 17-1773)
67	QW-288	Revised in its entirety (16-2262)
67	QW-289	Added (16-2647)
72	QW-300.1	Last paragraph added (16-2786)
73	QW-303.5	Deleted (16-2523)
78	QW-381	Revised in its entirety (15-2775, 16-2576)
78	QW-382.1	Added, and former QW-382(a) through QW-382(e) redesignated as QW-382.1(d) through QW-382.1(h), respectively (15-2775)
79	QW-383.1	The word "composite" replaced with "clad material" (16-2576)
79	QW-387	Added (16-2523)
80	Table QW-388	Added (16-2523)
80	QW-389	Added (16-2647)
82	QW-402.20	Deleted (16-2523)
82	QW-402.30	Added (16-2262, 16-2523)
82	QW-402.31	Added (16-2262, 16-2523)
83	QW-403.5	Penultimate paragraph revised (17-569)

یک دو سه صنعت 123sanat.com

Page	Location	Change (Record Number)
83	QW-403.16	First paragraph revised <i>(16-2523)</i>
83	QW-403.18	Revised (16-2262)
84	QW-403.20	Revised (17-1436)
84	QW-403.31	Added (16-2262, 16-2523)
84	QW-403.32	Added (16-2262)
84	QW-403.33	Added (16-2262)
85	QW-404.5	Last paragraph revised (17-1372, 18-1116)
85	QW-404.10	Revised (16-2394)
85	QW-404.12	Revised (17-1372)
87	QW-404.58	Added (16-2262, 16-2523)
87	QW-404.59	Added (16-2262)
87	QW-405.2	Deleted (17-861)
91	QW-410.14	Revised (17-3119)
93	QW-410.81	Added (16-2262)
93	QW-410.82	Added (16-2262)
93	QW-410.83	Added (16-2262)
93	QW-410.84	Added (16-2262)
93	QW-410.85	Added (16-2262)
95	QW-420	Eighth and ninth paragraphs added (15-1761, 18-68, 18-1933)
97	Table QW/QB-422	 Second column head revised (18-1932) "AWS B2.2M" column added (15-1761) Entries revised (17-1994, 17-1995, 17-1996, 18-902, 18-1932) Rows added (16-186, 16-2020, 16-2870, 16-3136, 17-179, 17-880, 17-899, 17-1994, 17-2085, 17-2274, 17-2492, 17-3317, 18-1823) Rows deleted (18-1823, 18-1932)
170	QW-423.1	Revised (16-1274)
170	QW-424.1	In-text table editorially revised
171	Table QW-432	Under "Nickel and Nickel Alloys," UNS Numbers for SFA-5.14, ERNiCrMo-19, and SFA-5.11, ENiMo-11, corrected by errata (19-196)
183	Table QW-451.3	General Note revised (15-2775)
183	Table QW-451.4	General Note deleted (15-2775)
184	Table QW-452.1(a)	(1) In fourth and fifth columns, Note (3) citations deleted (17-1992) (2) Note (3) revised (17-2962)
185	Table QW-452.5	General Note revised (15-2775)
186	Table QW-453	(1) Entries for "Type and Number of Tests Required" revised (15-2775) (2) Notes deleted (15-2775)
192	Figure QW-461.7	Subcaption (b) editorially revised
194	QW-462	Last paragraph revised (18-557)
		صنعت

Page	Location	Change (Record Number)
195	Figure QW-462.1(a)	General Note added by errata (17-2141)
202	Figure QW-462.4(d)	General Note (b) deleted (15-2775)
211	Table QW-462.10(a)	Deleted (13-1312)
211	Table QW-462.10(a)	Deleted (13-1312)
211		
223	Table QW-462.10(c) Figure QW-466.1	Deleted <i>(13-1312)</i> <i>(1)</i> Table entries corrected in their entirety by errata <i>(18-1309)</i> <i>(2)</i> General Note (d) deleted, and subsequent General Note
		redesignated (15-2775)
232	QW-540	Subparagraph (h) revised (16-2981)
234	QB-151.3	Revised (17-354)
235	QB-153	(1) QB-153.1(d) revised (16-2576) (2) QB-153.2 added (17-2737)
237	QB-200	(1) QB-200.1(e) deleted (16-2981) (2) QB-200.2(e) revised (16-2981)
238	QB-203	Title revised and first paragraph added (17-2260)
239	Table QB-252	Entries for QB-409.2 and QB-409.3 deleted (17-2062)
240	Table QB-253	Entries for QB-409.2 and QB-409.3 deleted (17-2062)
240	Table QB-254	Entries for QB-409.2 and QB-409.3 deleted (17-2062)
241	Table QB-255	Entries for QB-409.2 and QB-409.3 deleted (17-2062)
241	Table QB-256	Entries for QB-409.2 and QB-409.3 deleted (17-2062)
242	Table QB-257	Entries for QB-409.2 and QB-409.3 deleted (17-2062)
243	QB-303	First sentence revised (17-2260)
245	QB-407	Revised in its entirety (17-2260)
246	QB-409	QB-409.2 and QB-409.3 deleted (17-2062)
255	Table QB-461.3	Added (17-2260)
272	QF-100	Revised (15-108)
272	QF-131	(1) First paragraph, QF-131.1 title, and QF-131.1(d) revised (15-108, 15-109) (2) QF-131.3 added (15-108)
273	QF-132	 (1) First paragraph, QF-132.1 title, and QF-132.1(d), QF-132.1(e), and QF-132.1(g) revised (15-108, 15-109) (2) QF-132.3 added (15-108)
273	QF-141	Subparagraph (b) and QF-141.1(a) revised (15-108, 15-109)
274	QF-142.1	Title, QF-142.1.1, and QF-142.1.3 revised (15-108, 15-109)
275	QF-142.3	Title, first paragraph, QF-142.3.1, and QF-142.3.4 revised <i>(15-108, 15-109)</i>
275	QF-143.1	First paragraph, QF-143.1.1, and QF-143.1.3(a) revised (15-109)
275	QF-143.2	Title and first paragraph revised (15-109)
277	QF-145	Revised (15-109)

Page	Location	Change (Record Number)
278	QF-145.2.1	Revised (15-109)
278	QF-145.2.4	Revised (15-109)
279	QF-201	(1) QF-201.1(b), QF-201.2(a), QF-201.3, QF-201.5(d), and QF-201.5(e) revised (15-108, 15-109, 16-2981) (2) QF-201.4 deleted (16-2981)
280	QF-202.1	QF-202.1.2, QF-202.1.3, QF-202.1.4, QF-202.1.6, and QF-202.1.7 revised (15-108, 15-109)
280	QF-202.2	Revised in its entirety (15-108, 15-109)
282	QF-221.1	Subparagraphs (f), (h), (j), and (l) revised (15-108, 15-109)
285	QF-221.2	Added (15-109)
285	Table QF-221.2	Title revised (15-109)
287	Table QF-254	Entry for QF-405.9 added (15-109)
288	Table QF-256	Added (15-108)
288	Table QF-257	Added (15-109)
289	QF-301.4	Last sentence revised (15-109)
289	QF-302.2	Subparagraph (c) added (15-109)
291	Table QF-362	Section (c) added <i>(15-109)</i>
292	QF-402.6	Added (15-109)
292	QF-403.7	Added (15-109)
292	QF-405	(1) QF-405.1, QF-405.2, and QF-405.3 revised (15-109) (2) QF-405.9 added (15-109)
293	QF-406.6	Added (15-108)
293	QF-406.7	Added (15-109)
293	QF-407.4	Added (15-109)
294	Table QF-452.3	Section (c) added <i>(15-108)</i>
297	Figure QF-462(a)	 (1) Former Figure QF-462 redesignated as Figure QF-462(a) (15-109) (2) Subcaptions (b) and (c) editorially revised
298	Figure QF-462(b)	Added (15-109)
299	Figure QF-463	 (1) In illustration (d), revisions inadvertently omitted from the 2017 edition added by errata (17-2981) (2) Illustration (e) added (15-109)
308	Form QF-482(a)	 (1) Under "Position (QF-404)," fill-in lines corrected by errata (17-2981) (2) Title editorially reformatted
309	Form QF-482(b)	 (1) Check boxes for "FPS qualification" corrected by errata (17-2981) (2) In title, "Form" editorially added
310	Form QF-482(c)	Added (15-109)
311	Form QF-483(a)	Title editorially reformatted

Page	Location	Change (Record Number)
313	Form QF-483(b)	In title, "Form" editorially added
316	Form QF-483(c)	Added (15-109)
318	Form QF-484(a)	Title editorially reformatted
319	Form QF-484(b)	In title, "Form" editorially added
320	Form QF-484(c)	Added (15-109)
321	Form QF-485	Title editorially reformatted
326	Form QW-483	On back page, under "Tensile Test (QW-150)," fill-in field added for "Alternative Tension Test Specimen Specification (QW-462)" (16-2979)
331	Form QB-482	Under "Base Metal (QB-402)," fill-in fields added for AWS BM-Numbers <i>(15-1761)</i>
332	Form QB-483	Under "Base Metal (QB-402)," fill-in fields added for AWS BM-Numbers <i>(15-1761)</i>
333	Form QB-484	Under "Brazing Variables (QB-350)," fill-in fields added for AWS BM-Numbers (15-1761)
334	Nonmandatory Appendix D	 (1) In fourth column, "Type," "Gr.," and "Tp." deleted (18-1932) (2) Rows added (16-186, 16-2020, 16-2870, 16-3136, 17-179, 17-880, 17-899, 17-2085, 17-2274, 17-2492, 17-3317, 18-1823) (3) Rows deleted (18-1823)
353	Mandatory Appendix E	In "Designation" column, "(R11)" revised to "(R12)" for eight standards <i>(17-3282)</i>
357	G-100	Revised (17-334)
363	K-300	Subparagraph (f) revised (16-2576)
364	K-304	Added (14-1439)
365	Figure K-305	Added (14-1439)

یک دو سه صنعت 123sanat.com

LIST OF CHANGES IN RECORD NUMBER ORDER

Record Number	Change
13-1312	Revised QW-196.2.1, and deleted Tables QW-462.10(a), QW-462.10(b), and QW-462.10(c).
14-1439	Added K-304.
15-108	Added to the definition of "butt-fusing pressure" in QG-109.2. Added QF-131.3, QF-132.3, QF-142.1.1(d), QF-142.3.1(b), QF-202.2.3, QF-221.1(f), QF-406.6, and Table QF-256. Added line for ≤6 in Table QF-452.3.
15-109	Added definition of "sidewall fusion" to Part QG. Revised Part QF to add "sidewall fusing."
15-179	Revised QG-104 to delete the requirement that ranges for all variables be documented, re- quired the record to include a statement that the test was in accordance with Section IX, and revised QW-301.4, QB-301.4, and QF-301.4 to require listing the procedure followed during the test.
15-1761	Revised Table QW/QB-422 to add AWS material classifications (BM-Numbers).
15-2775	Moved description of production assembly mockup in Table QW-451.3 General Note to QW-181.1.1. Moved description of production assembly mockup in Table QW-452.5 General Note to QW-181.2.1. Deleted references to Notes and added number and types of required tests in Table QW-453. Deleted and moved Notes (1) through (10) to QW-214.1 and QW-216.1. Deleted General Note (b) in Figure QW-462.4(d). Added QW-381 and QW-382.
16-186	Added A/SA-276 Type 314, UNS S31400 to Table QW/QB-422 and Nonmandatory Appendix D.
16-1274	Revised QW-423.1 text and table headings.
16-2020 16-2262	Added A/SA-995 Grade 5A, UNS J93404 to Table QW/QB-422 and Nonmandatory Appendix D. Revised QW-193 and QW-288 to arrange essential variables into a tabular format for both procedure and performance qualifications. Added or revised variables in Article IV to accommodate this revision.
16-2394	Revised QW-404.10 to omit reference to Authorized Inspector.
16-2501	Deleted definition of "instantaneous power or energy," and added definitions for "instanta- neous power" and "instantaneous energy" in QG-109.2.
16-2523	Deleted QW-303.5 and replaced it with new QW-387. Arranged performance qualification essential variables from QW-193, QW-288, and QW-303.5 into a tabular format in new Table QW-387. Added or revised variables in Article IV to accommodate this revision.
16-2576	Revised QG-109.2 to add definition of "clad, cladding," and deleted "composite" from defini- tions. Revised QW-217 title, and deleted "composite" in QW-381.2, QW-383.1(a) and QW-383.1(b), QB-153.1(d), and Nonmandatory Appendix K to change terminology to meet new cladding definition and clad brazing sheet definition.
16-2647	Added provisions to both procedure and performance qualification to allow use of low-energy capacitor discharge welding.
16-2675	Deleted the definition of "ferrite number" from QG-109.2.
16-2786	Added new paragraph to QW-300.1.
16-2870	Assigned P-No. 1, Grade 1 for three grades of A/SA 1011 to Table QW/QB-422 and Nonmanda- tory Appendix D.
16-2979	Revised QW-483.
16-2981	Revised QG-101, QG-102, QG-104, QW-200.2(e), QB-200.2(e), QW-540(h), and QF-201.5(e) to remove references to the "Authorized Inspector" and clarify the need to ensure the availability of procedure qualification records and performance qualification records when required for review and reference. Deleted QW-200.1(e), QB-200.1(e), and QF-201.4.
16-3033	Revised QG-106 to require that the individuals who provide supervision and control over the personnel who join qualification coupons be shown by the organization to be qualified, trained, or experienced to perform the oversight defined.
16-3136	Added C70620 and C71520 base metals listed in the subject file to Table QW/QB-422 and Non- mandatory Appendix D.
17-179	Assigned P-No. 15E, Grade 1 to A1091, Grade 91 castings in Table QW/QB-422 and Nonman- datory Appendix D.
17-334	Revised the first sentence in G-100 to change the term "Nonmandatory Appendix" to "Section." صنعت

Record Number	Change
17-354	Revised QB-151.3 to clarify how to calculate the cross-sectional area.
17-569	Revised QW-403.5(c) to clarify qualification for Group Numbers within the same P-Number.
17-674	Revised QW-191.2.1(b), deleted QW-191.2.1(c) and QW-191.2.2, redesignated QW-191.2.3 as
17 07 1	QW-191.2.2, redesignated QW-191.2.4 as QW-191.2.3, and added QW-191.4, which references
	ASME Section V, Article 1 for qualification and certification requirements applicable to all volu-
	metric examination personnel.
17-861	Deleted QW-405.2 and references to it in QW-250 tables.
17-880	Added A/SA-182, Grade F310H, UNS S31009 to Table QW/QB-422 and Nonmandatory
17 000	Appendix D.
17-899	Added A/SA-841, Grade F, Classes 6 and 7 to Table QW/QB-422 and Nonmandatory
17 077	Appendix D.
17-1260	Revised QW-200.2(b).
17-1372	Changed "designation" to "name" in QW-404.5(d) and QW-404.12.
17-1436	Revised QW-403.20 to align it with QW-403.11 for overlay welding when the chemical compo-
17 1150	sition of the deposit is not specified.
17-1773	Deleted QW-407.4 from Table QW-264.2.
17-1962	Revised QW-202.2 to add requirements addressing qualified base metal and weld metal thick-
17-1702	ness ranges when dissimilar thickness test coupons are used and to clarify that the thickness, t,
	of deposited weld metal in QW-451 must be exclusive of weld reinforcement.
17-1992	Removed reference to Note (3) in two places in Table QW-452.1(a).
17-1994	Added B/SB-443, Grade 1 and B/SB-446, Grade 1 with revised product form; added B/SB-704,
17-1774	Grade 2, and B/SB-705, Grade 2; revised B/SB-366 minimum specified tensile strength; revised
	B/SB-443 and B/SB-446 product form; and revised B/SB-704 and B/SB-705 Grade in Table
	QW/QB-422 for UNS N06625.
17-1995	Revised nominal composition for all UNS N08367 listings in Table QW/QB-422.
17-1996	Revised tensile values of A/SA-182, Grade F91 and A/SA-336, Grade F91.
17-2061	Added definition to QG-109.
17-2062	Deleted QB-409.2 and QB-409.3.
17-2085	Added A/SA-213 UNS S31254 to Table QW/QB-422 and Nonmandatory Appendix D.
17-2141	Errata correction. See Summary of Changes for details.
17-2167	Added a paragraph to the end of QW-101 to address the documentation of variables outside the
1, 10,	scope of a WPS or PQR or already addressed within the information for other variables.
17-2168	Added paragraph headers to QW-101 and QW-102 following the same headers as QG-101 and
	QG-103.
17-2260	Revised QB-203, QB-303, and QB-407, and added Table QB-461.3 for greater clarity of intent
	regarding brazing flow positions.
17-2274	Added A/SA-553, Type III to Table QW/QB-422 and Nonmandatory Appendix D.
17-2492	Added grades from CSA Z245.1, CSA Z245.11, and CSA Z245.12 to Table QW/QB-422 and Non-
	mandatory Appendix D.
17-2527	Revised QG-107.
17-2737	Revised QB-153 to address unassigned base metals.
17-2962	Revised Note (3) of Table QW-452.1(a) to clarify what bend specimen substitutions could be
	made when welding in the 5G, 6G, or combination of 2G and 5G positions.
17-2981	Errata correction. See Summary of Changes for details.
17-3119	Revised QW-410.14.
17-3282	Revised "R11" to "R12" in the following SWPSs: B2.1-1-210-2001, B2.1-1-211-2001, B2.1-8-
	024-2001, B2.1-8-025-2001, B2.1-8-213-97, B2.1-8-215-2001, B2.1-8-214-2001, and B2.1-8-
	216-2001.
17-3317	Added product form to Table QW/QB-422 for UNS K92460.
18-68	Added eighth paragraph in QW-420.
18-557	Revised QW-462 to state any tension specimen geometry is acceptable as long as it meets a
	welding standard and the cross section can be measured so that an ultimate tensile strength
	can be determined. Deleted the list of references to various specifications.
18-902	Revised Table QW/QB-422 contents in Spec. No. column for all SA/EN and SB/EN listings.
18-1116	Added the word "by" in two places to improve clarity.

Record Number	Change
18-1309	Errata correction. See Summary of Changes for details.
18-1823	Revised records 16-186, 16-2870, 17-899, 17-1994, 17-2492, and 17-2879.
18-1932	Revised Table QW/QB-422 Type or Grade column title for ferrous materials. Revised Type or
	Grade entries containing "Type," "Tp.," "Grade," and "Gr." identifiers. Revised ISO 15608 Group
	for A/SA-1011 SS 36. Revised type and product form and deleted Type S32205 for A/SA-276.
	Revised Nonmandatory Appendix D Type, Grade, Alloy column.
18-1933	Revised QW-420.
18-2107	Added the word "qualification" to QG-100(b).
19-196	Errata correction. See Summary of Changes for details.

CROSS-REFERENCING AND STYLISTIC CHANGES IN THE BOILER AND PRESSURE VESSEL CODE

There have been structural and stylistic changes to BPVC, starting with the 2011 Addenda, that should be noted to aid navigating the contents. The following is an overview of the changes:

Subparagraph Breakdowns/Nested Lists Hierarchy

- First-level breakdowns are designated as (a), (b), (c), etc., as in the past.
- Second-level breakdowns are designated as (1), (2), (3), etc., as in the past.
- Third-level breakdowns are now designated as (-a), (-b), (-c), etc.
- Fourth-level breakdowns are now designated as (-1), (-2), (-3), etc.
- Fifth-level breakdowns are now designated as (+a), (+b), (+c), etc.
- Sixth-level breakdowns are now designated as (+1), (+2), etc.

Footnotes

With the exception of those included in the front matter (roman-numbered pages), all footnotes are treated as endnotes. The endnotes are referenced in numeric order and appear at the end of each BPVC section/subsection.

Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees

Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees has been moved to the front matter. This information now appears in all Boiler Code Sections (except for Code Case books).

Cross-References

It is our intention to establish cross-reference link functionality in the current edition and moving forward. To facilitate this, cross-reference style has changed. Cross-references within a subsection or subarticle will not include the designator/identifier of that subsection/subarticle. Examples follow:

- (Sub-)Paragraph Cross-References. The cross-references to subparagraph breakdowns will follow the hierarchy of the designators under which the breakdown appears.
 - If subparagraph (-a) appears in X.1(c)(1) and is referenced in X.1(c)(1), it will be referenced as (-a).
 - If subparagraph (-a) appears in X.1(c)(1) but is referenced in X.1(c)(2), it will be referenced as (1)(-a).
 - If subparagraph (-a) appears in X.1(c)(1) but is referenced in X.1(e)(1), it will be referenced as (c)(1)(-a).
 - If subparagraph (-a) appears in X.1(c)(1) but is referenced in X.2(c)(2), it will be referenced as X.1(c)(1)(-a).
- *Equation Cross-References.* The cross-references to equations will follow the same logic. For example, if eq. (1) appears in X.1(a)(1) but is referenced in X.1(b), it will be referenced as eq. (a)(1)(1). If eq. (1) appears in X.1(a)(1) but is referenced in a different subsection/subarticle/paragraph, it will be referenced as eq. X.1(a)(1)(1).

PART QG GENERAL REQUIREMENTS

(19) **QG-100 SCOPE**

(*a*) This Section contains requirements for the qualification of welders, welding operators, brazers, brazing operators, plastic fusing operators, and the material joining processes they use during welding, brazing, and fusing operations for the construction of components under the rules of the ASME Boiler and Pressure Vessel Code, the ASME B31 Codes for Pressure Piping, and other Codes, standards, and specifications that reference this Section. This Section is divided into four parts.

(1) Part QG contains general requirements for all material-joining processes.

(2) Part QW contains requirements for welding.

(3) Part QB contains requirements for brazing.

(4) Part QF contains requirements for plastic fusing.

(b) Whenever the referencing Code, standard, or specification imposes qualification requirements different than those given in this Section, the requirements of the referencing Code, standard, or specification shall take precedence over the requirements of this Section.

(c) Some of the more common terms relating to material joining processes are defined in QG-109. Whenever the word "pipe" is used, "tube" shall also be applicable.

(*d*) New editions to Section IX may be used beginning with the date of issuance and becomes mandatory 6 months after the date of issuance.

(e) Code Cases are permissible and may be used, beginning with the date of approval by ASME. Only Code Cases that are specifically identified as being applicable to this Section may be used. At the time a Code Case is applied, only the latest revision may be used. Code Cases that have been incorporated into this Section or have been annulled shall not be used for new qualifications, unless permitted by the referencing Code. Qualifications using the provisions of a Code Case remain valid after the Code Case is annulled. The Code Case number shall be listed on the qualification record(s).

(f) Throughout this Section, references are made to various non-ASME documents. Unless a specific date is referenced, the latest edition of the reference document in effect at the time of performance or procedure qualification is to be used.

(19) QG-101 PROCEDURE SPECIFICATION

A procedure specification is a written document providing direction to the person applying the material joining process. Details for the preparation and qualification of procedure specifications for welding (WPS), brazing (BPS), and fusing (FPS) are given in the respective Parts addressing those processes. Procedure specifications used by an *organization* (see QG-109.2) having responsibility for operational control of material joining processes shall have been qualified by that organization, or shall be a standard procedure specification acceptable under the rules of the applicable Part for the joining process to be used. Procedure specifications shall be available for reference and review at the fabrication site.

Procedure specifications address the conditions (including ranges, if any) under which the material joining process must be performed. These conditions are referred to in this Section as "variables." When a procedure specification is prepared by the organization, it shall address, as a minimum, the specific essential and nonessential variables that are applicable to the material joining process to be used in production. When the referencing Code, standard, or specification requires toughness qualification of the material joining procedure, the applicable supplementary essential variables shall also be addressed in the procedure specification.

QG-102 PROCEDURE QUALIFICATION RECORD (19)

The purpose of qualifying the procedure specification is to demonstrate that the joining process proposed for construction is capable of producing joints having the required mechanical properties for the intended application. Qualification of the procedure specification demonstrates the mechanical properties of the joint made using a joining process, and not the skill of the person using the joining process.

The procedure qualification record (PQR) documents what occurred during the production of a procedure qualification test coupon and the results of testing that coupon. As a minimum, the PQR shall document the essential procedure qualification test variables applied during production of the test joint, and the results of the required tests. When toughness testing is required for qualification of the procedure specification, the applicable supplementary essential variables shall be recorded for each process. The organization shall certify the PQR by a signature or other means as described in the organization's Quality Control System. The PQR shall be available for review. A procedure specification may be supported by one or more PQR(s), and one PQR may be used to support one or more procedure specification(s).

QG-103 PERFORMANCE QUALIFICATION

The purpose of qualifying the person who will use a joining process is to demonstrate that person's ability to produce a sound joint when using a procedure specification.

(19) QG-104 PERFORMANCE QUALIFICATION RECORD

The performance qualification record documents what occurred during the production of a test coupon by a person using one or more joining processes following an organization's procedure specification. As a minimum, the record shall document

(*a*) the essential variables for each process used to produce the test coupon

(*b*) the ranges of variables qualified as required by the applicable part (see QW-301.4, QB-301.4, and QF-301.4)

(*c*) the results of the required testing and nondestructive examinations

(*d*) the identification of the procedure specification(s) followed during the test

The organization shall state on the record that the performance qualification test was conducted in accordance with the requirements of this Section, and certify the record by a signature or other means as described in the organization's Quality Control System. Performance qualification records shall be available for review.

QG-105 VARIABLES

QG-105.1 Essential Variables (Procedure). Essential variables are conditions in which a change, as described in the specific variables, is considered to affect the mechanical properties (other than toughness) of the joint. Before using a procedure specification whose essential variables have been revised and fall outside their qualified range, the procedure specification must be requalified. Procedure qualification records may be changed when a procedure qualification test supporting the change has been completed, or when an editorial revision is necessary to correct an error, as permitted by the rules of the Part applicable to the material-joining process.

QG-105.2 Essential Variables (Performance). Essential variables are conditions in which a change, as described in the specific variable list, will affect the ability of the person to produce a sound joint.

QG-105.3 Supplementary Essential Variables. Supplementary essential variables are conditions in which a change will affect the toughness properties of the joint, heat-affected zone, or base material. Supplementary essential variables become additional essential variables in situations where procedure qualifications require toughness testing. When procedure qualification does not require the addition of toughness testing, supplementary essential variables are not applicable. See QW-401.1.

QG-105.4 Nonessential Variables. Nonessential variables are conditions in which a change, as described in the specific variables, is not considered to affect the mechanical properties of the joint. These variables shall be addressed in the procedure specification, as required by QG-101.

A procedure specification may be editorially revised to change a nonessential variable to fall outside of its previously listed range, but does not require requalification of the procedure specification.

QG-105.5 Special Process Variables. Special process variables are conditions that apply only to special processes that are described in the Part that addresses those processes. When these special processes are used, only the applicable special process variables shall apply.

QG-105.6 Applicability. The applicable essential, supplementary essential, nonessential, and special process variables for a specific joining process are given in the Part addressing that joining process.

QG-106 ORGANIZATIONAL RESPONSIBILITY (19)

Personnel performing supervisory activities specified in this Section shall

(*a*) be designated by the organization with responsibility for certifying qualification documents.

(*b*) have a satisfactory level of competence in accordance with the organization's quality program. As a minimum, they shall be qualified by education, experience, or training in the following areas:

(1) knowledge of the requirements of this Section for the qualification of procedures and/or joining personnel

(2) knowledge of the organization's quality program

(3) the scope, complexity, or special nature of the activities to which oversight is to be provided

(c) have a record, maintained by the organization, containing objective evidence of the qualifications, training, or experience.

QG-106.1 Procedure Qualifications. Each organization is responsible for conducting the tests required by this Section to qualify the procedures that are used in the construction of components under the rules of the Codes, standards, and specifications that reference this Section.

(*a*) The personnel who produce test joints for procedure qualification shall be under the full supervision and control of the qualifying organization during the production of these test joints. The persons producing test joints for the qualification of procedures shall be either direct employees or shall be personally engaged by contract for material-joining services.

(b) Production of qualification test joints under the supervision and control of another organization is not permitted. However, it is permitted to subcontract any or all of the work necessary for preparing the materials to be joined, the subsequent work for preparing test specimens from the completed test joint, and the performance of nondestructive examination and mechanical tests, provided the organization accepts full responsibility for any such work.

(c) If the effective operational control of procedure qualifications for two or more companies of different names exists under the same corporate ownership, the companies involved shall describe in their Quality Control System or Quality Assurance Program the operational control of procedure qualifications. In this case, separate procedure qualifications are not required, provided all other requirements of this Section are met.

QG-106.2 Performance Qualifications. Each organization is responsible for the supervision and control of material joining performed by persons for whom they have operational responsibility and control. The organization shall conduct the tests required by this Section to qualify the performance of those persons with each joining process they will use for the construction of components under the rules of the Codes, standards, and specifications that reference this Section. This requirement ensures that the qualifying organization has determined that the personnel using its procedures are capable of achieving the minimum requirements specified for an acceptable joint. This responsibility cannot be delegated to another organization.

(*a*) The personnel who produce test joints for performance qualification shall be tested under the full supervision and control of the qualifying organization.

(b) The performance qualification test shall be performed following either a qualified procedure specification or a standard procedure specification acceptable under the rules of the applicable Part for the joining process. The Part addressing any specific joining process may exempt a portion of the procedure specification from being followed during production of the performance qualification test coupon.

(c) Production of test joints under the supervision and control of another organization is not permitted. It is permitted to subcontract any or all of the work necessary for preparing the materials to be joined in the test joint, and the subsequent work for preparing test specimens from the completed test joint, and the performance of nondestructive examination and mechanical tests, provided the organization accepts full responsibility for any such work.

(*d*) The performance qualification test may be terminated at any stage, whenever it becomes apparent to the supervisor conducting the tests that the person being tested does not have the required skill to produce satisfactory results.

(e) When a procedure qualification test coupon has been tested and found acceptable, the person who prepared the test coupon is also qualified for the joining process used, within the ranges specified for performance qualification for the applicable process(es). (f) Persons who are successfully qualified shall be assigned an identifying number, letter, or symbol by the organization, which shall be used to identify their work.

(g) If effective operational control of performance qualifications for two or more companies of different names exists under the same corporate ownership, the companies involved shall describe in their Quality Control System or Quality Assurance Program, the operational control of performance qualifications. In this case, requalification of persons working within the companies of such an organization are not required, provided all other requirements of this Section are met.

QG-106.3 Simultaneous Performance Qualifica-tions. Organizations may participate in an association to collectively qualify the performance of one or more persons for material-joining processes simultaneously and may share performance qualification information with other participating organizations within the association. When simultaneous performance qualifications are conducted, each participating organization shall be represented by an employee with designated responsibility for performance qualifications.

(*a*) The essential variables of the procedure specifications to be followed during simultaneous performance qualifications shall be compared by the participating organizations, and shall be identical, except as otherwise provided in the Part addressing the specific joining method. The qualified thickness ranges need not be identical but shall include the test coupon thickness.

(b) Alternatively, the participating organizations shall agree to follow a single procedure specification that has been reviewed and accepted by each participating organization. Each participating organization shall have a supporting PQR or shall have accepted responsibility for using a standard procedure specification having a range of variables consistent with those to be followed during the performance qualification test, in accordance with the applicable Part for the jointing method.

(c) Each participating organization's representative shall

(1) positively identify the person whose performance is to be tested

(2) verify the markings on the test coupon correspond to the person's identification

(3) verify that the positional orientation markings on the test coupon reflect the test position of the coupon as required to identify the location of test specimen removal

(4) perform a visual examination of each completed test coupon and each test specimen to determine its acceptability

(-a) When the test coupon(s) is prepared and the test specimens are mechanically tested by an independent laboratory, the laboratory's report may be used as the basis for accepting the test methods and their results.

(-b) When the test coupon(s) is examined by volumetric examination, the examining organization's report may be used as the basis for acceptance of the test methods, qualification and certification of the examiner, and the results of the examination.

(5) prepare and certify a performance qualification record for each person qualified

(d) When the qualified person changes employers between participating organizations, the employing organization shall verify the continuity of the person's qualifications has been maintained by previous employers since his qualification date, as required by the applicable Part for the joining method. Evidence of activities supporting performance qualification continuity may be obtained from any member of the association, even if the member was not a participant in the simultaneous welder qualifications.

(e) If a person has had their performance qualification revoked for specific reasons, the employing organization shall notify all other participating organizations that the person's qualification(s) has been revoked. The remaining participating organizations shall determine whether they will uphold or revoke the performance qualifications for that person in accordance with this Section.

(*f*) When a person's performance qualifications are collectively renewed in accordance with the applicable Part for the joining method, the testing procedures shall follow the rules of this paragraph.

(19) QG-107 OWNERSHIP TRANSFERS

Organizations may maintain effective operational control of PQRs, procedure specifications, and performance qualification records under different ownership than existed during the original procedure qualification. Multiple organizations under a common ownership may use PQRs, procedure specifications, and performance qualification records under that owner's name. The Quality Control System or Quality Assurance Program of each organization shall describe the effective operational control and authority for technical direction of welding.

When an organization or some part thereof is acquired by a new owner(s), the PQRs, procedure specifications, and performance qualification records may remain valid for use by the new owner(s) without requalification; and the new owner(s) PQRs, procedure specifications, and performance qualification records become valid for use by the acquired organization, provided all of the following requirements have been met:

(a) The new owner(s) takes responsibility for the procedure specifications and performance qualification records.

(b) The procedure specifications identify the name of the new owner(s) prior to use.

(c) The Quality Control System or Quality Assurance Program documents the original source of the PQRs, procedure specifications, and performance qualification records as being from the original qualifying organization.

QG-108 QUALIFICATIONS MADE TO PREVIOUS EDITIONS

Joining procedures, procedure qualifications, and performance qualifications that were made in accordance with Editions and Addenda of this Section as far back as the 1962 Edition may be used in any construction for which the current Edition has been specified.

Joining procedures, procedure qualifications, and performance qualifications that were made in accordance with Editions and Addenda of this Section prior to the 1962 Edition may be used in any construction for which the current Edition has been specified provided the requirements of the 1962 Edition or any later edition have been met.

Procedure specifications, PQRs, and performance qualification records meeting the above requirements do not require amendment to include any variables required by later Editions and Addenda, except as specified in QW-420. Qualification of new procedure specifications for joining processes, and performance qualifications for persons applying them, shall be in accordance with the current Edition of Section IX.

QG-109 DEFINITIONS

QG-109.1 GENERAL

Definitions of the more common terms relating to material-joining processes are defined in QG-109.2. There are terms listed that are specific to ASME Section IX and are not presently defined in AWS A3.0. Several definitions have been modified slightly from AWS A3.0 so as to better define the context or intent as used in ASME Section IX.

QG-109.2 DEFINITIONS

(**19**)

arc seam weld: a seam weld made by an arc welding process.

arc spot weld: a spot weld made by an arc welding process.

arc strike: any inadvertent discontinuity resulting from an arc, consisting of any localized remelted metal, heat-affected metal, or change in the surface profile of any metal object. The arc may be caused by arc welding electrodes, magnetic inspection prods, or frayed electrical cable.

arc welding: a group of welding processes wherein coalescence is produced by heating with an arc or arcs, with or without the application of pressure, and with or without the use of filler metal.

as-brazed: adj. pertaining to the condition of brazements after brazing, prior to any subsequent thermal, mechanical, or chemical treatments.

as-welded: adj. pertaining to the condition of weld metal, welded joints, and weldments after welding but prior to any subsequent thermal, mechanical, or chemical treatments.

backgouging: the removal of weld metal and base metal from the weld root side of a welded joint to facilitate complete fusion and complete joint penetration upon subsequent welding from that side.

backhand welding: a welding technique in which the welding torch or gun is directed opposite to the progress of welding.

backing: a material placed at the root of a weld joint for the purpose of supporting molten weld metal so as to facilitate complete joint penetration. The material may or may not fuse into the joint. See also *retainer*.

backing gas: a gas, such as argon, helium, nitrogen, or reactive gas, which is employed to exclude oxygen from the root side (opposite from the welding side) of weld joints.

base metal: the metal or alloy that is welded, brazed, or cut.

bead-up cycle: part of the butt-fusing process to ensure complete contact between the heater surface and the pipe ends. The bead-up cycle begins when initial contact of the pipe ends to the heater is made at butt-fusing pressure until an indication of melt is observed around the pipe circumference.

bond line (brazing and thermal spraying): the cross section of the interface between a braze or thermal spray deposit and the substrate.

braze: a joint produced by heating an assembly to suitable temperatures and by using a filler metal having a liquidus above 840°F (450°C) and below the solidus of the base materials. The filler metal is distributed between the closely fitted surfaces of the joint by capillary action.

brazer: one who performs a manual or semiautomatic brazing operation.

brazing: a group of metal joining processes which produces coalescence of materials by heating them to a suitable temperature, and by using a filler metal having a liquidus above 840°F (450°C) and below the solidus of the base materials. The filler metal is distributed between the closely fitted surfaces of the joint by capillary action.

brazing operator: one who operates machine or automatic brazing equipment.

brazing temperature: the temperature to which the base metal(s) is heated to enable the filler metal to wet the base metal(s) and form a brazed joint.

brazing temperature range: the temperature range within which brazing can be conducted.

brazing, automatic: brazing with equipment which performs the brazing operation without constant observation and adjustment by a brazing operator. The equipment may or may not perform the loading and unloading of the work.

brazing, block (BB): a brazing process that uses heat from heated blocks applied to the joint. This is an obsolete or seldom used process.

brazing, dip (DB): a brazing process in which the heat required is furnished by a molten chemical or metal bath. When a molten chemical bath is used, the bath may act as a flux; when a molten metal bath is used, the bath provides the filler metal.

brazing, furnace (FB): a brazing process in which the workpieces are placed in a furnace and heated to the brazing temperature.

brazing, induction (IB): a brazing process that uses heat from the resistance of the workpieces to induced electric current.

brazing, machine: brazing with equipment which performs the brazing operation under the constant observation and control of a brazing operator. The equipment may or may not perform the loading and unloading of the work.

brazing, manual: a brazing operation performed and controlled completely by hand. See also *automatic brazing* and *machine brazing*.

brazing, resistance (RB): a brazing process that uses heat from the resistance to electric current flow in a circuit of which the workpieces are a part.

brazing, semiautomatic: brazing with equipment which controls only the brazing filler metal feed. The advance of the brazing is manually controlled.

brazing, torch (TB): a brazing process that uses heat from a fuel gas flame.

build-up of base metal (restoration of base metal thickness): this is the application of a weld material to a base metal so as to restore the design thickness and/or structural integrity. This build-up may be with a chemistry different from the base metal chemistry which has been qualified via a standard butt-welded test coupon. Also, may be called base metal repair or buildup.

butt joint: a joint between two members aligned approximately in the same plane.

butt-fusing cycle: pressure-time diagram for a defined fusing temperature, representing the entire fusing operation.

butt-fusing pressure: the sum of the theoretical butt-fusing pressure plus the drag pressure. This is verified by the gauge pressure used by the fusing operator on the butt-

fusing machine to join the pipe ends or by applied torque when torque verification is required by the fusing procedure specification (FPS).

butt fusion (BF): fusing accomplished by heating the ends of polyethylene pipes above their melting point using a contact heater, then removing the heater and applying pressure necessary to achieve coalescence of the molten polyethylene materials during the cooling phase. Some of the more common terms relating to BF are defined in ASTM F412.

buttering: the addition of material, by welding, on one or both faces of a joint, prior to the preparation of the joint for final welding, for the purpose of providing a suitable transition weld deposit for the subsequent completion of the joint.

clad or cladding: weld metal overlay or bonded corrosion-resistant material added to a metal surface.

clad brazing sheet: a metal sheet on which one or both sides are clad with brazing filler metal.

coalescence: the growing together or growth into one body of the materials being joined.

complete fusion: fusion which has occurred over the entire base material surfaces intended for welding, and between all layers and beads.

consumable insert: filler metal that is placed at the joint root before welding, and is intended to be completely fused into the root to become part of the weld.

contact tube: a device which transfers current to a continuous electrode.

control method (FSW): the manner of monitoring and controlling the position of the rotating tool with respect to the weld joint during the friction stir welding process.

control method, force (FSW): a control method that uses a force set point, such as plunge force or travel force, to control the tool position. Under the force control method, the plunge depth or travel speed can vary, within a specified range, during welding.

control method, position (FSW): a control method that uses a set plunge position relative to the plate surface to control the tool position. Under the position control method, the plunge force can vary, within a specified range, during welding.

control method, travel (FSW): a control method that uses a set travel speed to control the tool position. Under the travel control method, the travel force can vary, within a specified range, during welding.

control specimen: a section from the base material tested to determine its tensile strength for the purpose of comparing to the tensile strength of the fused joint.

cool time at butt-fusing pressure: the minimum time that the butt-fusing pressure shall be maintained between the pipe faces while the pipe joint cools. This is a function of the wall thickness.

corner joint: a joint between two members located approximately at right angles to each other in the form of an L.

coupon: see test coupon.

crack: a fracture-type discontinuity characterized by a sharp tip and high ratio of length and width to opening displacement.

creep strength enhanced ferritic alloys (CSEF's): a family of ferritic steels whose creep temperature strength is enhanced by the creation of a precise condition of micro-structure, specifically martensite or bainite, which is stabilized during tempering by controlled precipitation of temper-resistant carbides, carbo-nitrides, or other stable and/or meta-stable phases.

data acquisition record: a detailed, permanent record of variables applicable to the fusing process, such as buttfusion pressure, electrofusion voltage, and cycle cooldown times, along with the measured heater surface temperature, employee information, butt-fusing or electrofusion machine information, pipe information, date, and time for each joint made.

defect: a discontinuity or discontinuities that by nature or accumulated effect (for example, total crack length) render a part or product unable to meet minimum applicable acceptance standards or specifications. This term designates rejectability. See also *discontinuity* and *flaw*.

direct current electrode negative (DCEN): the arrangement of direct current arc welding leads in which the electrode is the negative pole and the workpiece is the positive pole of the welding arc.

direct current electrode positive (DCEP): the arrangement of direct current arc welding leads in which the electrode is the positive pole and the workpiece is the negative pole of the welding arc.

discontinuity: an interruption of the typical structure of a material, such as a lack of homogeneity in its mechanical, metallurgical, or physical characteristics. A discontinuity is not necessarily a defect. See also *defect* and *flaw*.

double-welded joint: a joint that is welded from both sides.

double-welded lap joint: a lap joint in which the overlapped edges of the members to be joined are welded along the edges of both members.

drag pressure: the pressure required to overcome the drag resistance and frictional resistance in the butt-fusing machine and keep the carriage moving at its slowest speed.

drag resistance: force-opposing movement of the movable clamp of the butt-fusing machine due to the weight of the pipe.

dwell: the time during which the energy source pauses at any point in each oscillation.

electrode, arc welding: a component of the welding circuit through which current is conducted.

electrode, bare: a filler metal electrode that has been produced as a wire, strip, or bar with no coating or covering other than that incidental to its manufacture or provided for purposes of preservation, feeding, or electrical contact.

electrode, carbon: a nonfiller material electrode used in arc welding and cutting, consisting of a carbon or graphite rod, which may be coated with copper or other materials.

electrode, composite: a generic term of multicomponent filler metal electrodes in various physical forms, such as stranded wires, tubes, and covered electrodes.

electrode, covered: a composite filler metal electrode consisting of a core of a bare electrode or metal-cored electrode to which a covering sufficient to provide a slag layer on the weld metal has been applied. The covering may contain materials providing such functions as shielding from the atmosphere, deoxidation, and arc stabilization, and can serve as a source of metallic additions to the weld.

electrode, electroslag welding: a filler metal component of the welding circuit through which current is conducted between the electrode guiding member and the molten slag.

NOTE: Bare electrodes and composite electrodes as defined under arc welding electrode are used for electroslag welding. A consumable guide may also be used as part of the electroslag welding electrode system.

electrode, emissive: a filler metal electrode consisting of a core of a bare electrode or a composite electrode to which a very light coating has been applied to produce a stable arc.

electrode, flux-cored: a composite filler metal electrode consisting of a metal tube or other hollow configuration containing ingredients to provide such functions as shielding atmosphere, deoxidation, arc stabilization, and slag formation. Alloying materials may be included in the core. External shielding may or may not be used.

electrode, lightly coated: a filler metal electrode consisting of a metal wire with a light coating applied subsequent to the drawing operation, primarily for stabilizing the arc.

electrode, metal: a filler or nonfiller metal electrode used in arc welding and cutting that consists of a metal wire or rod that has been manufactured by any method and that is either bare or covered. *electrode, metal-cored*: a composite filler metal electrode consisting of a metal tube or other hollow configuration containing alloying ingredients. Minor amounts of ingredients providing such functions as arc stabilization and fluxing of oxides may be included. External shielding gas may or may not be used.

electrode, resistance welding: the part of a resistance welding machine through which the welding current and, in most cases, force are applied directly to the workpiece. The electrode may be in the form of a rotating wheel, rotating roll, bar, cylinder, plate, clamp, chuck, or modification thereof.

electrode, stranded: a composite filler metal electrode consisting of stranded wires which may mechanically enclose materials to improve properties, stabilize the arc, or provide shielding.

electrode, tungsten: a nonfiller metal electrode used in arc welding, arc cutting, and plasma spraying, made principally of tungsten.

electrofusion (EF): fusing accomplished by heating polyethylene materials above their melting points using electric elements within a confined space, producing temperatures and pressures necessary to achieve coalescence of the molten polyethylene materials during the cooling phase. Some of the more common terms relating to EF are defined in ASTM F1290 and ASTM F412.

electrofusion manufacturer: the manufacturer of electrofusion fittings.

face feed: the application of filler metal to the face side of a joint.

filler metal: the metal or alloy to be added in making a welded, brazed, or soldered joint.

filler metal, brazing: the metal or alloy used as a filler metal in brazing, which has a liquidus above 840°F (450°C) and below the solidus of the base metal.

filler metal, powder: filler metal in particle form.

filler metal, supplemental: in electroslag welding or in a welding process in which there is an arc between one or more consumable electrodes and the workpiece, a powder, solid, or composite material that is introduced into the weld other than the consumable electrode(s).

fillet weld: a weld of approximately triangular cross section joining two surfaces approximately at right angles to each other in a lap joint, tee joint, or corner joint.

flaw: an undesirable discontinuity. See also defect.

flux (welding or brazing): a material used to dissolve, prevent, or facilitate the removal of oxides or other undesirable surface substances. It may act to stabilize the arc, shield the molten pool, and may or may not evolve shield-ing gas by decomposition.

flux cover: metal bath dip brazing and dip soldering. A layer of molten flux over the molten filler metal bath.

flux, active (SAW): a flux from which the amount of elements deposited in the weld metal is dependent upon the welding parameters, primarily arc voltage.

flux, alloy (SAW): a flux which provides alloying elements in the weld metal deposit.

flux, neutral (SAW): a flux which will not cause a significant change in the weld metal composition when there is a large change in the arc voltage.

forehand welding: a welding technique in which the welding torch or gun is directed toward the progress of welding.

frequency: the completed number of cycles which the oscillating head makes in 1 min or other specified time increment.

frictional resistance in the butt-fusing machine: force-opposing movement due to friction in the mechanism of the fusing machine.

fuel gas: a gas such as acetylene, natural gas, hydrogen, propane, stabilized methylacetylene propadiene, and other fuels normally used with oxygen in one of the oxyfuel processes and for heating.

fused spray deposit (thermal spraying): a self-fluxing thermal spray deposit which is subsequently heated to coalescence within itself and with the substrate.

fusing: the coalescence of two plastic members by the combination of controlled heating and the application of pressure approximately normal to the interface between them.

fusing gauge pressure: the hydraulic gauge pressure to be observed by the fusing operator when butt-fusing polyethylene (PE) pipe ends. This is the sum of the theoretical fusing pressure plus the drag pressure.

fusing operator: person trained and qualified to carry out fusing of polyethylene (PE) pipes and/or fittings using a butt-fusing procedure or electrofusion procedure with applicable equipment.

fusing procedure specification: a document providing in detail the required variables for the fusing process to ensure repeatability in the fusing procedure. This generic term includes fusing procedure specifications qualified by testing (FPS), as well as standard butt-fusing procedure specifications (SFPS) or manufacturer qualified electrofusion procedure specifications (MEFPS).

fusion (fusion welding): the melting together of filler metal and base metal, or of base metal only, to produce a weld.

fusion face: a surface of the base metal that will be melted during welding.

fusion line: a non-standard term for weld interface.

gas backing: see backing gas.

globular transfer (arc welding): a type of metal transfer in which molten filler metal is transferred across the arc in large droplets.

groove weld: a weld made in a groove formed within a single member or in the groove between two members to be joined. The standard types of groove weld are as follows:

(a) square groove weld

(b) single-Vee groove weld

(c) single-bevel groove weld

(d) single-U groove weld

(e) single-J groove weld

(f) single-flare-bevel groove weld

(g) single-flare-Vee groove weld

(h) double-Vee groove weld

(i) double-bevel groove weld

(j) double-U groove weld

(k) double-J groove weld

(l) double-flare-bevel groove weld

(m) double-flare-Vee groove weld

header: pipe used as a central connection or a manifold for other piping runs.

heat soak cycle: the portion of the butt-fusing procedure where heat is allowed to soak into the pipes or fittings after the bead-up cycle is complete. The heat soak cycle begins by reducing the pressure to that required to maintain contact with the heater surfaces without force. The pipe ends continue heating until the minimum heat soak time is completed for the pipe wall being joined and the minimum bead size is attained per the standard procedure.

heat soak time: the time required to complete the buttfusing heat soak cycle.

heater removal (dwell) time: period of time during buttfusing from the separation of the pipe or fitting ends from the heater surface, removal of the heater, and closure of the carriage to bring the molten pipe or fitting ends together.

heater temperature: measured temperature on the surface of the heater where the pipe or fitting cross section makes contact during butt fusing.

heat-affected zone: that portion of the base metal which has not been melted, but whose mechanical properties or microstructures have been altered by the heat of welding or cutting.

instantaneous energy: as used for waveform controlled welding, the determination of total energy during a time period using the product of current and voltage measurements made at rapid intervals that capture brief changes in the welding waveform. *instantaneous power*: as used for waveform controlled welding, the determination of average power using the product of current and voltage measurements made at rapid intervals that capture brief changes in the welding waveform.

interfacial pressure: the amount of force per pipe joint area required to make an approved butt-fusing joint. This is used to calculate the fusing machine gauge pressure. The interfacial pressure is often expressed as a range [example: 60 psi to 90 psi (400 kPa to 600 kPa)], and the common practice is to use the mid-range [example: 75 psi (505 kPa) when making these calculations.

interpass temperature: the highest temperature in the weld joint immediately prior to welding, or in the case of multiple pass welds, the highest temperature in the section of the previously deposited weld metal, immediately before the next pass is started.

joint: the junction of members or the edges of members which are to be joined or have been joined.

joint penetration: the distance the weld metal extends from the weld face into a joint, exclusive of weld reinforcement.

keyhole welding: a technique in which a concentrated heat source penetrates partially or completely through a workpiece, forming a hole (keyhole) at the leading edge of the weld pool. As the heat source progresses, the molten metal fills in behind the hole to form the weld bead.

lap joint: a joint between two overlapping members in parallel planes.

lap or overlap: the distance measured between the edges of two plates when overlapping to form the joint.

layer: a stratum of weld metal consisting of one or more beads. See Figures QG-109.2.1 and QG-109.2.2.

lower transformation temperature: the temperature at which austenite begins to form during heating.

macro-examination: the process of observing a specimen cross-section by the unaided eye, or at a specified low magnification, with or without the use of smoothing and etching.

Manufacturer Qualified Electrofusion Procedure Specification (MEFPS): an electrofusion fusing procedure specification developed by an electrofusion fitting manufacturer based on standard industry practice in accordance with the Plastics Pipe Institute (PPI) Technical Note TN-34 and ASTM F1290, for the electrofusion fitting manufacturer's specific electrofusion joint design, and qualified by the electrofusion fitting manufacturer in accordance with ASTM F1055 to define the ranges for the essential variables identified in QF-253. An MEFPS may be used for production fusing by organizations without further qualification. *melt bead size*: the width of a bead formed at the interface between the pipe end and the heater surface during the butt-fusing heating cycle.

melt-in: a technique of welding in which the intensity of a concentrated heat source is so adjusted that a weld pass can be produced from filler metal added to the molten weld metal.

metal transfer mode (gas metal-arc welding): the manner in which molten metal travels from the end of a consumable electrode to the workpiece. See also short-circuiting transfer (gas metal-arc welding); pulsed power welding; globular transfer (arc welding); pulsed spray welding; and spray transfer (arc welding).

nugget: the volume of weld metal formed in a spot, seam, or projection weld.

organization: as used in this Section, an organization is a manufacturer, contractor, assembler, installer, or some other single or combined entity having responsibility for operational control of the material-joining methods used in the construction of components in accordance with the codes, standards, and specifications which reference this Section.

oscillation: for a machine or automatic process, an alternating motion relative to the direction of travel of welding, brazing, or thermal spray device. See also *weave bead*.

overlay: a non-standard term, used in Section IX, for surfacing. See also *hard-facing* and *corrosion-resistant overlay*.

overlay, corrosion-resistant weld metal: deposition of one or more layers of weld metal to the surface of a base material in an effort to improve the corrosion resistance properties of the surface. This would be applied at a level above the minimum design thickness as a nonstructural component of the overall wall thickness.

overlay, hard-facing weld metal: deposition of one or more layers of weld metal to the surface of a material in an effort to improve the wear resistance properties of the surface. This would be applied at a level above the minimum design thickness as a nonstructural component of the overall wall thickness.

pass: a single progression of a welding or surfacing operation along a joint, weld deposit, or substrate. The result of a pass is a weld bead or layer.

pass, cover: a final or cap pass(es) on the face of a weld.

pass, wash: pass to correct minor surface aberrations and/or prepare the surface for nondestructive testing.

peel test: a destructive method of testing that mechanically separates a lap joint by peeling.

peening: the mechanical working of metals using impact blows.

performance qualification: the demonstration of a welder's or welding operator's ability to produce welds meeting prescribed standards.

plastics:: those materials listed in Table QF-422.

plug weld: a weld made in a circular, or other geometrically shaped hole (like a slot weld) in one member of a lap or tee joint, joining that member to the other. The walls of the hole may or may not be parallel, and the hole may be partially or completely filled with weld metal. (A fillet-welded hole or spot weld should not be construed as conforming to this definition.)

polarity, reverse: the arrangement of direct current arc welding leads with the work as the negative pole and the electrode as the positive pole of the welding arc; a synonym for direct current electrode positive.

polarity, straight: the arrangement of direct current arc welding leads in which the work is the positive pole and the electrode is the negative pole of the welding arc; a synonym for direct current electrode negative.

polyethylene (PE): a polyolefin composed of polymers of ethylene.

postbraze heat treatment: any heat treatment subsequent to brazing.

postheating: the application of heat to an assembly after welding, brazing, soldering, thermal spraying, or thermal cutting.

postweld heat treatment: any heat treatment subsequent to welding.

postweld hydrogen bakeout: holding a completed or partially completed weld at elevated temperature below 800°F (425°C) for the purpose of allowing hydrogen diffusion from the weld.

powder: see filler metal, powder.

preheat current: an impulse or series of impulses that occurs prior to and is separated from the welding current.

preheat maintenance: practice of maintaining the minimum specified preheat temperature, or some specified higher temperature for some required time interval after welding or thermal spraying is finished or until post weld heat treatment is initiated.

preheat temperature: the minimum temperature in the weld joint preparation immediately prior to the welding; or in the case of multiple pass welds, the minimum temperature in the section of the previously deposited weld metal, immediately prior to welding.

preheating: the application of heat to the base metal immediately before a welding or cutting operation to achieve a specified minimum preheat temperature. *pulsed power welding*: an arc welding process variation in which the welding power source is programmed to cycle between low and high power levels.

rabbet joint: typical design is indicated in Figures QB-462.1(c), QB-462.4, QB-463.1(c), and QB-463.2(a).

retainer: nonconsumable material, metallic or nonmetallic, which is used to contain or shape molten weld metal. See also *backing*.

seal weld: any weld designed primarily to provide a specific degree of tightness against leakage.

seam weld: a continuous weld made between or upon overlapping members in which coalescence may start and occur on the faying surfaces, or may have proceeded from the surface of one member. The continuous weld may consist of a single weld bead or a series of overlapping spot welds. See also *resistance welding*.

short-circuiting transfer (gas metal-arc welding): metal transfer in which molten metal from a consumable electrode is deposited during repeated short circuits. See also *globular transfer* and *spray transfer*.

sidewall fusion (SWF): fusing accomplished by melting the concave surface of the base of a saddle fitting while simultaneously melting a matching pattern on the surface of the main pipe using a contact heater, then removing the heater and bringing the two melted surfaces together under pressure to achieve coalescence of the molten polyethylene materials during the cooling phase. Some of the more common terms relating to sidewall fusion are defined in ASTM F2620.

single-welded joint: a joint welded from one side only.

single-welded lap joint: a lap joint in which the overlapped edges of the members to be joined are welded along the edge of one member only.

slag inclusion: nonmetallic solid material entrapped in weld metal or between weld metal and base metal.

specimen: see test specimen.

spot weld: a weld made between or upon overlapping members in which coalescence may start and occur on the faying surfaces or may proceed from the outer surface of one member. The weld cross section (plan view) is approximately circular.

spray transfer (arc welding): metal transfer in which molten metal from a consumable electrode is propelled axially across the arc in small droplets.

spray-fuse: a thermal spraying technique in which the deposit is reheated to fuse the particles and form a metallurgical bond with the substrate.

Standard Fusing Procedure Specification (SFPS): a fusing procedure specification that contains acceptable polyethylene (PE) fusing variables based on standard industry يک دو سه صنعت practice and testing as defined in ASTM F2620. An SFPS may be used for production fusing by organizations without further qualification. Test results are described in Plastics Pipe Institute (PPI) Technical Reports TR-33 for butt fusing and TR-41 for sidewall fusing.

Standard Welding Procedure Specification (SWPS): a welding procedure specification, published by the American Welding Society, that is made available for production welding by companies or individuals without further qualification, and that may be used in Code applications in accordance with the restrictions and limitations of Article V.

stringer bead: a weld bead formed without appreciable weaving.

surface temper bead reinforcing layer: a subset of temper bead welding in which one or more layers of weld metal are applied on or above the surface layers of a component and are used to modify the properties of previously deposited weld metal or the heat-affected zone. Surface layer may cover a surface or only the perimeter of the weld.

surfacing: the application by welding, brazing, or thermal spraying of a layer(s) of material to a surface to obtain desired properties or dimensions, as opposed to making a joint.

tee joint (T): a joint between two members located approximately at right angles to each other in the form of a T.

temper bead welding: a weld bead placed at a specific location in or at the surface of a weld for the purpose of affecting the metallurgical properties of the heat-affected zone or previously deposited weld metal. The bead may be above, flush with, or below the surrounding base metal surface. If above the base metal surface, the beads may cover all or only part of the weld deposit and may or may not be removed following welding.

test coupon: a weld or braze assembly for procedure or performance qualification testing. The coupon may be any product from plate, pipe, tube, etc., and may be a fillet weld, overlay, deposited weld metal, etc.

test coupon, fusing: a fused plastic test joint that is made to qualify a fusing procedure or fusing operator.

test specimen: a sample of a test coupon for specific test. The specimen may be a bend test, tension test, toughness test, chemical analysis, macrotest, etc. A specimen may be a complete test coupon, for example, in radiographic testing or small diameter pipe tension testing.

theoretical fusing pressure: the pipe area multiplied by the interfacial pressure and divided by the total effective piston area of the butt-fusing machine.

thermal cutting (TC): a group of cutting processes that severs or removes metal by localized melting, burning, or vaporizing of the workpieces.

throat, actual (of fillet): the shortest distance from the root of a fillet weld to its face.

throat, effective (of fillet): the minimum distance from the fillet face, minus any convexity, to the weld root. In the case of fillet welds combined with a groove weld, the weld root of the groove weld shall be used.

throat, theoretical (of fillet): the distance from the beginning of the joint root perpendicular to the hypotenuse of the largest right triangle that can be inscribed within the cross-section of a fillet weld. This dimension is based on the assumption that the root opening is equal to zero.

trailing gas: a gas used to produce a protective atmosphere that extends beyond the weld pool in the direction opposite of travel.

undercut: a groove melted into the base metal adjacent to the weld toe or weld root and left unfilled by weld metal.

upper transformation temperature: the temperature at which transformation of the ferrite to austenite is completed during heating.

usability: a measure of the relative ease of application of a filler metal to make a sound weld or braze joint.

waveform controlled welding: A welding process modification of the voltage and/or current wave shape to control characteristics such as droplet shape, penetration, wetting, bead shape or transfer mode(s).

weave bead: for a manual or semiautomatic process, a weld bead formed using weaving. See also *oscillation*.

weaving: a welding technique in which the energy source is oscillated transversely as it progresses along the weld path.

weld: a localized coalescence of metals or nonmetals produced either by heating the materials to the welding temperature, with or without the application of pressure, or by the application of pressure alone and with or without the use of filler material.

weld bead: a weld deposit resulting from a pass. See also *stringer bead* and *weave bead*.

weld face: the exposed surface of a weld on the side from which welding was done.

weld interface: the interface between the weld metal and base metal in a fusion weld.

weld metal: metal in a fusion weld consisting of that portion of the base metal and filler metal melted during welding. *weld reinforcement*: weld metal on the face or root of a groove weld in excess of the metal necessary for the specified weld size.

weld size: for equal leg fillet welds: the leg lengths of the largest isosceles right triangle which can be inscribed within the fillet weld cross section.

weld size: for unequal leg fillet welds: the leg lengths of the largest right triangle which can be inscribed within the fillet weld cross section.

weld size: groove welds: the depth of chamfering plus any penetration beyond the chamfering, resulting in the strength carrying dimension of the weld.

weld, autogenous: a fusion weld made without filler metal.

welder: one who performs manual or semiautomatic welding.

welding gun, electron beam: a device that generates, accelerates, and forms a directed beam of electrons. This includes the beam alignment, focusing, and deflection coils. The electron gun forms a part of the electron beam gun column that includes shielding, mechanical components to control the vacuum in the electron beam path, and an optical viewing arrangement.

welding operator: one who operates machine or automatic welding equipment.

welding, arc stud (SW): an arc welding process that uses an arc between a metal stud, or similar part, and the other workpiece. The process is used without filler metal, with or without shielding gas or flux, with or without partial shielding from a ceramic or graphite ferrule surrounding the stud, and with the application of pressure after the faying surfaces are sufficiently heated.

welding, automatic: welding with equipment which performs the welding operation without adjustment of the controls by a welding operator. The equipment may or may not perform the loading and unloading of the work. See also *machine welding*.

welding, consumable guide electroslag: an electroslag welding process variation in which filler metal is supplied by an electrode and its guiding member.

welding, diffusion (DFW): a solid-state welding process producing a weld between multiple layers of sheet or plate by the application of mechanical pressure at elevated temperature with no macroscopic deformation or relative motion of the work pieces. A solid filler metal may be inserted between the faying surfaces.

welding, electrogas (EGW): an arc welding process that uses an arc between a continuous filler metal electrode and the weld pool, employing approximately vertical welding progression with retainers to confine the weld metal. The process is used with or without an externally supplied shielding gas and without the application of pressure. Shielding for use with solid or metal-cored electrodes is obtained from a gas or gas mixture. Shielding for use with flux-cored electrodes may or may not be obtained from an externally supplied gas or gas mixture.

welding, electron beam (EBW): a welding process that produces coalescence with a concentrated beam composed primarily of high velocity electrons, impinging on the joint. The process is used without shielding gas and without the application of pressure.

welding, electroslag (ESW): a welding process producing coalescence of metals with molten slag which melts the filler metal and the surfaces of the work to be welded. The molten weld pool is shielded by this slag which moves along the full cross section of the joint as welding progresses. The process is initiated by an arc which heats the slag. The arc is then extinguished and the conductive slag is maintained in a molten condition by its resistance to electric current passing between the electrode and the work. See electroslag welding electrode and consumable guide electroslag welding.

welding, flux-cored arc (FCAW): a gas metal-arc welding process that uses an arc between a continuous filler metal electrode and the weld pool. The process is used with shielding gas from a flux contained within the tubular electrode, with or without additional shielding from an externally supplied gas, and without the application of pressure.

welding, friction (FRW): a solid state welding process that produces a weld under compressive force contact of workpieces rotating or moving relative to one another to produce heat and plastically displace material from the faying surfaces.

welding, friction stir (FSW): a variation of friction welding producing a weld by the friction heating and plastic material displacement caused by a rapidly rotating tool traversing the weld joint.

welding, friction, inertia and continuous drive: processes and types of friction welding (solid state welding process) wherein coalescence is produced after heating is obtained from mechanically induced sliding motion between rubbing surfaces held together under pressure. Inertia welding utilizes all of the kinetic energy stored in a revolving flywheel spindle system. Continuous drive friction welding utilizes the energy provided by a continuous drive source such as an electric or hydraulic motor.

welding, gas metal-arc (GMAW): an arc welding process that uses an arc between a continuous filler metal electrode and the weld pool. The process is used with shielding from an externally supplied gas and without the application of pressure.

ASME BPVC.IX-2019

welding, gas metal-arc, pulsed spray (GMAW-P): a variation of the gas metal-arc welding process in which the power is pulsed resulting in transfer of the metal across the arc in spray mode. See also *pulsed power welding*.

welding, gas metal-arc, short-circuiting arc (GMAW-S): a variation of the gas metal-arc welding process in which the consumable electrode is deposited during repeated short circuits. See also short-circuiting transfer.

welding, gas tungsten-arc (GTAW): an arc welding process which produces coalescence of metals by heating them with an arc between a tungsten (nonconsumable) electrode and the work. Shielding is obtained from a gas or gas mixture. Pressure may or may not be used and filler metal may or may not be used. (This process has sometimes been called TIG welding, a nonpreferred term.)

welding, gas tungsten-arc, pulsed arc (GTAW-P): a variation of the gas tungsten-arc welding process in which the current is pulsed. See also *pulsed power welding*.

welding, hybrid: welding in which two or more welding processes are used in the same weld pool.

welding, hybrid, process separation: the distance between each welding process as specified in the WPS.

welding, hybrid, process sequence: the order of each welding process with respect to the direction of travel.

welding, induction (*IW*): a welding process that produces coalescence of metals by the heat obtained from resistance of the workpieces to the flow of induced high frequency welding current with or without the application of pressure. The effect of the high-frequency welding current is to concentrate the welding heat at the desired location.

welding, laser beam (LBW): a welding process which produces coalescence of materials with the heat obtained from the application of a concentrated coherent light beam impinging upon the members to be joined. Welding can be performed by using the melt-in technique [see also welding, low-power density laser beam (LLBW)] or by keyhole welding.

welding, low-power density laser beam (LLBW): a variation of the laser beam welding process in which the coherent light beam employs reduced power density, such that coalescence of materials is achieved by conduction (i.e., melt-in) without keyhole welding.

welding, machine: welding with equipment that has controls that can be adjusted by the welding operator, or adjusted under the welding operator's direction, in response to changes in the welding conditions. The torch, gun, or electrode holder is held by a mechanical device. See also *welding, automatic*.

welding, manual: welding wherein the entire welding operation is performed and controlled by hand.

welding, oxyfuel gas (OFW): a group of welding processes which produces coalescence by heating materials with an oxyfuel gas flame or flames, with or without the application of pressure, and with or without the use of filler metal.

welding, plasma-arc (PAW): an arc welding process which produces coalescence of metals by heating them with a constricted arc between an electrode and the workpiece (transferred arc), or the electrode and the constricting nozzle (nontransferred arc). Shielding is obtained from the hot, ionized gas issuing from the torch orifice which may be supplemented by an auxiliary source of shielding gas. Shielding gas may be an inert gas or a mixture of gases. Pressure may or may not be used, and filler metal may or may not be supplied.

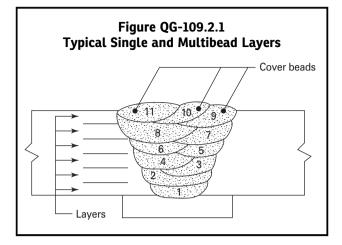
welding, projection (PW): a resistance welding process that produces coalescence by the heat obtained from the resistance of the flow of welding current. The resulting welds are localized at predetermined points by projections, embossments, or intersections. The metals to be joined lap over each other.

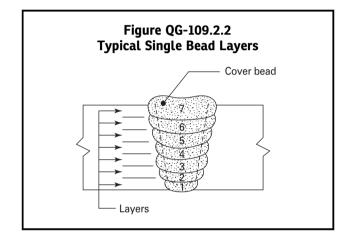
welding, resistance (*RW*): a group of welding processes that produces coalescence of the faying surfaces with the heat obtained from resistance of the workpieces to the flow of the welding current in a circuit of which the workpieces are a part, and by the application of pressure.

welding, resistance seam (RSEW): a resistance welding process that produces a weld at the faying surfaces of overlapped parts progressively along a length of a joint. The weld may be made with overlapping weld nuggets, a continuous weld nugget, or by forging the joint as it is heated to the welding temperature by resistance to the flow of the welding current.

welding, resistance spot (RSW): a resistance welding process that produces a weld at the faying surfaces of a joint by the heat obtained from resistance to the flow of welding current through the workpieces from electrodes that serve to concentrate the welding current and pressure at the weld area.

welding, resistance stud: a resistance welding process wherein coalescence is produced by the heat obtained from resistance to electric current at the interface between the stud and the workpiece, until the surfaces to be joined are properly heated, when they are brought together under pressure.


welding, semiautomatic arc: arc welding with equipment which controls only the filler metal feed. The advance of the welding is manually controlled.


welding, shielded metal-arc (SMAW): an arc welding process with an arc between a covered electrode and the weld pool. The process is used with shielding from the decomposition of the electrode covering, without the application of pressure, and with filler metal from the electrode.

welding, stud: a general term for the joining of a metal stud or similar part to a workpiece. Welding may be accomplished by arc, resistance, friction, or other suitable process with or without external gas shielding.

welding, submerged-arc (SAW): an arc welding process that uses an arc or arcs between a bare metal electrode or electrodes and the weld pool. The arc and molten metal are shielded by a blanket of granular flux on the workpieces. The process is used without pressure and with filler metal from the electrode and sometimes from a supplemental source (welding rod, flux, or metal granules).

weldment: an assembly whose constituent parts are joined by welding, or parts which contain weld metal overlay.

PART QW WELDING

ARTICLE I WELDING GENERAL REQUIREMENTS

QW-100 SCOPE

The rules in this Part apply to the preparation of Welding Procedure Specifications (WPS) and the qualification of welding procedures, welders, and welding operators for all types of manual and machine welding processes permitted in this Part. These rules may also be applied, insofar as they are applicable, to other manual or machine welding processes permitted in other Sections.

(19) QW-101 PROCEDURE SPECIFICATION

A WPS used by an organization that will have responsible operational control of production welding shall be a WPS that has been qualified by that organization in accordance with Article II, or it shall be an AWS Standard Welding Procedure Specification (SWPS) listed in Mandatory Appendix E and adopted by that organization in accordance with Article V.

Both WPSs and SWPSs specify the variables (including ranges, if any) under which welding must be performed. These conditions include the base metals that are permitted, the filler metals that must be used (if any), preheat and postweld heat treatment requirements, etc.

When a WPS is to be prepared by the organization, it must address, as a minimum, the specific variables, both essential and nonessential, as provided in Article II for each process to be used in production welding. In addition, when other Sections of the Code require toughness qualification of the WPS, the supplementary essential variables must be addressed in the WPS.

When a variable is outside the scope of a WPS (e.g., the variable applies to a P-Number not included on the WPS) or is addressed by another variable (e.g., the AWS Classification specifies the filler metal product form), that variable need not be specifically addressed on the WPS or PQRs that support the WPS.

(19) QW-102 PERFORMANCE QUALIFICATION

In performance qualification, the basic criterion established for welder qualification is to determine the welder's ability to deposit sound weld metal. The purpose of the performance qualification test for the welding operator is to determine the welding operator's mechanical ability to operate the welding equipment.

QW-103 RESPONSIBILITY

QW-103.1 Welding. Each organization shall conduct the tests required in this Section to qualify the welding procedures used in the construction of the weldments built under this Code and the performance of welders and welding operators who apply these procedures.

QW-103.2 Records. Each organization shall maintain a record of the results obtained in welding procedure and welder and welding operator performance qualifications. Refer to recommended Forms in Nonmandatory Appendix B.

QW-110 WELD ORIENTATION

The orientations of welds are illustrated in Figure QW-461.1 or Figure QW-461.2.

QW-120 TEST POSITIONS FOR GROOVE WELDS

Groove welds may be made in test coupons oriented in any of the positions in Figure QW-461.3 or Figure QW-461.4 and as described in the following paragraphs, except that an angular deviation of ± 15 deg from the specified horizontal and vertical planes, and an angular deviation of ± 5 deg from the specified inclined plane are permitted during welding.

QW-121 PLATE POSITIONS

QW-121.1 Flat Position 1G. Plate in a horizontal plane with the weld metal deposited from above. Refer to Figure QW-461.3, illustration (a).

QW-121.2 Horizontal Position 2G. Plate in a vertical plane with the axis of the weld horizontal. Refer to Figure QW-461.3, illustration (b).

QW-121.3 Vertical Position 3G. Plate in a vertical plane with the axis of the weld vertical. Refer to Figure QW-461.3, illustration (c).

QW-121.4 Overhead Position 4G. Plate in a horizontal plane with the weld metal deposited from underneath. Refer to Figure QW-461.3, illustration (d).

QW-122 PIPE POSITIONS

QW-122.1 Flat Position 1G. Pipe with its axis horizontal and rolled during welding so that the weld metal is deposited from above. Refer to Figure QW-461.4, illustration (a).

QW-122.2 Horizontal Position 2G. Pipe with its axis vertical and the axis of the weld in a horizontal plane. Pipe shall not be rotated during welding. Refer to Figure QW-461.4, illustration (b).

QW-122.3 Multiple Position 5G. Pipe with its axis horizontal and with the welding groove in a vertical plane. Welding shall be done without rotating the pipe. Refer to Figure QW-461.4, illustration (c).

QW-122.4 Multiple Position 6G. Pipe with its axis inclined at 45 deg to horizontal. Welding shall be done without rotating the pipe. Refer to Figure QW-461.4, illustration (d).

QW-123 TEST POSITIONS FOR STUD WELDS

QW-123.1 Stud Welding. Stud welds may be made in test coupons oriented in any of the positions as described in QW-121 for plate and QW-122 for pipe (excluding QW-122.1). In all cases, the stud shall be perpendicular to the surface of the plate or pipe. See Figures QW-461.7 and QW-461.8.

QW-124 SPECIAL POSITIONS

QW-124.1 Test positions other than those defined in QW-120 through QW-123 are defined as "special positions."

QW-130 TEST POSITIONS FOR FILLET WELDS

Fillet welds may be made in test coupons oriented in any of the positions of Figure QW-461.5 or Figure QW-461.6, and as described in the following paragraphs, except that an angular deviation of ± 15 deg from the specified horizontal and vertical planes is permitted during welding.

QW-131 PLATE POSITIONS

QW-131.1 Flat Position 1F. Plates so placed that the weld is deposited with its axis horizontal and its throat vertical. Refer to Figure QW-461.5, illustration (a).

QW-131.2 Horizontal Position 2F. Plates so placed that the weld is deposited with its axis horizontal on the upper side of the horizontal surface and against the vertical surface. Refer to Figure QW-461.5, illustration (b).

QW-131.3 Vertical Position 3F. Plates so placed that the weld is deposited with its axis vertical. Refer to Figure QW-461.5, illustration (c).

QW-131.4 Overhead Position 4F. Plates so placed that the weld is deposited with its axis horizontal on the underside of the horizontal surface and against the vertical surface. Refer to Figure QW-461.5, illustration (d).

QW-132 PIPE POSITIONS

QW-132.1 Flat Position 1F. Pipe with its axis inclined at 45 deg to horizontal and rotated during welding so that the weld metal is deposited from above and at the point of deposition the axis of the weld is horizontal and the throat vertical. Refer to Figure QW-461.6, illustration (a).

QW-132.2 Horizontal Positions 2F and 2FR.

(*a*) *Position 2F*. Pipe with its axis vertical so that the weld is deposited on the upper side of the horizontal surface and against the vertical surface. The axis of the weld will be horizontal and the pipe is not to be rotated during welding. Refer to Figure QW-461.6, illustration (b).

(b) Position 2FR. Pipe with its axis horizontal and the axis of the deposited weld in the vertical plane. The pipe is rotated during welding. Refer to Figure QW-461.6, illustration (c).

QW-132.3 Overhead Position 4F. Pipe with its axis vertical so that the weld is deposited on the underside of the horizontal surface and against the vertical surface. The axis of the weld will be horizontal and the pipe is not to be rotated during welding. Refer to Figure QW-461.6, illustration (d).

QW-132.4 Multiple Position 5F. Pipe with its axis horizontal and the axis of the deposited weld in the vertical plane. The pipe is not to be rotated during welding. Refer to Figure QW-461.6, illustration (e).

QW-133 SPECIAL POSITIONS

QW-133.1 Test positions other than those defined in QW-130 through QW-132 are defined as "special positions."

QW-140 TYPES AND PURPOSES OF TESTS AND EXAMINATIONS

QW-141 MECHANICAL TESTS

Mechanical tests used in procedure or performance qualification are specified in QW-141.1 through QW-141.5.

QW-141.1 Tension Tests. Tension tests as described in QW-150 are used to determine the ultimate strength of groove-weld joints.

QW-141.2 Guided-Bend Tests. Guided-bend tests as described in QW-160 are used to determine the degree of soundness and ductility of groove-weld joints.

QW-141.3 Fillet-Weld Tests. Tests as described in QW-180 are used to determine the size, contour, and degree of soundness of fillet welds.

QW-141.4 Toughness Tests. Tests as described in QW-171 and QW-172 are used to determine the toughness of the weldment.

QW-141.5 Stud-Weld Test. Deflection bend, hammering, torque, or tension tests as shown in Figures QW-466.4, QW-466.5, and QW-466.6, and a macro-examination performed in accordance with QW-202.5, respectively, are used to determine acceptability of stud welds.

QW-142 SPECIAL EXAMINATIONS FOR WELDERS

Radiographic or Ultrasonic examination per QW-191 may be substituted for mechanical testing of QW-141 for groove-weld performance qualification as permitted in QW-304 to prove the ability of welders to make sound welds.

QW-143 EXAMINATION FOR WELDING OPERATORS

Radiographic or Ultrasonic examination per QW-191 may be substituted for mechanical testing of QW-141 for groove weld performance qualification as permitted in QW-305 to prove the ability of welding operators to make sound welds.

QW-144 VISUAL EXAMINATION

Visual examination as described in QW-194 is used to determine that the final weld surfaces meet specified quality standards.

QW-150 TENSION TESTS

QW-151 SPECIMENS

Tension test specimens shall conform to one of the types illustrated in Figures QW-462.1(a) through QW-462.1(e) and shall meet the requirements of QW-153.

QW-151.1 Reduced Section — **Plate.** Reducedsection specimens conforming to the requirements given in Figure QW-462.1(a) may be used for tension tests on all thicknesses of plate.

(a) For thicknesses up to and including 1 in. (25 mm), a full thickness specimen shall be used for each required tension test.

(b) For plate thickness greater than 1 in. (25 mm), full thickness specimens or multiple specimens may be used, provided (c) and (d) are complied with.

(c) When multiple specimens are used, in lieu of full thickness specimens, each set shall represent a single tension test of the full plate thickness. Collectively, all of the specimens required to represent the full thickness of the weld at one location shall comprise a set.

(*d*) When multiple specimens are necessary, the entire thickness shall be mechanically cut into a minimum number of approximately equal strips of a size that can be tested in the available equipment. Each specimen of the set shall be tested and meet the requirements of QW-153.

QW-151.2 Reduced Section — **Pipe.** Reduced-section specimens conforming to the requirements given in Figure QW-462.1(b) may be used for tension tests on all thicknesses of pipe having an outside diameter greater than 3 in. (75 mm).

(*a*) For thicknesses up to and including 1 in. (25 mm), a full thickness specimen shall be used for each required tension test.

(*b*) For pipe thicknesses greater than 1 in. (25 mm), full thickness specimens or multiple specimens may be used, provided (c) and (d) are complied with.

(c) When multiple specimens are used, in lieu of full thickness specimens, each set shall represent a single tension test of the full pipe thickness. Collectively, all of the specimens required to represent the full thickness of the weld at one location shall comprise a set.

(*d*) When multiple specimens are necessary, the entire thickness shall be mechanically cut into a minimum number of approximately equal strips of a size that can be tested in the available equipment. Each specimen of the set shall be tested and meet the requirements of QW-153.

For pipe having an outside diameter of 3 in. (75 mm) or less, reduced-section specimens conforming to the requirements given in Figure QW-462.1(c) may be used for tension tests.

QW-151.3 Turned Specimens. Turned specimens conforming to the requirements given in Figure QW-462.1(d) may be used for tension tests.

(a) For thicknesses up to and including 1 in. (25 mm), a single turned specimen may be used for each required tension test, which shall be a specimen of the largest diameter D of Figure QW-462.1(d) possible for test coupon thickness [per Note (a) of Figure QW-462.1(d)].

(b) For thicknesses over 1 in. (25 mm), multiple specimens shall be cut through the full thickness of the weld with their centers parallel to the metal surface and not over 1 in. (25 mm) apart. The centers of the specimens adjacent to the metal surfaces shall not exceed $\frac{5}{8}$ in. (16 mm) from the surface.

(c) When multiple specimens are used, each set shall represent a single required tension test. Collectively, all the specimens required to represent the full thickness of the weld at one location shall comprise a set.

(*d*) Each specimen of the set shall be tested and meet the requirements of QW-153.

QW-151.4 Full-Section Specimens for Pipe. Tension specimens conforming to the dimensions given in Figure QW-462.1(e) may be used for testing pipe with an outside diameter of 3 in. (75 mm) or less.

QW-152 TENSION TEST PROCEDURE

The tension test specimen shall be ruptured under tensile load. The tensile strength shall be computed by dividing the ultimate total load by the least cross-sectional area of the specimen as calculated from actual measurements made before the load is applied.

QW-153 ACCEPTANCE CRITERIA — TENSION TESTS

QW-153.1 Tensile Strength. Minimum values for procedure qualification are provided under the column heading "Minimum Specified Tensile, ksi" of Table QW/QB-422. In order to pass the tension test, the specimen shall have a tensile strength that is not less than

(*a*) the minimum specified tensile strength of the base metal; or

(b) the minimum specified tensile strength of the weaker of the two, if base metals of different minimum tensile strengths are used; or

(c) the minimum specified tensile strength of the weld metal when the applicable Section provides for the use of weld metal having lower room temperature strength than the base metal;

(*d*) if the specimen breaks in the base metal outside of the weld or weld interface, the test shall be accepted as meeting the requirements, provided the strength is not more than 5% below the minimum specified tensile strength of the base metal.

(e) the specified minimum tensile strength is for full thickness specimens including cladding for Aluminum Alclad materials (P-No. 21 through P-No. 23) less than $\frac{1}{2}$ in. (13 mm). For Aluminum Alclad materials $\frac{1}{2}$ in. (13 mm) and greater, the specified minimum tensile strength is for both full thickness specimens that include cladding and specimens taken from the core.

QW-160 GUIDED-BEND TESTS

(19) QW-161 SPECIMENS

Guided-bend test specimens shall be prepared by cutting the test plate or pipe to form specimens of approximately rectangular cross section. The cut surfaces shall be designated the sides of the specimen. The other two surfaces shall be called the face and root surfaces, the face surface having the greater width of weld. The specimen thickness and bend radius are shown in Figures QW-466.1, QW-466.2, and QW-466.3. For materials with less than 3% elongation, a macro-etch specimen shall be used in lieu of bend test at each bend test location. Acceptance criteria shall be in accordance with QW-183(a). Figure QW-466.3 shows the recommended method of testing aluminum weldments. Guided-bend specimens are of five types, depending on whether the axis of the weld is transverse or parallel to the longitudinal axis of the specimen, and which surface (side, face, or root) is on the convex (outer) side of bent specimen. The five types are defined as follows.

QW-161.1 Transverse Side Bend. The weld is transverse to the longitudinal axis of the specimen, which is bent so that one of the side surfaces becomes the convex surface of the bent specimen. Transverse side-bend test specimens shall conform to the dimensions shown in Figure QW-462.2.

Specimens of base metal thickness equal to or greater than $1^{1}/_{2}$ in. (38 mm) may be cut into approximately equal strips between $3^{1}/_{4}$ in. (19 mm) and $1^{1}/_{2}$ in. (38 mm) wide for testing, or the specimens may be bent at full width (see requirements on jig width in Figure QW-466.1). When the width of the weld is so large that a bend specimen cannot be bent so that the entire weld and heat affected zones are within the bent portion, multiple specimens across the entire weld and heat affected zones shall be used.

If multiple specimens are used in either situation above, one complete set shall be made for each required test. Each specimen shall be tested and meet the requirements in QW-163.

QW-161.2 Transverse Face Bend. The weld is transverse to the longitudinal axis of the specimen, which is bent so that the face surface becomes the convex surface of the bent specimen. Transverse face-bend test specimens shall conform to the dimensions shown in Figure QW-462.3(a). For subsize transverse face bends, see QW-161.4.

QW-161.3 Transverse Root Bend. The weld is transverse to the longitudinal axis of the specimen, which is bent so that the root surface becomes the convex surface of the bent specimen. Transverse root-bend test specimens shall conform to the dimensions shown in Figure QW-462.3(a). For subsize transverse root bends, see QW-161.4.

QW-161.4 Subsize Transverse Face and Root Bends. Bend specimens taken from small diameter pipe coupons may be subsized in accordance with General Note (b) of Figure QW-462.3(a).

QW-161.5 Longitudinal-Bend Tests. Longitudinalbend tests may be used in lieu of the transverse sidebend, face-bend, and root-bend tests for testing weld metal or base metal combinations, which differ markedly in bending properties between

- (a) the two base metals, or
- (b) the weld metal and the base metal

QW-161.6 Longitudinal Face Bend. The weld is parallel to the longitudinal axis of the specimen, which is bent so that the face surface becomes the convex surface of the bent specimen. Longitudinal face-bend test specimens shall conform to the dimensions shown in Figure QW-462.3(b).

QW-161.7 Longitudinal Root Bend. The weld is parallel to the longitudinal axis of the specimen, which is bent so that the root surface becomes the convex side of the bent specimen. Longitudinal root-bend test specimens shall conform to the dimensions shown in Figure QW-462.3(b).

QW-162 GUIDED-BEND TEST PROCEDURE

QW-162.1 Jigs. Guided-bend specimens shall be bent in test jigs that are in substantial accordance with QW-466. When using the jigs illustrated in Figure QW-466.1 or Figure QW-466.2, the side of the specimen turned toward the gap of the jig shall be the face for facebend specimens, the root for root-bend specimens, and the side with the greater discontinuities, if any, for sidebend specimens. The specimen shall be forced into the die by applying load on the plunger until the curvature of the specimen is such that a $\frac{1}{8}$ in. (3 mm) diameter wire cannot be inserted between the specimen and the die of Figure QW-466.1, or the specimen is bottom ejected if the roller type of jig (Figure QW-466.2) is used.

When using the wrap around jig (Figure QW-466.3), the side of the specimen turned toward the roller shall be the face for face-bend specimens, the root for rootbend specimens, and the side with the greater discontinuities, if any, for side-bend specimens.

When specimens wider than $1\frac{1}{2}$ in. (38 mm) are to be bent as permitted in Figure QW-462.2, the test jig mandrel must be at least $\frac{1}{4}$ in. (6 mm) wider than the specimen width.

QW-163 ACCEPTANCE CRITERIA — BEND TESTS

The weld and heat-affected zone of a transverse weldbend specimen shall be completely within the bent portion of the specimen after testing.

The guided-bend specimens shall have no open discontinuity in the weld or heat-affected zone exceeding $\frac{1}{8}$ in. (3 mm), measured in any direction on the convex surface of the specimen after bending. Open discontinuities occurring on the corners of the specimen during testing shall not be considered unless there is definite evidence that they result from lack of fusion, slag inclusions, or other internal discontinuities. For corrosion-resistant weld overlay cladding, no open discontinuity exceeding $\frac{1}{16}$ in. (1.5 mm), measured in any direction, shall be permitted in the cladding, and no open discontinuity exceeding $\frac{1}{8}$ in. (3 mm) shall be permitted along the approximate weld interface.

QW-170 TOUGHNESS TESTS

QW-171 TOUGHNESS TESTS

QW-171.1 General. Toughness tests shall be made when required by referencing codes. Test procedures and apparatus shall conform to the requirements of the referencing code. When not specified by the referencing code, the test procedures and apparatus shall conform to the requirements of SA-370.

QW-171.2 Acceptance. The acceptance criteria shall be in accordance with that Section specifying toughness testing requirements.

QW-171.3 Location and Orientation of Test Speci- (19) men. The toughness test specimen removal and preparation requirements shall be as given in the Section requiring such tests.

When qualifying pipe in the 5G or 6G position, the toughness specimens shall be removed from the shaded portion of Figure QW-463.1(f).

QW-172 TOUGHNESS TESTS — DROP WEIGHT

QW-172.1 General. Drop-weight tests shall be made when required by referencing codes. Test procedures and apparatus shall conform to the requirements of the referencing code. When not specified by the referencing code, the test procedures and apparatus shall conform to the requirements of ASTM specification E208.

QW-172.2 Acceptance. The acceptance criteria shall be in accordance with that Section requiring drop weight tests.

QW-172.3 Location and Orientation of Test Specimen. The drop weight test specimen, the crack starter location, and the orientation shall be as given in the Section requiring such tests.

When qualifying pipe in the 5G or 6G position, the toughness specimens shall be removed from the shaded portion of Figure QW-463.1(f).

QW-180 FILLET-WELD TESTS

QW-181 PROCEDURE AND PERFORMANCE QUALIFICATION SPECIMENS

QW-181.1 Procedure. The dimensions and preparation of the fillet-weld test coupon for procedure qualification as required in QW-202 shall conform to the requirements in Figure QW-462.4(a) or Figure QW-462.4(d). The test coupon for plate-to-plate shall be cut transversely to provide five test specimen sections, each approximately 2 in. (50 mm) long. For pipe-to-plate or pipe-to-pipe, the test coupon shall be cut transversely to provide four approximately equal test specimen sections. The test specimens shall be macro-examined to the requirements of QW-183.

(**19**) **OW-181.1.1** Production Assembly Mockups. Production assembly mockups may be used in lieu of OW-181.1. When a production assembly mockup is used, the range qualified shall be limited to the base metal thickness, fillet weld size, and configuration of the mockup. Alternatively, multiple production assembly mockups may be qualified. The range of thicknesses of the base metal qualified shall be not less than the thickness of the thinner member tested and not greater than the thickness of the thicker member tested. The range for fillet weld sizes qualified shall be limited to no less than the smallest fillet weld tested and no greater than the largest fillet weld tested. The configuration of production assemblies shall be the same as that used in the production assembly mockup. The mockups for plate-to-shape shall be cut transversely to provide five approximately equal test specimens not to exceed approximately 2 in. (50 mm) in length. For pipe-to-shape mockups, the mockup shall be cut transversely to provide four approximately equal test specimens. For small mockups, multiple mockups may be required to obtain the required number of test specimens. The test specimens shall be macro-examined to the requirements of QW-183.

QW-181.2 Performance. The dimensions and the preparation of the fillet-weld test coupon for performance qualification shall conform to the requirements in Figure QW-462.4(b) or Figure QW-462.4(c). The test coupon for plate-to-plate shall be cut transversely to provide a center section approximately 4 in. (100 mm) long and two end sections, each approximately 1 in. (25 mm) long. For pipe-to-plate or pipe-to-pipe, the test coupon shall be cut to provide two quarter sections test specimens opposite to each other. One of the test specimens shall be fracture tested in accordance with QW-182 and the other macro-examined to the requirements of QW-184. When qualifying pipe-to-plate or pipe-to-pipe in the 5F position, the test specimens shall be removed as indicated in Figure QW-463.2(h).

(19) **QW-181.2.1 Production Assembly Mockups.** Production assembly mockups may be used in lieu of the fillet-weld test coupon requirements of QW-181.2. When production assembly mockups are used, the range qualified shall be limited to the fillet sizes, base metal thicknesses, and configuration of the mockup.

(a) Plate-to-Shape

(1) The mockup for plate-to-shape shall be cut transversely to provide three approximately equal test specimens not to exceed approximately 2 in. (50 mm) in length. The test specimen that contains the start and stop of the weld shall be fracture tested in accordance with QW-182. A cut end of one of the remaining test specimens shall be macro-examined in accordance with QW-184.

(b) Pipe-to-Shape

(1) The mockup for pipe-to-shape shall be cut transversely to provide two quarter sections approximately opposite to each other. The test specimen that contains

the start and stop of the weld shall be fracture tested in accordance with QW-182. A cut end of the other quarter section shall be macro-examined in accordance with QW-184. When qualifying pipe-to-shape in the 5F position, the fracture specimen shall be removed from the lower 90-deg section of the mockup.

QW-182 FRACTURE TESTS

The stem of the 4 in. (100 mm) performance specimen center section in Figure QW-462.4(b) or the stem of the quarter section in Figure QW-462.4(c), as applicable, shall be loaded laterally in such a way that the root of the weld is in tension. The load shall be steadily increased until the specimen fractures or bends flat upon itself.

If the specimen fractures, the fractured surface shall show no evidence of cracks or incomplete root fusion, and the sum of the lengths of inclusions and porosity visible on the fractured surface shall not exceed $\frac{3}{8}$ in. (10 mm) in Figure QW-462.4(b) or 10% of the quarter section in Figure QW-462.4(c).

QW-183 MACRO-EXAMINATION — PROCEDURE SPECIMENS

One face of each cross section of the five test specimens in Figure QW-462.4(a) or four test specimens in Figure QW-462.4(d), as applicable shall be smoothed and etched with a suitable etchant (see QW-470) to give a clear definition to the weld metal and heat-affected zone. The examination of the cross sections shall include only one side of the test specimen at the area where the plate or pipe is divided into sections i.e., adjacent faces at the cut shall not be used. In order to pass the test

(*a*) visual examination of the cross sections of the weld metal and heat-affected zone shall show complete fusion and freedom from cracks

(b) there shall be not more than $\frac{1}{8}$ in. (3 mm) difference in the length of the legs of the fillet

QW-184 MACRO-EXAMINATION — PERFORMANCE SPECIMENS

The cut end of one of the end plate sections, approximately 1 in. (25 mm) long, in Figure QW-462.4(b) or the cut end of one of the pipe quarter sections in Figure QW-462.4(c), as applicable, shall be smoothed and etched with a suitable etchant (see QW-470) to give a clear definition of the weld metal and heat-affected zone. In order to pass the test

(a) visual examination of the cross section of the weld metal and heat-affected zone shall show complete fusion and freedom from cracks, except that linear indications at the root not exceeding 1/32 in. (0.8 mm) shall be acceptable

(b) the weld shall not have a concavity or convexity greater than $\frac{1}{16}$ in. (1.5 mm)

(c) there shall be not more than $\frac{1}{8}$ in. (3 mm) difference in the lengths of the legs of the fillet

QW-185 DIFFUSION WELDING — PROCEDURE AND PERFORMANCE QUALIFICATION SPECIMENS

QW-185.1 The test block shall be a minimum of 8 in. × 8 in. (200 mm × 200 mm) and of a thickness such that there are at least 50 interface planes being welded.

QW-185.2 A minimum of three tension test specimens in accordance with the requirements of SA-370 shall be taken perpendicular to the interface planes and three parallel to the interface planes. The tension test results shall comply with QW-153.

QW-185.3 Microstructural evaluation shall be conducted in accordance with the requirements of ASTM E3 on a minimum of three cross-sections, one each from the top, center, and bottom one-third of the test coupon. The samples shall be polished, etched, and shall be free from cracks and shall show no incomplete bond or porosity on or adjacent to the bond lines. Size of each sample shall be that which can be mounted and polished to allow examination with an optical microscope at 50× to 100× magnification.

QW-190 OTHER TESTS AND EXAMINATIONS

QW-191 VOLUMETRIC NDE

QW-191.1 Radiographic Examination QW-191.1.1 Method

The radiographic examination in QW-142 for welders and in QW-143 for welding operators shall meet the requirements of Section V, Article 2, except as follows:

(*a*) A written radiographic examination procedure is not required. Demonstration of image quality requirements on production or technique radiographs shall be considered satisfactory evidence of compliance with Section V, Article 2.

(*b*) Final acceptance of radiographs shall be based on the ability to see the prescribed image and the specified hole of a hole-type image quality indicator (IQI) or the designated wire of a wire-type IQI. The acceptance standards of QW-191.1.2 shall be met.

QW-191.1.2 Acceptance Criteria. QW-191.1.2.1 Terminology.

(a) Linear Indications. Cracks, incomplete fusion, inadequate penetration, and slag are represented on the radiograph as linear indications in which the length is more than three times the width. (b) Rounded Indications. Porosity and inclusions such as slag or tungsten are represented on the radiograph as rounded indications with a length three times the width or less. These indications may be circular, elliptical, or irregular in shape; may have tails; and may vary in density.

QW-191.1.2.2 Qualification Test Welds. Welder and welding operator performance tests by radiography of welds in test assemblies shall be judged unacceptable when the radiograph exhibits any imperfections in excess of the limits specified below

(a) Linear Indications

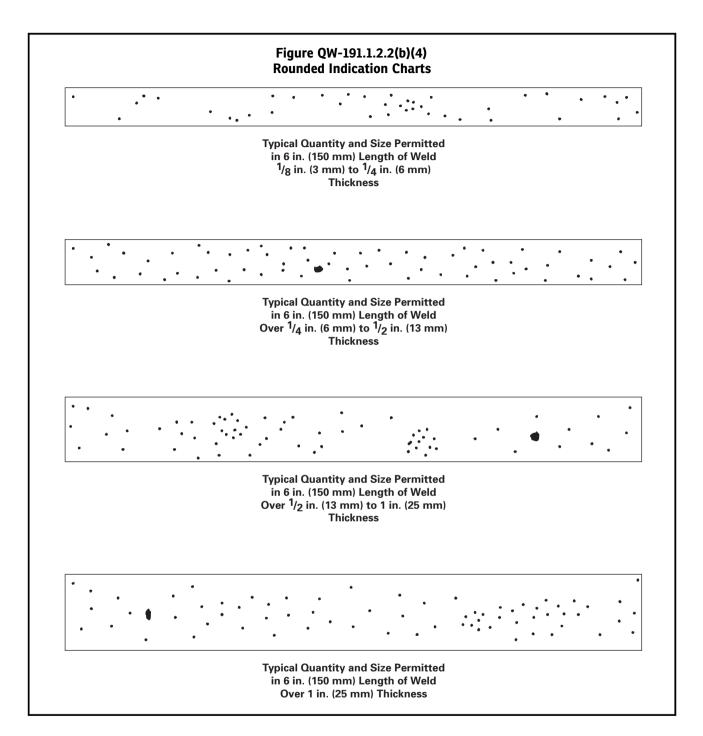
(1) any type of crack or zone of incomplete fusion or penetration

(2) any elongated slag inclusion which has a length greater than

(-a) $\frac{1}{8}$ in. (3 mm) for t up to $\frac{3}{8}$ in. (10 mm), inclusive

(-b) $\frac{1}{3}t$ for t over $\frac{3}{8}$ in. (10 mm) to $2\frac{1}{4}$ in. (57 mm), inclusive

(-c) $\frac{3}{4}$ in. (19 mm) for t over $2\frac{1}{4}$ in. (57 mm)


(3) any group of slag inclusions in line that have an aggregate length greater than t in a length of 12t, except when the distance between the successive imperfections exceeds 6L where L is the length of the longest imperfection in the group

(b) Rounded Indications

(1) The maximum permissible dimension for rounded indications shall be 20% of t or $\frac{1}{8}$ in. (3 mm), whichever is smaller.

(2) For welds in material less than $\frac{1}{8}$ in. (3 mm) in thickness, the maximum number of acceptable rounded indications shall not exceed 12 in a 6 in. (150 mm) length of weld. A proportionately fewer number of rounded indications shall be permitted in welds less than 6 in. (150 mm) in length.

(3) For welds in material $\frac{1}{8}$ in. (3 mm) or greater in thickness, the charts in Figure QW-191.1.2.2(b)(4) represent the maximum acceptable types of rounded indications illustrated in typically clustered, assorted, and randomly dispersed configurations. Rounded indications less than $\frac{1}{32}$ in. (0.8 mm) in maximum diameter shall not be considered in the radiographic acceptance tests of welders and welding operators in these ranges of material thicknesses.

QW-191.1.2.3 Production Welds. The acceptance criteria for welders or welding operators who qualify on production welds by radiography as permitted in QW-304.1 or QW-305.1 shall be per QW-191.1.2.2

(19) QW-191.2 Ultrasonic Examination QW-191.2.1 Method

(*a*) The ultrasonic examination in QW-142 for welders and in QW-143 for welding operators may be conducted on test welds in material $\frac{1}{4}$ in. (6 mm) thick or greater.

(*b*) Ultrasonic examinations shall be performed using a written procedure in compliance with Section V, Article 1, T-150 and the requirements of Section V, Article 4 for methods and procedures.

QW-191.2.2 Acceptance Criteria for Qualification **Test Welds.** Indications shall be sized using the applicable technique(s) provided in the written procedure for the examination method. Indications shall be evaluated for acceptance as follows:

(a) All indications characterized as cracks, lack of fusion, or incomplete penetration are unacceptable regardless of length.

(b) Indications exceeding $\frac{1}{8}$ in. (3 mm) in length are considered relevant, and are unacceptable when their lengths exceed

(1) $\frac{1}{8}$ in. (3 mm) for t up to $\frac{3}{8}$ in. (10 mm).

(2) $\frac{1}{3}t$ for t from $\frac{3}{8}$ in. to $2\frac{1}{4}$ in. (10 mm to 57 mm).

(3) $\frac{3}{4}$ in. (19 mm) for t over $2\frac{1}{4}$ in. (57 mm), where t is the thickness of the weld excluding any allowable reinforcement. For a butt weld joining two members having different thicknesses at the weld, t is the thinner of these two thicknesses. If a full penetration weld includes a fillet weld, the thickness of the throat of the fillet shall be included in t.

QW-191.2.3 Acceptance Criteria for Production Welds. The acceptance criteria for welders or welding operators who qualify on production welds by ultrasonic examination as permitted in QW-304.1 or QW-305.1 shall be per QW-191.2.2.

QW-191.3 Record of Tests. The results of welder and welding operator performance tests evaluated by volumetric NDE shall be recorded in accordance with QW-301.4.

QW-191.4 Personnel Qualifications and Certifica- (19) tions.

(*a*) All personnel performing volumetric examinations for welder and welding operator qualifications shall be qualified and certified in accordance with their employer's written practice.

(b) The employer's written practice for qualification and certification of examination personnel shall meet all applicable requirements of Section V, Article 1.

(c) If the weld being examined is a production weld, the examiner may be qualified and certified in accordance with the requirements of the referencing code as an alternative to the requirements of this paragraph.

QW-192 STUD-WELD TESTS

QW-192.1 Procedure Qualification Specimens.

QW-192.1.1 Required Tests. Ten stud-weld tests are required to qualify each procedure. The equipment used for stud welding shall be completely automatic except for manual starting.

Every other welding stud (five joints) shall be tested either by hammering over until one-fourth of its length is flat on the test piece, or by bending the stud to an angle of at least 15 deg and returning it to its original position using a test jig and an adapter location dimension that are in accordance with Figure QW-466.4.

The remaining five welded stud joints shall be tested in torque using a torque testing arrangement that is substantially in accordance with Figure QW-466.5. Alternatively, where torquing is not feasible, tensile testing may be used, and the fixture for tensile testing shall be similar to that shown in Figure QW-466.6, except that studs without heads may be gripped on the unwelded end in the jaws of the tensile testing machine.

QW-192.1.2 Acceptance Criteria — Bend and Hammer Tests. In order to pass the test(s), each of the five stud welds and heat-affected zones shall be free of visible separation or fracture after bending and return bending or after hammering.

QW-192.1.3 Acceptance Criteria — Torque Tests. In order to pass the test(s), each of the five stud welds shall be subjected to the required torque shown in the following table before failure occurs.

Required Torque	for Testing Threaded C	arbon Steel Studs
Nominal Diameter	Threads/in. and	Testing Torque,
of Studs, in. (mm)	Series Designated	ft-lb (J)
$\frac{1}{4}$ (6.4)	28 UNF	5.0 (6.8)
$\frac{1}{4}$ (6.4)	20 UNC	4.2 (5.7)
⁵ / ₁₆ (7.9)	24 UNF	9.5 (12.9)
⁵ / ₁₆ (7.9)	18 UNC	8.6 (11.7)
³ / ₈ (9.5)	24 UNF	17 (23.0)
³ / ₈ (9.5)	16 UNC	15 (20.3)
⁷ / ₁₆ (11.1)	20 UNF	27 (36.6)
⁷ / ₁₆ (11.1)	14 UNC	24 (32.5)
$\frac{1}{2}$ (12.7)	20 UNF	42 (57.0)
$\frac{1}{2}$ (12.7)	13 UNC	37 (50.2)
⁹ / ₁₆ (14.3)	18 UNF	60 (81.4)
⁹ / ₁₆ (14.3)	12 UNC	54 (73.2)
5∕/8 (15.9)	18 UNF	84 (114.0)
5∕/8 (15.9)	11 UNC	74 (100.0)
$^{3}\!/_{4}$ (19.0)	16 UNF	147 (200.0)
$^{3}\!/_{4}$ (19.0)	10 UNC	132 (180.0)
⁷ / ₈ (22.2)	14 UNF	234 (320.0)
⁷ / ₈ (22.2)	9 UNC	212 (285.0)
1 (25.4)	12 UNF	348 (470.0)
1 (25.4)	8 UNC	318 (430.0)

-	d Torque for Testing Th tenitic Stainless Steel St	
Nominal Diameter	Threads/in. and	Testing Torque,
of Studs, in. (mm)	Series Designated	ft-lb (J)
$\frac{1}{4}$ (6.4)	28 UNF	4.5 (6.1)
$\frac{1}{4}$ (6.4)	20 UNC	4.0 (5.4)
⁵ / ₁₆ (7.9)	24 UNF	9.0 (12.2)
⁵ / ₁₆ (7.9)	18 UNC	8.0 (10.8)
³ / ₈ (9.5)	24 UNF	16.5 (22.4)
³ / ₈ (9.5)	16 UNC	14.5 (19.7)
⁷ / ₁₆ (11.1)	20 UNF	26.0 (35.3)
⁷ / ₁₆ (11.1)	14 UNC	23.0 (31.2)
$\frac{1}{2}$ (12.7)	20 UNF	40.0 (54.2)
$\frac{1}{2}$ (12.7)	13 UNC	35.5 (48.1)
⁵ / ₈ (15.9)	18 UNF	80.00 (108.5)
⁵ / ₈ (15.9)	11 UNC	71.00 (96.3)
$^{3}/_{4}$ (19.0)	16 UNF	140.00 (189.8)
$^{3}/_{4}$ (19.0)	10 UNC	125.00 (169.5)
⁷ / ₈ (22.2)	14 UNF	223.00 (302.3)
⁷ / ₈ (22.2)	9 UNC	202.00 (273.9)
1 (25.4)	14 UNF	339.00 (459.6)
1 (25.4)	8 UNC	303.00 (410.8)

Alternatively, where torquing to destruction is not feasible, tensile testing may be used. For carbon and austenitic stainless steel studs, the failure strength shall be not less than 35,000 psi (240 MPa) and 30,000 psi (210 MPa), respectively. For other metals, the failure strength shall not be less than half of the minimum specified tensile strength of the stud material. The failure strength shall be based on the minor diameter of the threaded section of externally threaded studs, except where the shank diameter is less than the minor diameter, or on the original cross-sectional area where failure occurs in a nonthreaded, internally threaded, or reduced-diameter stud.

QW-192.1.4 Acceptance Criteria — Macro-**Examination.** In order to pass the macro-examination, each of five sectioned stud welds and the heat-affected zone shall be free of cracks when examined at 10X magnification, which is required by QW-202.5 when studs are welded to metals other than P-No. 1.

QW-192.2 Performance Qualification Specimens.

QW-192.2.1 Required Tests. Five stud-weld tests are required to qualify each stud-welding operator. The equipment used for stud welding shall be completely automatic except for manual starting. The performance test shall be welded in accordance with a qualified WPS per QW-301.2.

Each stud (five joints) shall be tested either by hammering over until one-fourth of its length is flat on the test piece or by bending the stud to an angle of at least 15 deg and returning it to its original position using a test jig and an adapter location dimension that are in accordance with Figure QW-466.4.

QW-192.2.2 Acceptance Criteria — Bend and Hammer Tests. In order to pass the test(s), each of the five stud welds and heat affected zones shall be free of visible separation or fracture after bending and return bending or after hammering.

QW-193 TUBE-TO-TUBESHEET TESTS

(**19**)

When the applicable Code Section requires the use of this paragraph for tube-to-tubesheet demonstration mockup qualification, QW-193.1 through QW-193.1.3 shall apply.

QW-193.1 Procedure Qualification Specimens. Ten mockup welds are required for qualifying each tube-to-tubesheet welding procedure. The mockup assembly shall essentially duplicate the tube-to-tubesheet weld joint design to be used in production, within the limits of the essential variables of QW-288. The mockup test assembly shall be prepared with the tubesheet element having a thickness not less than the lesser of the thickness of the production tubesheet or 2 in. (50 mm). For tube-to-tubesheet welds to clad tubesheets, the cladding or overlay may be represented by a base material with a chemical composition that is essentially equivalent to the

cladding composition. All welds in the mockup assembly shall be subjected to the following tests and shall meet the applicable acceptance criteria.

QW-193.1.1 Visual Examination. The accessible surfaces of the welds shall be examined visually with no magnification required. The welds shall show complete fusion, be free from visual cracks or porosity indications, and have no evidence of burning through the tube wall.

QW-193.1.2 Liquid Penetrant. The liquid penetrant examination shall meet the requirements of Section V, Article 6. The weld surfaces shall meet the requirements of QW-195.2.

QW-193.1.3 Macro-Examination. The mockup welds shall be sectioned through the center of the tube for macro-examination. The four exposed surfaces shall be smoothed and etched with a suitable etchant (see QW-470) to give a clear definition of the weld and heat-affected zone. Using a magnification of 10X to 20X, the exposed cross sections of the weld shall confirm

(a) minimum leak path dimension required by the design

(b) no cracking

(c) complete fusion of the weld deposit into the tubesheet and tube wall face

QW-193.2 Performance Qualification Specimens. A minimum of five mockup tube-to-tubesheet welds are required to qualify each welder or welding operator. The same rules as those applicable for procedure qualification (QW-193.1) shall be followed, with the following additional requirements and exceptions:

(a) The essential variables in QW-387 shall apply.

(b) Essential performance qualification variables applicable for each welding process listed in QW-350 or QW-360 shall also be observed in addition to the variables of Table QW-388.

(c) Postweld heat treatment may be omitted.

Only one mockup weld is required to renew a welder's or welding operator's qualification when that qualification has expired or has been revoked per the requirements of QW-322.1.

QW-194 VISUAL EXAMINATION — PERFORMANCE

Performance test coupons shall show no cracks and complete joint penetration with complete fusion of weld metal and base metal.

QW-195 LIQUID PENETRANT EXAMINATION

QW-195.1 The liquid penetrant examination in QW-214 for corrosion-resistant weld metal overlay shall meet the requirements of Section V, Article 6. The acceptance standards of QW-195.2 shall be met.

QW-195.2 Liquid Penetrant Acceptance Criteria. QW-195.2.1 Terminology.

relevant indications: indications with major dimensions greater than $\frac{1}{16}$ in. (1.5 mm)

linear indications: an indication having a length greater than three times the width.

rounded indications: an indication of circular or elliptical shape with the length equal to or less than three times the width.

QW-195.2.2 Acceptance Standards. Procedure and performance tests examined by liquid penetrant techniques shall be judged unacceptable when the examination exhibits any indication in excess of the limits specified in the following:

(a) relevant linear indications

(b) relevant rounded indications greater than $\frac{3}{16}$ in. (5 mm)

(c) four or more relevant rounded indications in a line separated by $\frac{1}{16}$ in. (1.5 mm) or less (edge-to-edge)

QW-196 RESISTANCE WELD TESTING

QW-196.1 Macro-Examination.

QW-196.1.1 Welds shall be cross-sectioned, polished, and etched to reveal the weld metal. The section shall be examined at 10X magnification. Seam welding specimens shall be prepared as shown in Figure QW-462.7.3. The sectioned weldment shall be free of cracks, incomplete penetration, expulsions, and inclusions. Porosity shall not exceed one void in the transverse cross section or three voids in the longitudinal cross section of a specimen. The maximum dimension of any void shall not exceed 10% of the thickness of the weld bead.

QW-196.1.2 For spot and seam welds, the mini- (19) mum diameter or width of the weld nugget shall be as follows in relation to thickness, t, of the thinner member.

Material Thickness, in. (mm)	Weld Nugget Width
< 0.010 (0.25)	6 <i>t</i>
≥ 0.010 (0.25) and < 0.020 (0.50)	5 <i>t</i>
\geq 0.020 (0.50) and < 0.040 (1.00)	4t
\geq 0.040 (1.00) and < 0.069 (1.75)	3 <i>t</i>
≥ 0.069 (1.75) and < 0.100 (2.54)	2.50 <i>t</i>
≥ 0.100 (2.54) and < 0.118 (3.00)	2.25 <i>t</i>
≥ 0.118 (3.00) and < 0.157 (4.00)	2t
≥ 0.157 (4.00)	1.80 <i>t</i>

The weld depth (extent of fusion) shall be a minimum of 20% of the thickness of the thinner ply (in each member) and a maximum of 80% of the total thickness of all plies.

QW-196.1.3 For projection welds, the width of the nugget shall be not less than 80% of the width of the projection.

QW-196.2 Mechanical Testing.

(19)

QW-196.2.1 Shear test specimens shall be prepared as shown on Figure QW-462.9. For spot and projection welds, each test specimen shall produce a strength that, when calculated according to the following equation, is no less than that specified in Table QW/QB-422 for the weaker of the two base metals joined:

strength =
$$\frac{\text{load to failure}}{\text{area of the nugget}}$$

where the area of the nugget = $\pi \times d^2/4$ and d equals the minimum diameter of the spot or projection weld at the faying surface. The diameter shall be no less than that specified in the table in QW-196.1.2 for the thinner of the two members joined.

QW-196.2.2 Peel test specimens shall be prepared as shown in Figure QW-462.8.1 for spot and projection welding and per Figure QW-462.8.2 for seam welding. The specimens shall be peeled or separated mechanically, and fracture shall occur in the base metal by tearing out of the weld in order for the specimen to be acceptable.

QW-197 LASER BEAM WELDING (LBW) LAP JOINT TESTS

QW-197.1 Procedure Qualification Specimens.

QW-197.1.1 Required Tests. Six tension shear specimens and eight macro specimens are required to qualify each procedure. The qualification test coupon shall be prepared in accordance with Figure QW-464.1. The tension shear specimens shall conform to the dimensions indicated in the table of Figure QW-464.1. The longitudinal and transverse sections indicated in Figure OW-464.1 shall be cross-sectioned as closely as possible through the centerline of the weld. A minimum of 1 in. (25 mm) shall be provided for examination of each longitudinal specimen. The transverse specimens shall be of sufficient length to include weld, the heat-affected zone, and portions of the unaffected base material. Cross-sections shall be smoothed and etched with a suitable etchant (see OW-470), and examined at a minimum magnification of 25X. The dimensions of the fusion zone and penetration of each weld of the transverse specimens shall be measured to the nearest hundredth of an inch and recorded.

QW-197.1.2 Acceptance Criteria — Tension Shear Tests. In order to pass the tension shear test(s), the requirements of QW-153 shall apply.

QW-197.1.3 Acceptance Criteria — Macro-Examination. In order to pass the macro-examination, each of the eight specimens shall meet the following criteria:

(a) The outline of the fusion zone shall be generally consistent in size and regular in shape and uniformity of penetration.

(b) The examination of the weld area shall reveal sound weld metal, complete fusion along the bond line, and complete freedom from cracks in the weld metal and heat-affected zone.

QW-197.2 Performance Qualification Specimens.

QW-197.2.1 Required Tests. A peel test specimen at least 6 in. (150 mm) long shall be prepared as shown in Figure QW-464.2 illustration (a) and macro specimens as shown in Figure QW-464.2 illustration (b). The peel test specimens shall be peeled apart to destruction and the fusion zone and penetration measured to the nearest hundredth of an inch. The end of each strip of the macro coupon shall be polished and etched to clearly reveal the weld metal. The width and depth of penetration of each weld shall be measured to the nearest hundredth of an inch. Each specimen shall be examined in accordance with QW-197.1.

QW-197.2.2 Acceptance Criteria — Peel Test and Macro-Examination. In order to pass the peel test and macro-examination, the dimensions of the fusion zone (averaged) and the penetration (averaged) shall be within the range of dimensions of those specified on the WPS that was used to make the test coupon.

QW-199 FLASH WELDING

QW-199.1 Procedure Qualification Test Coupons and Testing.

QW-199.1.1 Test Coupon Preparation. For coupons NPS 1 (DN 25) and smaller, four test welds shall be made, and for pipes over NPS 1 (DN 25), three test coupons shall be made using one set of welding parameters (i.e., the same equipment, base metals, joint preparation, and other essential variables to be utilized for production welding.) These variables shall be recorded on the qualification record.

QW-199.1.2 Tensile Tests. For pipes NPS 1 (DN 25) and smaller, and nontubular cross sections, two full-section tensile specimens shall be prepared in accordance with Figure QW-462.1(e). For pipes greater than NPS 1 (DN 25), two reduced section tension specimens shall be prepared in accordance with Figure QW-462.1(b) or Figure QW-462.1(c) from one coupon. For nontubular cross sections, two reduced section tension specimens shall be prepared in accordance with Figure QW-462.1(a) or Figure QW-462.1(d) from two of the coupons. The specimens shall be tested in accordance with QW-150.

QW-199.1.3 Section and Bend Testing. The entire circumference of each remaining pipe coupon shall be cut along the axis of the pipe into an even number of strips of a length sufficient to perform bend tests. The maximum width of each strip shall be $1^{1}/_{2}$ in. (38 mm) and the minimum width

w = t + D/4 for pipes NPS 2 (DN 50) and smaller

$$w = t + D/8$$
 for pipes greater than NPS 2 (DN 50)

where

D = OD of the tube
 t = nominal wall thickness
 w = width of the specimen

One edge of one strip from each coupon shall be polished to a 600 grit finish with the final grinding parallel to the long axis of the strip. The polished surface shall be examined at 5X magnification. No incomplete fusion or other open flaws on the polished surface are acceptable. Defects occurring in the base metal not associated with the weld may be disregarded. For nontubular cross sections, four side-bend specimens shall be prepared from the two remaining coupons as specified in Figure QW-462.2 and polished for examination. All flash shall be removed from the strips and the welds shall be visually examined per QW-194. Half of the strips from each pipe specimen shall then be prepared as root bend specimens and the remaining strips shall be prepared as face bend specimens in accordance with QW-160. The specimens shall be tested in accordance with QW-160, except for the following:

(*a*) For P-No. 1, Groups 2 through 4 materials, the minimum bend radius (dimension *B* in Figure QW-466.1) shall be three times the thickness of the specimen.

(*b*) In lieu of QW-163, the sum of lengths of individual open flaws on the convex surface of all the bend test specimens taken from each pipe individually shall not exceed 5% of the outside circumference of that test pipe.

QW-199.2 Flash Welding — Performance Qualification Test Coupons and Testing. One test coupon shall be welded, cut into strips, visually examined, and bend tested in accordance with QW-199.1.3. Polishing and examination of a cross-section is not required.

APPENDIX I ROUNDED INDICATION CHARTS

Illustration that appeared in this Appendix in the previous edition and addenda has been designated as Figure QW-191.1.2.2(b)(4), which follows QW-191.1.2.2(b)(3).

ARTICLE II WELDING PROCEDURE QUALIFICATIONS

(19) **QW-200 GENERAL**

QW-200.1 Each organization shall prepare written Welding Procedure Specifications that are defined as follows:

(a) Welding Procedure Specification (WPS). A WPS is a written qualified welding procedure prepared to provide direction for making production welds to Code requirements. The WPS or other documents may be used to provide direction to the welder or welding operator to assure compliance with the Code requirements.

(b) Contents of the WPS. The completed WPS shall describe all of the essential, nonessential, and, when required, supplementary essential variables for each welding process used in the WPS. These variables are listed for each process in QW-250 and are defined in Article IV, Welding Data.

The WPS shall reference the supporting Procedure Qualification Record(s) (PQR) described in QW-200.2. The organization may include any other information in the WPS that may be helpful in making a Code weldment.

(c) Changes to the WPS. Changes may be made in the nonessential variables of a WPS to suit production requirements without requalification provided such changes are documented with respect to the essential, nonessential, and, when required, supplementary essential variables for each process. This may be by amendment to the WPS or by use of a new WPS.

Changes in essential or supplementary essential (when required) variables require requalification of the WPS (new or additional PQRs to support the change in essential or supplementary essential variables).

(*d*) Format of the WPS. The information required to be in the WPS may be in any format, written or tabular, to fit the needs of each organization, as long as every essential, nonessential, and, when required, supplementary essential variables outlined in QW-250 is included or referenced.

Form QW-482 (see Nonmandatory Appendix B) has been provided as a guide for the WPS. This Form includes the required data for the SMAW, SAW, GMAW, and GTAW processes. It is only a guide and does not list all required data for other processes. It also lists some variables that do not apply to all processes (e.g., listing shielding gas which is not required for SAW). The guide does not easily lend itself to multiple process procedure specification (e.g., GTAW root with SMAW fill). **QW-200.2** Each organization shall be required to prepare a procedure qualification record which is defined as follows:

(a) Procedure Qualification Record (PQR). The PQR is a record of variables recorded during the welding of the test coupons. It also contains the test results of the tested specimens. Recorded variables normally fall within a small range of the actual variables that will be used in production welding.

(b) Contents of the PQR. The completed PQR shall document all essential and, when required, supplementary essential variables of QW-250 for each welding process used during the welding of the test coupon. Nonessential or other variables used during the welding of the test coupon may be recorded at the organization's option. All variables, if recorded, shall be the actual variables (including ranges) used during the welding of the test coupon. If variables are not monitored during welding, they shall not be recorded. It is not intended that the full range or the extreme of a given range of variables to be used in production be used during qualification unless required due to a specific essential or, when required, supplementary essential variable.

The PQR shall be certified accurate by the organization. The organization may not subcontract the certification function. This certification is intended to be the organization's verification that the information in the PQR is a true record of the variables that were used during the welding of the test coupon and that the resulting tensile, bend, or macro (as required) test results are in compliance with Section IX.

One or more combinations of welding processes, filler metal, and other variables may be used when welding a test coupon. The approximate thickness of weld metal deposited, excluding weld reinforcement, shall be recorded for each set of essential and, when required, supplementary essential variables. Weld metal deposited using each set of variables shall be included in the tension, bend, toughness, and other mechanical test specimens that are required.

(c) Changes to the PQR. Changes to the PQR are not permitted except as described below. Editorial corrections or addenda to the PQR are permitted. An example of an editorial correction is an incorrect P-Number, F-Number, or A-Number that was assigned to a particular base metal or filler metal. An example of an addendum would be a change resulting from a Code change. For example, Section IX may assign a new F-Number to a filler metal or adopt a new filler metal under an established F-Number. This may permit, depending on the particular construction Code requirements, an organization to use other filler metals that fall within that particular F-Number where, prior to the Code revision, the organization was limited to the particular electrode classification that was used during qualification. Additional information can be incorporated into a PQR at a later date provided the information is substantiated as having been part of the original qualification condition by lab record or similar data.

All changes to a PQR require recertification (including date) by the organization.

(d) Format of the PQR. Form QW-483 (see Nonmandatory Appendix B) has been provided as a guide for the PQR. The information required to be in the PQR may be in any format to fit the needs of each organization, as long as every essential and, when required, supplementary essential variable, required by QW-250, is included. Also the type of tests, number of tests, and test results shall be listed in the PQR.

Form QW-483 does not easily lend itself to cover combinations of welding processes or more than one F-Number filler metal in one test coupon. Additional sketches or information may be attached or referenced to record the required variables.

(e) Availability of the PQR. The PQR shall be available for review but need not be made available to the welder or welding operator.

(f) Multiple WPSs With One PQR or Multiple PQRs With One WPS. Several WPSs may be prepared from the data on a single PQR (e.g., a 1G plate PQR may support WPSs for the F, V, H, and O positions on plate or pipe within all other essential variables). A single WPS may cover several sets of essential variable ranges as long as a supporting PQR exists for each essential and, when required, supplementary essential variable [e.g., a single WPS may cover a thickness range from $\frac{1}{16}$ in. (1.5 mm) through $\frac{11}{4}$ in. (32 mm) if PQRs exist for both the $\frac{1}{16}$ in. (1.5 mm) through $\frac{3}{16}$ in. (5 mm) and $\frac{3}{16}$ in. (5 mm) through $\frac{11}{4}$ in. (32 mm) thickness ranges].

QW-200.3 To reduce the number of welding procedure qualifications required, P-Numbers are assigned to base metals dependent on characteristics such as composition, weldability, and mechanical properties, where this can logically be done; and for steel and steel alloys (Table QW/QB-422) Group Numbers are assigned additionally to P-Numbers. These Group Numbers classify the metals within P-Numbers for the purpose of procedure qualification where toughness requirements are specified. The assignments do not imply that base metals may be indiscriminately substituted for a base metal which was used in the qualification test without consideration of the compatibility from the standpoint of metallurgical properties, postweld heat treatment, design, mechanical

properties, and service requirements. Where toughness is a consideration, it is presupposed that the base metals meet the specific requirements.

In general, toughness requirements are mandatory for all P-No. 11 quenched and tempered metals, for low temperature applications of other metals as applied to Section VIII, and for various classes of construction required by Section III. Acceptance criteria for the toughness tests are as established in the other Sections of the Code.

QW-200.4 Combination of Welding Procedures.

(*a*) More than one WPS having different essential, supplementary essential, or nonessential variables may be used in a single production joint. Each WPS may include one or a combination of processes, filler metals, or other variables.

Where more than one WPS specifying different processes, filler metals, or other essential or supplementary essential variables is used in a joint, QW-451 shall be used to determine the range of base metal thickness and maximum weld metal thickness qualified for each process, filler metal, or set of variables, and those limits shall be observed.

When following a WPS that has more than one welding process, filler metal, or set of variables, each process, filler metal, or set of variables may be used individually or in different combinations, provided

(1) the essential, nonessential, and required supplementary essential variables associated with the process, filler metal, or set of variables are applied

(2) the base metal and deposited weld metal thickness limits of QW-451 for each process, filler metal, or set of variables are applied

(b) As an alternative to (a), when making root deposits only using GTAW, SMAW, GMAW, PAW, LBW, LLBW, and SAW, or combinations of these processes, a PQR for a process recording a test coupon that was at least $1/_2$ in. (13 mm) thick may be combined with one or more other PQRs recording another welding process and any greater base metal thickness. In this case, the process recorded on the first PQR may be used to deposit the root layers using the process(es) recorded on that PQR up to 2*t* (for shortcircuiting type of GMAW, see QW-404.32) in thickness on base metal of the maximum thickness qualified by the other PQR(s) used to support the WPS. The requirements of Note (1) of Tables QW-451.1 and QW-451.2 shall apply.

QW-201 ORGANIZATIONAL RESPONSIBILITY

The organization shall certify that they have qualified each Welding Procedure Specification, performed the procedure qualification test, and documented it with the necessary Procedure Qualification Record (PQR).

QW-202 TYPE OF TESTS REQUIRED

QW-202.1 Mechanical Tests. The type and number of test specimens that shall be tested to qualify a groove weld procedure are given in QW-451, and shall be removed in a manner similar to that shown in Figures QW-463.1(a) through QW-463.1(f). If any test specimen required by QW-451 fails to meet the applicable acceptance criteria, the test coupon shall be considered as failed.

When it can be determined that the cause of failure is not related to welding parameters, another test coupon may be welded using identical welding parameters.

Alternatively, if adequate material of the original test coupon exists, additional test specimens may be removed as close as practicable to the original specimen location to replace the failed test specimens.

When it has been determined that the test failure was caused by an essential or supplementary essential variable, a new test coupon may be welded with appropriate changes to the variable(s) that was determined to cause the test failure. If the new test passes, the essential and supplementary variables shall be documented on the PQR.

When it is determined that the test failure was caused by one or more welding related factors other than essential or supplementary essential variables, a new test coupon may be welded with the appropriate changes to the welding related factors that were determined to cause the test failure. If the new test passes, the welding related factors that were determined to cause the previous test failure shall be addressed by the organization to ensure that the required properties are achieved in the production weldment.

Where qualification is for fillet welds only, the requirements are given in QW-202.2(c); and where qualification is for stud welds only, the requirements are given in QW-202.5.

(19) QW-202.2 Groove and Fillet Welds

(a) Qualification for Groove Full Penetration Welds. Groove-weld test coupons shall qualify the thickness ranges of both base metal and deposited weld metal to be used in production. Limits of qualification shall be in accordance with QW-451. The thickness, t, of deposited weld metal in QW-451 shall be exclusive of weld reinforcement. WPS qualification for groove welds shall be made on groove welds using tension and guided-bend specimens. Toughness tests shall be made when required by other Section(s) of the Code. The WPS shall be qualified for use with groove welds within the range of essential variables listed.

When dissimilar thickness test coupons are welded, the "Range of Thickness T of Base Metal, Qualified" in QW-451 shall be determined individually for each base metal in the test coupon. When the thicker test coupon is tapered to provide a thickness transition at the weld,

the qualified range shall be based on the base metal thickness adjacent to the toe of the weld at the thinnest end of the transition. The test specimens for tensile and bend tests may be machined to the thickness required for the thinner base metal prior to testing.

(b) Qualification for Partial Penetration Groove Welds. Partial penetration groove welds shall be qualified in accordance with the requirements of QW-451 for both base metal and deposited weld metal thickness, except there need be no upper limit on the base metal thickness provided qualification was made on base metal having a thickness of $1^{1}/_{2}$ in. (38 mm) or more. When dissimilar thickness test coupons are welded, the provisions of (a) for dissimilar thickness test coupons shall be met.

(c) Qualification for Fillet Welds. WPS qualification for fillet welds may be made on groove-weld test coupons using test specimens specified in (a) or (b). Fillet-weld procedures so qualified may be used for welding all thicknesses of base metal for all sizes of fillet welds, and all diameters of pipe or tube in accordance with Table QW-451.4. Nonpressure-retaining fillet welds, as defined in other Sections of the Code, may as an alternate be qualified with fillet welds only. Tests shall be made in accordance with QW-180. Limits of qualification shall be in accordance with Table QW-451.3.

QW-202.3 Weld Repair and Buildup. WPS qualified on groove welds shall be applicable for weld repairs to groove and fillet welds and for weld buildup under the following provisions:

(*a*) There is no limitation on the thickness of base metal or deposited weld metal for fillet welds.

(b) For other than fillet welds, the thickness range for base metal and deposited weld metal for each welding process shall be in accordance with QW-451, except there need be no upper limit on the base metal thickness provided qualification was made on base metal having a thickness of $1^{1}/_{2}$ in. (38 mm) or more.

QW-202.4 Dissimilar Base Metal Thicknesses. WPS qualified on groove welds shall be applicable for production welds between dissimilar base metal thicknesses provided:

(*a*) the thickness of the thinner member shall be within the range permitted by QW-451

(*b*) the thickness of the thicker member shall be as follows:

(1) For P-No. 8, P-No. 41, P-No. 42, P-No. 43, P-No. 44, P-No. 45, P-No. 46, P-No. 49, P-No. 51, P-No. 52, P-No. 53, P-No. 61, and P-No. 62 metal, there shall be no limitation on the maximum thickness of the thicker production member in joints of similar P-Number materials provided qualification was made on base metal having a thickness of $\frac{1}{4}$ in. (6 mm) or greater.

(2) For all other metal, the thickness of the thicker member shall be within the range permitted by QW-451, except there need be no limitation on the

maximum thickness of the thicker production member provided qualification was made on base metal having a thickness of $1^{1}/_{2}$ in. (38 mm) or more.

More than one procedure qualification may be required to qualify for some dissimilar thickness combinations.

QW-202.5 Stud Welding. Procedure qualification tests for stud welds shall be made in accordance with QW-192. The procedure qualification tests shall qualify the welding procedures for use within the range of the essential variables of Table QW-261. For studs welded to other than P-No. 1 metals, five additional welds shall be made and subjected to a macro-test, except that this is not required for studs used for extended heating surfaces.

QW-202.6 Tube-to-Tubesheet Qualification. When the applicable Code Section requires the use of QW-193 for tube-to-tubesheet demonstration mockup qualification tests, QW-193.1 shall apply. If specific qualification test requirements are not specified by the applicable Code Section, tube-to-tubesheet welds shall be qualified with one of the following methods:

(*a*) groove welds per the requirements of QW-202.2 and QW-202.4

(b) a demonstration mockup per the requirements of QW-193.1

(c) fillet welds per the requirements of QW-202.2(c) (for nonpressure-retaining tube-to-tubesheet welds only)

QW-203 LIMITS OF QUALIFIED POSITIONS FOR PROCEDURES

Unless specifically required otherwise by the welding variables (QW-250), a qualification in any position qualifies the procedure for all positions. The welding process and electrodes must be suitable for use in the positions permitted by the WPS. A welder or welding operator making and passing the WPS qualification test is qualified for the position tested. see QW-301.2.

QW-210 PREPARATION OF TEST COUPON

QW-211 BASE METAL

The base metals may consist of either plate, pipe, or other product forms. Qualification in plate also qualifies for pipe welding and vice versa. The dimensions of the test coupon shall be sufficient to provide the required test specimens.

QW-211.1 A weld metal overlay deposited on the base metal following a qualified WPS may be considered as the same P-Number as any base metal having a nominally matching chemical analysis.

QW-212 TYPE AND DIMENSIONS OF GROOVE WELDS

Except as otherwise provided in QW-250, the type and dimensions of the welding groove are not essential variables.

QW-214 CORROSION-RESISTANT WELD METAL (19) OVERLAY

QW-214.1 The size of test coupons, limits of qualification, required examinations and tests, and test specimens shall be as specified in QW-214.2 and Table QW-453.

QW-214.2 The qualification test coupon for procedure qualification shall consist of base metal not less than 6 in. (150 mm) × 6 in. (150 mm). The weld overlay cladding shall be a minimum of $1\frac{1}{2}$ in. (38 mm) wide by approximately 6 in. (150 mm) long. For qualification on pipe, the pipe length shall be a minimum of 6 in. (150 mm) and the diameter shall be the minimum needed to allow the required number of test specimens. The weld overlay shall be continuous around the circumference of the test coupon.

(*a*) The corrosion-resistant surface shall be examined by the liquid penetrant method and shall meet the acceptance standards as specified in QW-195.

(b) Following the liquid penetrant examination, four guided side-bend tests shall be made from the test coupon in accordance with QW-161. The test specimens shall be cut so that there are either two specimens parallel and two specimens perpendicular to the direction of the welding, or four specimens perpendicular to the direction of the welding. For coupons that are less than $\frac{3}{8}$ in. (10 mm) thick, the width of the side-bend specimens may be reduced to the thickness of the test coupon. The side-bend specimens shall be removed from locations specified in Figure QW-462.5(c) or Figure QW-462.5(d).

(c) When a chemical composition is specified in the WPS, chemical analysis specimens shall be removed at locations specified in Figure QW-462.5(b) or Figure QW-462.5(e). The chemical analysis shall be performed in accordance with Figure QW-462.5(a) and shall be within the range specified in the WPS. This chemical analysis is not required when a chemical composition is not specified on the WPS.

QW-214.3 Essential variables shall be as specified in QW-250 for the applicable welding process.

QW-215 ELECTRON BEAM WELDING, LASER BEAM WELDING, AND LOW-POWER DENSITY LASER BEAM WELDING

QW-215.1 For electron beam welding and laser beam welding (excluding low-power density laser beam welding), the WPS qualification test coupon shall be prepared with the joint geometry duplicating that to be used in production. If the production weld is to include a lap-over (completing the weld by rewelding over the starting area of the weld, as for a girth weld), such lap-over shall be included in the WPS qualification test coupon.

QW-215.2 The mechanical testing requirements of **QW-451** shall apply.

QW-215.3 Essential variables shall be as specified in Tables QW-260, QW-264, and QW-264.2 for the applicable welding process.

(19) QW-216 HARD-FACING WELD METAL OVERLAY

Hard-facing weld metal overlay refers to weld deposits made, using a variety of processes, to deter the effects of wear and/or abrasion. The requirements specified in QW-216.1 through QW-216.5 apply regardless of which hard-facing process is used.

QW-216.1 The size of test coupons, limits of qualification, required examinations and tests, and test specimens shall be as specified in Table QW-453.

QW-216.2 The test base metal coupon for procedure qualification shall have minimum dimensions of 6 in. (150 mm) wide × approximately 6 in. (150 mm) long with a hard-faced layer a minimum of $1^{1}/_{2}$ in. (38 mm) wide × 6 in. (150 mm) long. The minimum hard-faced thickness shall be as specified in the WPS. Alternatively, the qualification may be performed on a test base metal coupon that represents the size of the production part. For qualification on pipe, the pipe length shall be 6 in. (150 mm) minimum and the diameter shall be the minimum needed to allow the required number of test specimens. The weld overlay shall be continuous around the circumference of the test coupon.

(*a*) The hard-facing surface shall be examined by the liquid penetrant method and shall meet the acceptance standards in QW-195.2 or as specified in the WPS. Surface conditioning prior to liquid penetrant examination is permitted.

(b) After surface conditioning to the minimum thickness specified in the WPS, a minimum of three hardness readings shall be made on each of the specimens from the locations shown in Figure QW-462.5(b) or Figure QW-462.5(e). All readings shall meet the requirements of the WPS.

(c) The base metal shall be sectioned transversely to the direction of the hard-facing overlay. The two faces of the hard facing exposed by sectioning shall be polished and etched with a suitable etchant and shall be visually examined with 5X magnification for cracks in the base metal or the heat-affected zone, lack of fusion, or other linear defects. The overlay and base metal shall meet the requirements specified in the WPS. All exposed faces shall be examined. See Figure QW-462.5(b) for pipe and Figure QW-462.5(e) for plate.

(d) When a chemical composition is specified in the WPS, chemical analysis specimens shall be removed at locations specified in Figure QW-462.5(b) or Figure QW-462.5(e). The chemical analysis shall be performed in accordance with Figure QW-462.5(a) and shall be within the range specified in the WPS. This chemical analysis is not required when a chemical composition is not specified on the WPS.

QW-216.3 Welding variables shall be as specified in QW-250 for the applicable process.

QW-216.4 Where Spray Fuse methods of hard facing (e.g., Oxyfuel and Plasma Arc) are to be used, the coupons for these methods shall be prepared and welding variables applied in accordance with QW-216.1 and QW-216.3, respectively.

QW-216.5 If a weld deposit is to be used under a hard-facing weld metal overlay, a base metal with an assigned P-Number and a chemical analysis nominally matching the weld deposit chemical analysis may be substituted to qualify the PQR.

QW-217 JOINING OF CLAD MATERIALS

The WPS for groove welds in clad metal shall be qualified as provided in (a) when any part of the cladding thickness, as permitted by the referencing Code Section, is included in the design calculations. Either (a) or (b) may be used when the cladding thickness is not included in the design calculations.

(a) The essential and nonessential variables of QW-250 shall apply for each welding process used in production. The procedure qualification test coupon shall be made using the same P-Number base metal, cladding, and welding process, and filler metal combination to be used in production welding. For metal not included in Table OW/OB-422, the metal used in the test plate shall be within the range of chemical composition of that to be used in production. The qualified thickness range for the base metal and filler metal(s) shall be based on the actual test coupon thickness for each as applied to QW-451, except that the minimum thickness of filler metal joining the cladding portion of the weldment shall be based on a chemical analysis performed in accordance with Table QW-453. Tensile and bend tests required in QW-451 for groove welds shall be made, and they shall contain the full thickness of cladding through the reduced section of the specimen. The bond line between the original cladding and the base metal may be disregarded when evaluating side-bend tests if the cladding was applied by a process other than fusion welding.

(b) The essential and nonessential variables of QW-250 shall apply for each welding process used in production for joining the base metal portion of the weldment. The PQRs that support this portion of the WPS need not be based on test coupons made with clad metal. For the corrosion-resistant overlay portion of the weld, the essential variables of QW-251.4 shall apply and the test coupon and testing shall be in accordance with Table QW-453. The WPS shall limit the depth of the groove, which will receive the corrosion-resistant overlay in order to ensure development of the full strength of the underlying weld in the base metal.

(**19**)

QW-218 APPLIED LININGS

QW-218.1 WPSs for attaching applied linings shall be qualified in accordance with QW-202.2(a), QW-202.2(b), or QW-202.2(c).

QW-218.2 As an alternative to the above, each process to be used in attaching applied linings to base metal shall be qualified on a test coupon welded into the form and arrangement to be used in construction using materials that are within the range of chemical composition of the metal to be used for the base plate, the lining, and the weld metal. The welding variables of QW-250 shall apply except for those regarding base metal or weld metal thickness. Qualification tests shall be made for each position to be used in production welding in accordance with Table QW-461.9, except that qualification in the vertical position, uphill progression shall qualify for all positions. One cross-section for each position tested shall be sectioned, polished, and etched to clearly show the demarcation between the base metal and the weld metal. In order to be acceptable, each specimen shall exhibit complete fusion of the weld metal with the base metal and freedom from cracks.

QW-218.3 When chemical analysis of the weld deposit for any elements is required, a chemical analysis shall be performed per Table QW-453, Note 9 for those elements.

QW-219 FLASH WELDING

Flash welding shall be limited to automatic electrical resistance flash welding. Procedure qualification tests shall be conducted in accordance with QW-199.1.

QW-219.1 Tolerances on Variables. Flash welding variables that may require adjustment during production welding are synergistically related. Accordingly, even though the variables shown in Table QW-265 provide tolerances on many welding variables, the WPS shall specify the same specific variables shown on the PQR with tolerance shown for no more than one variable (e.g., if it is desired to provide a tolerance on the upset current, all other variables shown on the WPS must be the same as they are shown on the PQR). If it is desired to provide tolerances in the WPS for two variables, the first variable with a tolerance shall be set at the midpoint of its tolerance and two test coupons shall be welded with each of the upper and lower extremes of the tolerance for the second variable (i.e., four coupons must be welded). These coupons shall be examined and tested in accordance with QW-199.1.3.

If it is desired to provide tolerance for a third variable, the first two variables shall be set at the midpoint of their tolerance, and two test coupons shall be welded with each of the upper and lower extremes of the new tolerances for the third variable (i.e., four coupons must be welded). These coupons shall be examined and tested in accordance with QW-199.1.3. No more than three essential variables on a WPS may show tolerances.

Production tests conducted in accordance with the requirements of other Sections may be used to satisfy this requirement.

QW-220 HYBRID WELDING PROCEDURE VARIABLES

Requirements of QW-221 through QW-223 shall be observed for all hybrid welding procedure qualifications.

QW-221 ESSENTIAL VARIABLES FOR HYBRID WELDING

The following essential variables are in addition to the welding variables for each welding process used during hybrid welding provided in QW-250:

(a) an addition or deletion of welding processes used in a hybrid welding process from those used during qualification.

(*b*) a change in the process sequence used in a hybrid welding process from that used during qualification.

(c) a change in the process separation used in a hybrid welding process greater than 10% from that used during qualification (e.g., measured at the weld surface, measured between the welding torch and laser, etc.)

(*d*) a change in any angle, between each individual welding process used in a hybrid welding process or a change in any angle between the hybrid welding process and the material to be welded, of greater than 10 deg from that used during qualification.

(e) a change in the height between the individual welding processes used in a hybrid welding process and the material surface or a change in the height between the hybrid welding process and the material surface greater than 10% from that used during qualification.

QW-222 WELDING PROCESS RESTRICTIONS

The hybrid welding process shall be limited to machine or automatic welding.

QW-223 TEST COUPON PREPARATION AND TESTING

The hybrid welding procedure qualification test coupon shall be prepared in accordance with the rules in QW-210 and tested in accordance with the rules in QW-202.

QW-250 WELDING VARIABLES

QW-251 GENERAL

QW-251.1 Types of Variables for Welding Procedure Specifications (WPS). These variables (listed for each welding process in Tables QW-252 through QW-267) are subdivided into essential variables, supplementary essential variables, and nonessential variables (QW-401). The "Brief of Variables" listed in the tables are for reference *only*. See the complete variable in Welding Data of Article IV.

QW-251.2 Essential Variables. Essential variables are those in which a change, as described in the specific variables, is considered to affect the mechanical properties of the weldment, and shall require requalification of the WPS.

Supplementary essential variables are required for metals for which other Sections specify toughness tests and are in addition to the essential variables for each welding process.

QW-251.3 Nonessential Variables. Nonessential variables are those in which a change, as described in the specific variables, may be made in the WPS without requalification.

QW-251.4 Special Processes.

(a) The special process essential variables for corrosion-resistant and hard-surfacing weld metal overlays are as indicated in the following tables for the specified process. Only the variables specified for special processes shall apply. A change in the corrosion-resistant or hard-surfacing welding process shall require requalification.

(b) WPS qualified for corrosion-resistant and hardsurfacing overlay welding, in accordance with other Sections when such qualification rules were included in those Sections, may be used with the same provisions as provided in QG-101.

Paragraph		Brief of Variables Es		Supplementary Essential	Nonessential
	.1	ϕ Groove design			Х
QW-402	.2	± Backing			Х
Joints	.3	ϕ Backing comp.			Х
	.10	ϕ Root spacing			Х
QW-403	.1	ϕ P-Number	Х		
Base Metals	.2	Max. T Qualified	Х		
	.3	ϕ Size			Х
QW-404	.4	ϕ F-Number	Х		
Filler Metals	.5	ϕ A-Number	Х		
	.12	ϕ Classification	Х		
QW-405 Positions	.1	+ Position			х
<mark>QW-406</mark> Preheat	.1	Decrease > 100°F (55°C)			x
<mark>QW-407</mark> PWHT	.1	ϕ PWHT	х		
QW-408 Gas	.7	ϕ Type fuel gas	х		
	.1	ϕ String or weave			X
	.2	ϕ Flame characteristics			Х
QW-410	.4	$\phi \leftarrow$ Technique			Х
Technique	.5	ϕ Method cleaning			x
	.26	± Peening			x
	.64	Use of thermal processes	Х		

		Special Process Esse		
Paragraph		Hard-Facing Overlay (QW-216)	Corrosion-Resistant Overlay (<mark>QW-214</mark>)	Hard-Facing Spray Fuse (QW-216)
QW-402	.16	< Finished t		
Joint	.17			> Finished t
QW-403 Base Metals	.20	ϕ P-Number		ϕ P-Number
	.23	ϕ T Qualified	ϕ T Qualified	ϕ T Qualified
QW-404 Filler Metals	.12	ϕ Classification		ϕ Classification
	.42			> 5% Particle size range
Filler Metals	.46			ϕ Powder feed rate
QW-405 Positions	.4	+ Position		+ Position
QW-406	.4	Dec. > 100°F (55°C) preheat > Interpass		Dec. > 100°F (55°C) prehea > Interpass
Preheat	.5			ϕ Preheat maint.
QW-407	.6	ϕ PWHT		ϕ PWHT
PWHT	.7			ϕ PWHT after fusing
	.7	ϕ Type of fuel gas		
QW-408	.14	ϕ Oxyfuel gas pressure		
Gas	.16			ϕ > 5% Gas feed rate
	.19			ϕ Plasma or feed gas comp.
	.38	ϕ Multiple to single layer		ϕ Multiple to single layer
	.39	ϕ Torch type, tip sizer		
	.44			ϕ > 15% Torch to workpiece
QW-410	.45			ϕ Surface prep.
Technique	.46			ϕ Spray torch
	.47			ϕ > 10% Fusing temp. or method

ſ	1	a	1
ſ	+	.9)

Paragraph		Brief of Variables Essent		Supplementary Essential	l Nonessential	
	.1	ϕ Groove design			Х	
W-402	.4	– Backing			Х	
Joints	.10	ϕ Root spacing			Х	
	.11	± Retainers			Х	
	.5	ϕ Group Number		Х		
	.6	T Limits toughness		Х		
W-403 Base Metals	.8	ϕ T Qualified	Х			
.11	.9	$t \text{ Pass} > \frac{1}{2}$ in. (13 mm)	Х			
	.11	ϕ P-No. qualified	Х			
	.4	ϕ F-Number	Х			
	.5	ϕ A-Number	Х			
	.6	ϕ Diameter			Х	
W-404 Filler Metals	.7	ϕ Diameter > $\frac{1}{4}$ in. (6 mm)		Х		
Filler Metals	.12	ϕ Classification		Х		
	.30	ϕ t	Х			
	.33	ϕ Classification			Х	
W-405	.1	+ Position			Х	
Positions	.3	ϕ $\uparrow\downarrow$ Vertical welding			Х	
	.1	Decrease > 100°F (55°C)	Х			
W-406 .2 Preheat .3	.2	ϕ Preheat maint.			Х	
	.3	Increase > 100°F (55°C) (IP)		Х		
W-407	.1	ϕ PWHT	Х			
PWHT	.2	ϕ PWHT (T & T range)		Х		
W-409	.1	> Heat input		Х		
Electrical	.4	ϕ Current or polarity		Х	Х	
Characteristics	.8	ϕ I & E range			Х	
	.1	ϕ String or weave			Х	
	.5	ϕ Method cleaning			Х	
	.6	ϕ Method back gouge			Х	
W-410 Technique	.9	ϕ Multiple to single pass/side		Х	Х	
rechnique	.25	ϕ Manual or automatic			Х	
	.26	± Peening			Х	
	.64	Use of thermal processes	Х			

		Special Pro	cess Variables	
		Essential	Variables	
Paragraph		Hard-Facing Overlay (HFO)Corrosion-Resistant OverlayM(QW-216)(CRO) (QW-214)		Nonessential Variables for HFO and CRO
QW-402 Joints	.16	< Finished t	< Finished t	
QW-403	.20	ϕ P-Number	ϕ P-Number	
Base Metals	.23	ϕ T Qualified	ϕ T Qualified	
	.12	ϕ Classification		
QW-404 Filler Metals	.37		ϕ A-Number	
Thier Metals	.38			ϕ Diameter (1st layer)
QW-405 Positions	.4	+ Position	+ Position	
<mark>QW-406</mark> Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass	
QW-407	.6	ϕ PWHT		
PWHT	.9		ϕ PWHT	
OW-409	.4	ϕ Current or polarity	ϕ Current or polarity	
Electrical	.8			φ I & E range
Characteristics	.22	Inc. > 10% 1st layer	Inc. > 10% 1st layer	
	.1			ϕ String or weave
QW-410	.5			ϕ Method of cleaning
Technique	.26			± Peening
	.38	ϕ Multiple to single layer	ϕ Multiple to single layer	
Legend: + Addition – Deletion		> Increase or greater than	↑ Uphill ← Foreha	nd ϕ Change

Table QW-253.1 Welding Variables Procedure Specifications (WPS) — Shielded Metal-Arc Welding (SMAW)

Paragraph	_	Brief of Variables	Essential	Supplementary Essential	Nonessential
QW-402	.1	ϕ Groove design			Х
Joints	.4	– Backing			Х
	.10	ϕ Root spacing			Х
	.11	± Retainers			Х
2W-403	.5	ϕ Group Number		Х	
Base Metals	.6	T Limits		Х	
	.8	ϕ T Qualified	X		
	.9	$t \text{ Pass } \frac{1}{2}$ in. (13 mm)	X		
	.11	ϕ P-No. qualified	X		
2W-404	.4	ϕ F-Number	Х		
Filler Metals	.5	ϕ A-Number	Х		
	.6	ϕ Diameter			X
	.9	ϕ Flux-wire class.	Х		
	.10	ϕ Alloy flux	Х		
	.24	\pm or ϕ Supplemental	Х		
	.27	ϕ Alloy elements	Х		
	.29	ϕ Flux designation			X
	.30	φ t	X		ļ
	.33	ϕ Classification			X
	.34	ϕ Flux type	X		
	.35	ϕ Flux-wire class.		Х	X
	.36	Recrushed slag	X		
QW-405 Positions	.1	+ Position			X
QW-406	.1	Decrease > 100°F (55°C)	Х		
Preheat	.2	ϕ Preheat maint.			Х
	.3	Increase > 100°F (55°C) (IP)		Х	
QW-407	.1	ϕ PWHT	Х		
PWHT	.2	ϕ PWHT (T & T range)		Х	
QW-409	.1	> Heat input		Х	
Electrical Characteristics	.4	ϕ Current or polarity		Х	X
	.8	φ I & E range			X
2W-410	.1	ϕ String or weave			X
Technique	.5	ϕ Method cleaning			X
	.6	ϕ Method back gouge			X
	.7	ϕ Oscillation			X
	.8	ϕ Tube-work distance			X
	.9	ϕ Multi to single pass per side		Х	X
	.10	ϕ Single to multi electrodes		Х	X
	.15	ϕ Electrode spacing			X
	.25	ϕ Manual or automatic			X
	.26	± Peening			X
	.64	Use of thermal processes	Х		<u> </u>
Legend:					

		Special Proces	ss Variables	
		Essential	Variables	
Paragraph		Hard-Facing Overlay (HFO) (QW-216)Corrosion-Resistant Overlay (CRO) (QW-214)		Nonessential Variables for HFO and CRO
QW-402 Joints	.16	< Finished t	< Finished t	
QW-403	.20	ϕ P-Number	ϕ P-Number	
Base Metals	.23	ϕ T Qualified	ϕ T Qualified	
	.6			$\phi egin{array}{c} { m Nominal size of} \ { m electrode} \end{array}$
	.12	ϕ Classification		
QW-404	.24	\pm or $\phi > 10\%$ in supplemental filler metal	t or $\phi > 10\%$ in supplemental filler metal	
Filler Metals	.27	ϕ Alloy elements		
	.37		ϕ A-Number	
	.39	ϕ Nominal flux comp.	ϕ Nominal flux comp.	
	.57	> Strip thickness or width	> Strip thickness or width	
QW-405 Positions	.4	+ Position	+ Position	
QW-406 Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass	
QW-407	.6	ϕ PWHT		
PWHT	.9		ϕ PWHT	
QW-409	.4	ϕ Current or polarity	ϕ Current or polarity	
Electrical	.8			φ I & E range
Characteristics	.26	1st layer — Heat input > 10%	1st layer — Heat input > 10%	
	.1			ϕ String or weave
	.5			ϕ Method of cleaning
	.7			ϕ Oscillation
	.8			ϕ Tube to work distance
0W-410	.15			ϕ Electrode spacing
Technique	.25			ϕ Manual or automatic
	.26			± Peening
	.38	ϕ Multiple to single layer	ϕ Multiple to single layer	
	.40		- Supplemental device	
	.50	ϕ No. of electrodes	ϕ No. of electrodes	
Legend: + Addition		> Increase or greater than 1	Uphill ← Forehand	

(**19**)

Paragrap	h	Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ϕ Groove design			Х
QW-402	.4	– Backing			Х
Joints	.10	ϕ Root spacing			Х
.11	.11	± Retainers			Х
L	.5	ϕ Group Number		Х	
	.6	T Limits		Х	
QW-403	.8	ϕ T Qualified	Х		
Base Metals	.9	$t \text{ Pass} > \frac{1}{2}$ in. (13 mm)	Х		
	.10	T limits (S. cir. arc)	Х		
	.11	ϕ P-No. qualified	Х		
.4	.4	ϕ F-Number	Х		
	.5	ϕ A-Number	Х		
	.6	ϕ Diameter			Х
	.12	ϕ Classification		Х	
QW-404 Filler Metals	.23	ϕ Filler metal product form	Х		
	.24	± or ϕ Supplemental	Х		
	.27	ϕ Alloy elements	Х		
	.30	ϕ t	Х		
	.32	t Limits (S. cir. arc)	Х		
	.33	ϕ Classification			Х
QW-405	.1	+ Position			Х
Positions	.3	$\phi \uparrow \downarrow$ Vertical welding			Х
	.1	Decrease > 100°F (55°C)	Х		
QW-406	.2	ϕ Preheat maint.			Х
Preheat	.3	Increase > 100°F (55°C) (IP)		Х	
QW-407	.1	ϕ PWHT	Х		
PWHT	.2	ϕ PWHT (T & T range)		Х	
	.1	± Trail or ϕ comp.			Х
	.2	ϕ Single, mixture, or %	Х		
QW-408	.3	ϕ Flow rate			Х
Gas	.5	\pm or ϕ Backing flow			х
	.9	– Backing or ϕ comp.	Х		
	.10	– Trail or ϕ comp.	Х		
	.1	> Heat input		X	
QW-409	.2	ϕ Transfer mode	Х		
Electrical Characteristics	.4	ϕ Current or polarity		X	Х
Shur actor 15tit5	.8	ϕ I & E range			Х

Welding Variables Procedure Specifications (WPS) — Gas Metal-Arc Welding (GMAW and FCAW) (Cont'd)						
Paragrap	h	Brief of Variables	Essential	Supplementary Essential	Nonessential	
	.1	ϕ String or weave			Х	
	.3	ϕ Orifice, cup, or nozzle size			Х	
	.5	ϕ Method cleaning			Х	
	.6	ϕ Method back gouge			Х	
	.7	ϕ Oscillation			Х	
QW-410	.8	ϕ Tube-work distance			Х	
Technique	.9	ϕ Multiple to single pass per side		Х	X	
	.10	ϕ Single to multiple electrodes		Х	Х	
	.15	ϕ Electrode spacing			Х	
	.25	ϕ Manual or automatic			Х	
	.26	± Peening			Х	
	.64	Use of thermal processes	Х			

		Special Pro	cess Variables		
		Essential	Variables		
Paragraph	. <u> </u>	Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Nonessential Variables fo HFO and CRO	
QW-402 Joints	.16	< Finished t	< Finished <i>t</i>		
QW-403	.20	ϕ P-Number	ϕ P-Number		
Base Metals	.23	ϕ T Qualified	ϕ T Qualified		
	.6			φ Nominal size of electrode	
	.12	ϕ Classification			
QW-404	.23	ϕ Filler metal product form	ϕ Filler metal product form		
Filler Metals	.24	t or $\phi > 10\%$ in supplemental filler metal	t or $\phi > 10\%$ in supplemental filler metal		
	.27	ϕ Alloy elements			
	.37		ϕ A-Number		
QW-405 Positions	.4	+ Position	+ Position		
QW-406 Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass		
QW-407 PWHT	.6	ϕ PWHT			
	.9		ϕ PWHT		
QW-408	.2	ϕ Single, mixture, or %	ϕ Single, mixture, or %		
Gas	.3			ϕ Flow rate	
	.4	ϕ Current or polarity	ϕ Current or polarity		
QW-409 Electrical	.8			ϕ I & E range	
Characteristics	.26	1st layer — Heat input > 10%	1st layer — Heat input > 10%		
	.1			ϕ String or weave	
	.3			ϕ Orifice, cup, or nozzle size	
	.5			ϕ Method of cleaning	
QW-410	.7			ϕ Oscillation	
Technique	.8			ϕ Tube to work distance	
[.25			ϕ Manual or automatic	
	.26			± Peening	
	.38	ϕ Multiple to single layer	ϕ Multiple to single layer		
	.50	ϕ No. of electrodes	ϕ No. of electrodes		
Legend: + Addition – Deletion		 > Increase or greater than < Decrease or less than 	↑ Uphill ← Foreha ↓ Downhill → Backha	1 - 0	

Table QW-255.1 Welding Variables Procedure Specifications (WPS) — Gas Metal-Arc Welding (GMAW and FCAW)

Paragrap	h	Brief of Variables Ess		Supplementary Essential		
QW-402	.1	ϕ Groove design			Х	
Joints	.5	+ Backing			Х	
	.10	ϕ Root spacing			Х	
	.11	± Retainers			X	
QW-403	.5	ϕ Group Number		х		
Base Metals	.6	T Limits		Х		
	.8	T Qualified	Х			
	.11	ϕ P-No. qualified	Х			
QW-404	.3	ϕ Size			Х	
Filler Metals	.4	ϕ F-Number	Х			
	.5	ϕ A-Number	Х			
	.12	ϕ Classification		Х		
	.14	± Filler	Х			
	.22	± Consum. insert			Х	
	.23	ϕ Filler metal product form	Х			
	.30	φ t	Х			
	.33	ϕ Classification			Х	
	.50	± Flux			Х	
QW-405	.1	+ Position			Х	
Positions	.3	$\phi \uparrow \downarrow$ Vertical welding			Х	
QW-406	.1	Decrease > 100°F (55°C)	Х			
Preheat	.3	Increase > 100°F (55°C) (IP)		Х		
QW-407	.1	ϕ PWHT	Х			
PWHT	.2	ϕ PWHT (T &T range)		Х		
QW-408	.1	± Trail or ϕ comp.			Х	
Gas	.2	ϕ Single, mixture, or %	Х			
	.3	ϕ Flow rate			Х	
	.5	\pm or ϕ Backing flow			Х	
	.9	– Backing or ϕ comp.	Х			
	.10	– Trail or ϕ comp.	Х			
	.1	> Heat input		х		
QW-409	.3	± Pulsing I			Х	
Electrical Characteris-	.4	ϕ Current or polarity		х	Х	
tics	.8	ϕ I & E range			Х	
	.12	ϕ Tungsten electrode			x	

(**19**)

Paragra	ph	Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ϕ String or weave			Х
	.3	ϕ Orifice, cup, or nozzle size			Х
	.5	ϕ Method cleaning			Х
	.6	ϕ Method back gouge			х
	.7	ϕ Oscillation			х
QW-410	.9	ϕ Multi to single pass per side		Х	Х
Technique	.10	ϕ Single to multi electrodes		Х	Х
	.11	ϕ Closed to out chamber	Х		
	.15	ϕ Electrode spacing			Х
	.25	ϕ Manual or automatic			Х
	.26	± Peening			Х
	.64	Use of thermal processes	X		

		Special Proce		1
		Essential		-
Paragraph		Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Nonessential Variables for HFC and CRO
QW-402 Joints	.16	< Finished t	< Finished t	
QW-403	.20	ϕ P-Number	ϕ P-Number	
Base Metals	.23	ϕ T Qualified	ϕ T Qualified	
	.3			ϕ Wire size
	.12	ϕ Classification		
QW-404 Filler Metals	.14	± Filler metal	± Filler metal	
Filler Metals	.23	ϕ Filler metal product form	ϕ Filler metal product form	
	.37		ϕ A-Number	
QW-405 Positions	.4	+ Position	+ Position	
<mark>QW-406</mark> Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass	
QW-407	.6	ϕ PWHT		
PWHT	.9		ϕ PWHT	
QW-408	.2	ϕ Single, mixture, or %	ϕ Single, mixture, or %	
Gas	.3			ϕ Flow rate
	.4	ϕ Current or polarity	ϕ Current or polarity	
QW-409	.8			ϕ I & E range
Electrical Characteristics	.12			ϕ Tungsten electrode
Characteristics	.26	1st layer — Heat input > 10%	1st layer — Heat input > 10%	
	.1			ϕ String or weave
	.3			ϕ Orifice, cup, or nozzle size
	.5			ϕ Method of cleaning
	.7			ϕ Oscillation
QW-410	.15			ϕ Electrode spacing
Technique	.25			ϕ Manual or automatic
	.26			± Peening
	.38	ϕ Multiple to single layer	ϕ Multiple to single layer	
	.50	ϕ No. of electrodes	ϕ No. of electrodes	
	.52			ϕ Filler metal delivery

(13)

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ϕ Groove design		Х	
QW-402	.5	+ Backing			Х
Joints	.10	ϕ Root spacing			Х
	.11	± Retainers			Х
	.5	ϕ Group Number		Х	
QW-403	.6	T Limits		Х	
Base Metals	.8	ϕ T Qualified	х		
	.12	ϕ P-Number or melt-in	Х		
	.3	ϕ Size			Х
<mark>QW-404</mark> Filler Metals	.4	ϕ F-Number	Х		
	.5	ϕ A-Number	X		
	.12	ϕ Classification		Х	
	.14	± Filler metal	Х		
	.22	± Consum. insert			Х
	.23	ϕ Filler metal product form	X		
	.27	ϕ Alloy elements	Х		
	.30	φ t	X		
	.33	ϕ Classification			Х
QW-405	.1	+ Position			Х
Positions	.3	ϕ $\uparrow\downarrow$ Vertical welding			Х
QW-406	.1	Decrease > 100°F (55°C)	Х		
Preheat	.3	Increase > 100°F (55°C) (IP)		Х	
QW-407	.1	ϕ PWHT	Х		
PWHT	.2	ϕ PWHT (T & T range)		Х	
	.1	± Trail or ϕ comp.			Х
	.4	ϕ Composition	X		
QW-408	.5	± Or ϕ backing flow			Х
Gas	.9	– Backing or ϕ comp.	х		
	.10	– Trail or ϕ comp.	Х		
	.21	ϕ Flow rate			Х
	.1	> Heat input		Х	
QW-409	.4	ϕ Current or polarity		Х	Х
Electrical Characteristics	.8	ϕ I & E range			Х
unai acter istics	.12	ϕ Tungsten electrode			х

Paragrap	h	Brief of Variables	Essential	Supplementary Essential	Nonessentia
	.1	ϕ String or weave			Х
	.3	ϕ Orifice, cup, or nozzle size			Х
	.5	ϕ Method cleaning			Х
	.6	ϕ Method back gouge			Х
	.7	ϕ Oscillation			Х
OW-410	.9	ϕ Multiple to single pass per side		Х	Х
Technique	.10	ϕ Single to multiple electrodes		Х	Х
	.11	ϕ Closed to out chamber	Х		
	.12	ϕ Melt-in to keyhole		Х	
	.15	ϕ Electrode spacing			Х
	.26	± Peening			Х
	.64	Use of thermal processes	Х		

Г

			Special Process Variables			
			Nonessential			
Paragraph		Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Hard-Facing Spray Fuse (HFSF) (QW-216)	Variables for HFO, CRO, and HFSF	
QW-402	.16	< Finished t	< Finished t			
Joints	.17			> Finished t		
QW-403	.20	ϕ P-Number	ϕ P-Number	ϕ P-Number		
Base Metals	.23	ϕ T Qualified	ϕ T Qualified			
	.12	ϕ Classification		ϕ Classification		
	.14	± Filler metal	± Filler metal			
	.23	ϕ Filler metal product form	ϕ Filler metal product form			
	.37		ϕ A-Number			
QW-404 Filler Metals	.41	ϕ > 10% Powder feed rate	ϕ > 10% Powder feed rate			
Filler Metals	.42			ϕ > 5% Particle size		
	.43	ϕ Particle size	ϕ Particle size			
	.44	ϕ Powder type	ϕ Powder type			
	.46			ϕ Powder feed rate		
QW-405 Positions	.4	+ Position	+ Position	+ Position		
<mark>QW-406</mark> Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass		
	.5			ϕ Preheat maintenance		
QW-407	.6	ϕ PWHT		ϕ PWHT		
PWHT	.7			ϕ PWHT after fusing		
	.9		ϕ PWHT			
QW-408	.1				± Trail or π comp	
Gas	.16	ϕ > 5% Arc or metal feed gas	$\phi~$ > 5% Arc or metal feed gas	$\phi~$ > 5% Arc or metal feed gas		
	.17	ϕ Type or mixture	ϕ Type or mixture			
	.18	<i>φ</i> > 10% Mix. comp.	ϕ > 10% Mix. comp.			
	.19			ϕ Plasma or feed gas comp.		
	.20			ϕ Plasma gas flow-rate range		
QW-409	.4	ϕ Current or polarity	ϕ Current or polarity			
Electrical	.8				ϕ I & E range	
Characteristics	.12			ϕ Type or size of electrode		
	.23			$\phi > 10\%$ I & E		
	.24	ϕ > 10% Filler wire watt.	ϕ > 10% Filler wire watt.			
	.25	$\phi > 10\%$ I & E	$\phi > 10\%$ I & E			

I

			Special Process Variables			
			Essential Variables		Nonessential	
Paragraph		Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Hard-Facing Spray Fuse (HFSF) (QW-216)	Variables for HFO CRO, and HFSF	
	.1				 φ String or weave (HFO and CR(only) 	
	.3				ϕ Orifice, cup, or nozzle size	
	.5				ϕ Method of cleaning	
	.7				ϕ Oscillation	
	.25				φ Manual or automatic	
)W-410	.26				± Peening	
Technique	.38	ϕ Multiple to single layer	ϕ Multiple to single layer	ϕ Multiple to single layer		
	.41	ϕ > 15% Travel speed	ϕ > 15% Travel speed			
	.43			ϕ > 10% Travel speed range		
	.44			ϕ > 15% Torch to workplace		
	.45			ϕ Surface preparation		
	.46			ϕ Spray torch		
	.47			$\phi > 10\%$ Fusing temp. or method		
	.48	ϕ Transfer mode	ϕ Transfer mode	ϕ Transfer mode		
	.49	ϕ Torch orifice diameter	ϕ Torch orifice diameter			
	.52	ϕ Filler metal del.	ϕ Filler metal del.			

Γ

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ϕ Groove design			Х
QW-402 Joints	.10	ϕ Root spacing			X
Joints	.11	± Retainers	Х		
	.1	ϕ P-Number	X		
QW-403 Base Metals	.4	ϕ Group Number		Х	
Base Metals	.9	$t \text{ Pass} > \frac{1}{2}$ in. (13 mm)	Х		
	.4	ϕ F-Number	Х		
	.5	ϕ A-Number	Х		
	.6	ϕ Diameter			X
QW-404 Filler Metals	.12	ϕ Classification		Х	
	.17	ϕ Flux type or comp.	Х		
	.18	ϕ Wire to plate	Х		
	.19	ϕ Consum. guide	Х		
	.33	ϕ Classification			X
QW-407	.1	ϕ PWHT	Х		
PWHT	.2	ϕ PWHT (T & T range)		Х	
QW-409 Electrical Characteristics	.5	φ ± 15% I & E range	x		
	.5	ϕ Method cleaning			X
	.7	ϕ Oscillation	Х		
QW-410	.10	ϕ Single to multiple electrodes	Х		
Technique	.15	ϕ Electrode spacing			Х
	.26	± Peening			X
	.64	Use of thermal processes	Х		
.egend:	.64	Use of thermal processes	X		

		Special Proc	ess Variables	
		Essential	Variables	
Paragraph		Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Nonessential Variables for HF(and CRO
QW-402 Joints	.16	< Finished t	< Finished t	
QW-403	.20	ϕ P-Number	ϕ P-Number	
Base Metals	.23	ϕ T Qualified	ϕ <i>T</i> Qualified	
	.6			ϕ Nominal size of electrode
	.12	ϕ Classification		
QW-404 Filler Metals	.24	t or $\phi > 10\%$ in supplemental filler metal	\pm or $\phi > 10\%$ in supplemental filler metal	
	.37		ϕ A-Number	
	.39	ϕ Nominal flux comp.	ϕ Nominal flux comp.	
	.57	> Strip thickness or width	> Strip thickness or width	
QW-406 Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass	
QW-407	.6	ϕ PWHT		
PWHT	.9		ϕ PWHT	
QW-409	.4	ϕ Current or polarity	ϕ Current or polarity	
Electrical	.8			φ I & E range
Characteristics	.26	1st layer — Heat input > 10%	1st layer — Heat input > 10%	
	.5			ϕ Method of cleaning
0141 44.0	.7			ϕ Oscillation (CRO only)
QW-410 Technique	.38	ϕ Multiple to single layer	ϕ Multiple to single layer	
reeninque	.40	 Supplemental device 	 Supplemental device 	
	.50	ϕ No. of electrodes	ϕ No. of electrodes	

Paragraph	ı	Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ϕ Groove design			х
QW-402	.10	ϕ Root spacing			X
Joints	.11	± Retainers	Х		
	.1	ϕ P-Number	Х		
	.5	ϕ Group Number		Х	
QW-403	.6	T Limits		Х	
Base Metals	.8	ϕ T Qualified	Х		
	.9	$t \text{ Pass} > \frac{1}{2}$ in. (13 mm)	Х		
	.4	ϕ F-Number	Х		
QW-404 Filler Metals	.5	ϕ A-Number	Х		
	.6	ϕ Diameter			Х
	.12	ϕ Classification		Х	
	.23	ϕ Filler metal product form	Х		
	.33	ϕ Classification			Х
<mark>QW-406</mark> Preheat	.1	Decrease > 100°F (55°C)			х
QW-407	.1	ϕ PWHT	Х		
PWHT	.2	ϕ PWHT (T & T range)		Х	
QW-408	.2	ϕ Single, mixture, or %	Х		
Gas	.3	ϕ Flow rate			Х
QW-409	.1	> Heat input		Х	
Electrical	.4	ϕ Current or polarity		Х	Х
Characteristics	.8	ϕ I & E range			Х
	.5	ϕ Method cleaning			Х
	.7	ϕ Oscillation			X
	.8	ϕ Tube-work distance			Х
QW-410	.9	ϕ Multiple to single pass per side		Х	Х
Technique	.10	ϕ Single to multiple electrodes	Х		
	.15	ϕ Electrode spacing			Х
	.26	± Peening			Х
	.64	Use of thermal processes	Х		
Legend: + Addition – Deletion		crease or greater than ↑ Uphill ecrease or less than ↓ Downhill		orehand Backhand	ϕ Change

Paragraph		Brief of Variables Essen	Essential	Supplementary Essential	Nonessential
	.1	ϕ Groove design	Х		
QW-402 Joints	.2	– Backing	Х		
Joints	.6	> Fit-up gap	Х		
	.1	ϕ P-Number	Х		
QW-403 Base Metals	.3	ϕ Penetration	Х		
Dase Metals	.15	ϕ P-Number	Х		
	.1	ϕ Cross section or speed	Х		
	.2	$< t \text{ or } \phi \text{ comp.}$	Х		
	.8	\pm or ϕ Chem. comp.	Х		
QW-404 Filler Metals	.14	± Filler	Х		
Filler Metals	.20	ϕ Method of addition	Х		
	.21	ϕ Analysis	Х		
	.33	ϕ Classification			Х
<mark>QW-406</mark> Preheat	.1	Decrease > 100°F (55°C)	Х		
QW-407 PWHT	.1	ϕ PWHT	Х		
QW-408 Gas	.6	ϕ Environment	X		
QW-409	.6	ϕ I, E, speed, distance, osc.	Х		
Electrical Characteristics	.7	ϕ Pulsing frequency	X		
	.5	ϕ Method cleaning			Х
	.7	ϕ Oscillation	X		
	.14	ϕ Angle of beam axis	Х		
	.17	ϕ Type equip.	Х		
QW-410 Technique	.18	> Pressure of vacuum	х		
reeninque	.19	ϕ Filament type, size, etc.	Х		
	.20	+ Wash pass	Х		
	.21	1 vs. 2 side welding	х		
	.64	Use of thermal processes	Х		

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
)W-402	.8	ϕ Stud shape size	X	Listential	Nonessentia
Joints	.9	- Flux or ferrule	X		
QW-403 Base Metal	.17	ϕ Base metal or stud metal P-No.	X		
QW-405 Positions	.1	+ Position	Х		
<mark>QW-406</mark> Preheat	.1	Decrease > 100°F (55°C)	Х		
QW-407 PWHT	.1	ϕ PWHT	Х		
QW-408 Gas	.2	ϕ Single, mixture, or %	Х		
	.4	ϕ Current or polarity	X		
QW-409 Electrical	.9	ϕ Arc timing	X		
Characteristics	.10	ϕ Amperage	X		
	.11	ϕ Power source	X		
QW-410	.22	ϕ Gun model or lift	X		
Technique	.64	Use of thermal processes	Х		

Paragrap	h	Brief of Variables		Essential	Supplementary Essential	Nonessentia
	.12	φ ± 10 deg		Х		
QW-402		ϕ Cross section > 10%		Х		
Joints		ϕ 0.D. > ± 10%		Х		
		ϕ Solid-to-tube		Х		
QW-403 Base Metals	.19	ϕ Base metal		Х		
QW-406 Preheat	.1	ϕ Decrease > 100°F (55°C)		Х		
QW-407 PWHT	.1	ϕ PWHT		Х		
QW-408 Gas	.6	ϕ Environment		Х		
	.27	ϕ Spp. > ± 10%		Х		
	.28	ϕ Load > ± 10%		Х		
QW-410 Technique	.29	ϕ Energy > ± 10%		Х		
rechnique	.30	ϕ Upset > ± 10%		Х		
	.64	Use of thermal processes		Х		
, ,						
Legend: + Addition		> Increase or greater than	↑ Unhill		← Forehand	φ Char
 Deletion 		< Decrease or less than	↓ Downh		\rightarrow Backhand	ψ σπαι

Γ

Paragraph		Brief of Variables	Essential	Nonessential
	.13	ϕ Spot, projection, seam	Х	
QW-402 Joints	.14	ϕ Overlap, spacing	Х	
Joints	.15	ϕ Projection, shape, size	Х	
	.1	<i>φ</i> P-No.	X	
QW-403 Base Metals	.21	± Coating, plating	X	
	.22	± T	Х	
QW-407 PWHT	.1	ϕ PWHT	Х	
QW-408 Gas	.23	– Gases	Х	
	.13	ϕ RWMA class	Х	
	.14	$\pm \phi$ Slope	Х	
QW-409 Electrical	.15	ϕ Pressure, current, time	Х	
Electrical	.17	ϕ Power supply		Х
	.18	Tip cleaning		Х
	.31	ϕ Cleaning method	Х	
	.32	ϕ Pressure, time	Х	
QW-410	.33	ϕ Equipment	Х	
Technique	.34	ϕ Cooling medium		Х
	.35	ϕ Throat		Х
	.64	Use of thermal processes	Х	

Essential X X X X X X X X X X X X X X X X X X X	Essential	Nonessenti
X X X X X X X X X X X X X X X X X		
X X X X X X X X X X X X X X X		
X X X X X X X X X X X X		
X X X X X X X X X X X X		
X X X X X X X X X X		
X X X X X X X X		
X X X X X X		
X X X X X		
X X X		
X X		
Х		
v		
Λ		
х		
X		
Х		
Х		
Х		
X		
Х		
Х		
Х		
		Х
x		
Х		
Х		
Х		
Х		
Х		
Х		
Х		
Х		
Х		
Х		
-	$\begin{array}{c c} & X \\ \hline & X \\ \leftarrow Fe$	X X X X X X X X X X X X X X X X X X X

یک دو سه صنعت 123sanat.com

		Special Pro	cess Variables		
		Essential	Variables		
		Corrosion-Resistant Overlay (CRO)		Nonessential Variables for HFC	
Paragrap	h	Hard-Facing Overlay (HFO) (QW-216)	(QW-214)	and CRO	
QW-402 Joints	.16	< Finished t	< Finished t		
QW-403 Base Metals	.20	ϕ P-Number	ϕ P-Number		
QW-404	.12	ϕ Classification	ϕ Classification		
Filler Metals	.27	ϕ Alloy elements	ϕ Alloy elements		
	.44	ϕ Particle type	ϕ Particle type		
	.47	ϕ Filler or powder metal size	ϕ Filler or powder metal size		
	.48	ϕ Powder metal density	ϕ Powder metal density		
	.49	ϕ Filler metal powder feed rate	ϕ Filler metal powder feed rate		
QW-405 Positions	.1	+ Position	+ Position		
QW-406 Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass		
QW-407	.6	ϕ PWHT			
PWHT	.9		ϕ PWHT		
QW-408	.2	ϕ Single, mixture, or %	ϕ Single, mixture, or %		
Gas	.6	ϕ Environment	ϕ Environment		
	.11	± Gases	± Gases		
- 	.12	Decrease > 10% flow rate	Decrease > 10% flow rate		
QW-409	.19	ϕ Pulse	ϕ Pulse		
Electrical	.20	ϕ Mode, energy	ϕ Mode, energy		
Characteristics	.21	Decrease > 10% power	Decrease > 10% power		
QW-410	.5			ϕ Method of cleaning	
Technique	.7	ϕ Oscillation	ϕ Oscillation		
	.14	ϕ Angle of beam axis	ϕ Angle of beam axis		
	.17	ϕ Type or model of equipment	ϕ Type or model of equipment		
	.38	ϕ Multiple to single layer	ϕ Multiple to single layer		
	.45	ϕ Method of surface prep.	ϕ Method of surface prep.		
	.52	ϕ Filler metal delivery	ϕ Filler metal delivery		
	.53	ϕ Overlap, spacing	ϕ Overlap, spacing		
	.77	ϕ Wavelength	ϕ Wavelength		
	.80	ϕ Spot size	ϕ Spot size		

				Supplementary		
Paragrap		Brief of Variables	Essential	Essential	Nonessential	
QW-402 Joints	.1	φ Groove design			X	
Joints	.5	+ Backing			Х	
	.10	ϕ Root spacing			Х	
	.11	± Retainers			Х	
	.5	ϕ Group number		Х		
QW-403	.6	T Limits		Х		
Base Metals	.8	T Qualified	X			
	.11	ϕ P-No. qualified	X			
	.3	ϕ Size			Х	
	.4	ϕ F-Number	X			
	.5	ϕ A-Number	X			
	.12	ϕ Classification		Х		
QW-404	.14	± Filler	X			
Filler Metals	.22	± Consum. insert			Х	
	.23	ϕ Filler metal product form	X			
	.30	φ t	X			
	.33	ϕ Classification			Х	
	.50	± Flux			Х	
QW-405	.1	+ Position			Х	
Positions	.3	$\phi \uparrow \downarrow$ Vertical welding			Х	
QW-406	.1	Decrease > 100°F (55°C)	Х			
Preheat	.3	Increase > 100°F (55°C) (IP)		Х		
QW-407	.1	ϕ PWHT	Х			
PWHT	.2	ϕ PWHT (T & T range)		Х		
	.1	± Trail or ϕ comp.			Х	
	.2	ϕ Single, mixture, or %	Х			
QW-408	.3	ϕ Flow rate			Х	
Gas	.5	\pm or ϕ Backing flow			Х	
	.9	– Backing or ϕ comp.	Х			
	.10	ϕ Shielding or trailing	Х			
	.1	> Heat input		Х		
QW-409	.19	ϕ Pulse	Х			
Electrical	.20	ϕ Mode, energy	х			
Characteristics	.21	Decrease > 10% power	х			

(**19**)

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
QW-410	.3	ϕ Orifice, cup, or nozzle size			Х
Technique	.5	ϕ Method cleaning			Х
	.6	ϕ Method back gouge			Х
	.7	ϕ Oscillation			Х
	.9	ϕ Multi to single pass per side		Х	Х
	.11	ϕ Closed to out chamber	Х		
	.26±Peening.64Use of thermal processes				Х
			Х		
	.66	ϕ Travel, Beam factors	Х		
	.67	ϕ Optical technique	Х		
	.68	ϕ Type of equipment	Х		
	.77	ϕ Wavelength	Х		
	.80	ϕ Spot size	Х		

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
Tatagraph	.19	ϕ Diameter or thickness	X	LSSential	Nonessentia
OW-402	.20	ϕ Joint configuration	X		
Joints	.21	ϕ Method or equip. used to minimize ID flash	X		
	.22	ϕ End preparation method	Х		
QW-403 Base Metals	.24	ϕ Spec., type, or grade	Х		
<mark>QW-406</mark> Preheat	.7	ϕ > 10% Amperage or number of preheat cycles, or method, or > 25°F (15°C) temperature	Х		
QW-407 PWHT	.8	ϕ PWHT, PWHT cycles, or separate PWHT time or temperature	Х		
QW-408 Gas	.22	ϕ Shielding gas composition, pressure, or purge time	Х		
QW-409	.27	ϕ > 10% Flashing time	Х		
Electrical Characteristics	.28	ϕ > 10% Upset current time	Х		
	.17	ϕ Type or model of equipment	Х		
	.54	ϕ > 10% Upset length or force	Х		
QW-410	.55	ϕ > 10% Distance between clamping dies or preparation of clamping area	Х		
Technique	.56	ϕ Clamping force	Х		
	.57	ϕ 10% Forward or reverse speed	Х		
	.64	Use of thermal processes	Х		

Paragrap	h	Brief of Variables Ess		Supplementary Essential	Nonessential
QW-403	.28	Base metal grade	Х		
Base Metals	.29	ϕ Surface finish	Х		
QW-404 Filler Metal	.53	± Filler metal and composition	Х		
QW-407 PWHT	.10	± PWHT temperature, time, cooling rate	Х		
QW-408 Gas	.25	ϕ Furnace Atmosphere	Х		
	.70	ϕ Preassembly Cleaning	Х		
QW-410 Technique	.71	< Block Compression	Х		
rechnique	.72	< Welding time or temperature	Х		

Paragrap	oh	Brief of Variables	Essential	Supplementary Essential	Nonessential
QW-402	.27	ϕ Fixed backing	Х		
Joints	.28	ϕ Joint design	Х		
	.29	ϕ Joint spacing > 10%	Х		
QW-403	.19	ϕ Type or grade	Х		
Base Metals	.30	ϕ T qualified > 20%	Х		
QW-404 Filler	.14	± Filler metal	Х		
Metals	.55	> Thickness or width of preplaced filler metal	Х		
	.56	ϕ Type/grade	Х		
QW-407 PWHT	.1	φ PWHT	Х		
QW-408 Gas	.26	ϕ Shielding gas	Х		
QW-410	.21	1-side vs. 2-side welding	Х		
Technique	.73	ϕ Joint restraint	Х		
	.74	ϕ Control method	Х		
	.75	ϕ Tool design	Х		
	.76	ϕ Tool operation	Х		

QW-283 WELDS WITH BUTTERING

QW-283.1 Scope. This paragraph only applies when the essential variables for the buttering process are different than the essential variables for the process used for subsequent completion of the joint. Common examples are

(a) the buttered member is heat treated and the completed weld is not heat treated after welding

(*b*) the filler metal used for buttering has a different F-Number from that used for the subsequent completion of the weld

QW-283.2 Tests Required. The procedure shall be qualified by buttering the test coupon (including heat treating of the buttered member when this will be done in production welding) and then making the subsequent weld joining the members. The variables for the buttering and for the subsequent weld shall be in accordance with QW-250, except that QW-409.1 shall be an essential variable for the welding process(es) used to complete the weld when the minimum buttering thickness is less than ${}^{3}\!/_{16}$ in. (5 mm). Mechanical testing of the completed weldment shall be in accordance with QW-202.2(a).

If the buttering is done with filler metal of the same composition as the filler metal used to complete the weld, one weld test coupon may be used to qualify the dissimilar metal joint by welding the first member directly to the second member in accordance with Section IX.

QW-283.3 Buttering Thickness. The thickness of buttering which shall remain on the production buttered member after all machining and grinding is completed and before subsequent completion of the joint shall be required by the WPS. When this thickness is less than $\frac{3}{16}$ in. (5 mm), the thickness of buttering on the test coupon shall be measured before the buttered member is welded to the second member. This thickness shall become the minimum qualified thickness of buttering.

QW-283.4 Qualification Alternative. When an essential variable is changed in the portion of the weld to be made after buttering or when a different organization is performing the portion of the weld to be made after buttering, a new qualification shall be performed in accordance with one of the following methods:

(a) Qualify in accordance with QW-283.2 and QW-283.3. When the original qualification buttering thickness is less than $\frac{3}{16}$ in. (5 mm), the buttering thickness shall not be greater, nor the heat input higher than was used on the original qualification.

(b) When the original qualification buttering thickness is ${}^{3}\!/_{16}$ in. (5 mm) or greater, qualify the portion of the weld to be made after buttering using any P-Number material that nominally matches the chemical analysis of the buttering weld metal for the buttered base metal of the test coupon.

QW-284 RESISTANCE WELDING MACHINE QUALIFICATION

Each resistance welding machine shall be tested to determine its ability to make welds consistently and reproducibly. A machine shall be requalified whenever it is rebuilt, moved to a new location requiring a change in power supply, when the power supply is changed, or any other significant change is made to the equipment. Spot and projection welding machine qualification testing shall consist of making a set of 100 consecutive welds. Every fifth of these welds shall be subjected to mechanical shear tests. Five welds, which shall include one of the first five and one of the last five of the set shall be metallographically examined. Seam welding machine qualification testing shall be the same as procedure qualification testing required per QW-286. Maintenance or adjustment of the welding machine shall not be permitted during welding of a set of test welds. Qualification testing on any P-No. 21 through P-No. 26 aluminum alloy shall qualify the machine for all materials. Qualification on P-No. 1 through P-No. 15F iron-base allovs and any P-No. 41 through P-No. 49 nickel-base alloys shall qualify the machine for all P-No. 1 through P-No. 15F and P-No. 41 through P-No. 49 metals. Qualification testing of the machine using base metals assigned to P-No. 51 through P-No. 53, P-No. 61, or P-No. 62 qualifies the welding machine to weld all base metals assigned to P-No. 51 through P-No. 53. P-No. 61, and P-No. 62. Testing and acceptance criteria shall be in accordance with **OW-196**.

QW-285 RESISTANCE SPOT AND PROJECTION WELD PROCEDURE QUALIFICATION

Procedure qualification testing for spot or projection welds shall be done following a Welding Procedure Specification, and it shall consist of making a set of ten consecutive welds. Five of these welds shall be subjected to mechanical shear tests and five to metallographic examination. Examination, testing, and acceptance criteria shall be in accordance with QW-196.

QW-286 RESISTANCE SEAM WELD PROCEDURE QUALIFICATION

QW-286.1 Test coupons described below shall consist of the same number of members, orientation, material grades or types, and thicknesses to be used in production welding.

QW-286.2 A test coupon as shown in Figure QW-462.7.1 shall be prepared by drilling a hole in the center of one of the outer coupon members. In the case of a test coupon containing more than two members, a hole shall be drilled in each member except for one of the outer members. A pipe nipple shall be welded or brazed to the outer member at the hole. The test coupon shall then be welded around the edges, sealing the space between the members as shown in Figure QW-462.7.1. The coupon

یک دو سه صنعت 123sanat.com shall be pressurized hydrostatically until failure occurs. The procedure qualification is acceptable if failure occurs in the base metal.

QW-286.3 A test coupon at least 10 in. (250 mm) long shall be made per Figure QW-462.7.2. This test coupon shall be cut transverse to the length of the weld into ten pieces, each approximately 1 in. (25 mm) long. Four transverse weld specimens and four longitudinal weld cross section specimens shall be cut and prepared as detailed in Figure QW-462.7.2. The specimens shall be metallographically examined for compliance with the requirements of QW-196.

QW-287 VARIATION OF SETTINGS FOR ELECTRIC RESISTANCE WELDING

Settings for preheating cycles, electrode pressure, welding current, welding time cycle, or postheating cycles may be varied by $\pm 5\%$ from the values recorded on the PQR, or by $\pm 10\%$ when only one of the above settings is changed.

(19) QW-288 TUBE-TO-TUBESHEET QUALIFICATION ESSENTIAL VARIABLES

Essential variables applicable to tube-to-tubesheet welding procedure qualifications in accordance with QW-193 are listed in Table QW-288.1 for all welding processes except explosion welding and Table QW-288.2 for explosion welding. Essential procedure qualification variables applicable for each welding process listed in QW-250 shall also be observed in addition to the variables of QW-288. A change in the welding process used shall require requalification.

(All Weldin	g Proc	be-t	es for Procedure o-Tubesheet Weldin es Except Explosion ng)
Paragrapl	n		Brief of Variables
QW-402	.31	<	Ligament size
Joints	.32	φ	Joint configuration
QW-403	.18	φ	P-Number or A-Number
Base Metals	.32	φ	Tube thickness
	.33	<	Cladding thickness
	.34	φ	P-Number
QW-404	.3	φ	Filler metal size
Filler Metals	.58	±	Preplaced filler metal
	.59	φ	A-number
QW-405	.3	φ	1↓ Vertical welding
Positions	.4	φ	Position
QW-406	.1		Decrease >100°F (55°C)
Preheat	.3		Increase >100°F (55°C) (IP)

Table QW-288.1 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (All Welding Processes Except Explosion Welding) (Cont'd)

Paragraph		Brief of Variables	
QW-407 PWHT	.1	φ	PWHT
QW-409	.4	φ	Polarity
Electrical Characteristics	.10	≥	Amperage
QW-410	.5	φ	Method of cleaning
Technique	.37	φ	Single to multiple pass
	.81	+	Tube expansion

Legend:

+ Addition	< Decrease
 Deletion 	
> Amnorago	than
> Amperage	ϕ Change

GENERAL NOTE: QW-403.32, QW-404.59, QW-405.3, QW-406.1, QW-406.3, QW-409.4, QW-409.10, QW-410.25, and QW-410.37 do not apply to explosion welding.

Table QW-288.2 Essential Variables for Procedure Qualification of Tube-to-Tubesheet Welding (Explosion Welding)

Paragraph		Brief of Variables	
QW-403 Base Metals	.35	φ	Tube thickness
QW-410	.82	φ	Pressure application
Technique	.83	φ	Explosive
	.84	φ	Distance charge to tubesheet
	.85	φ	Specified clearance

 ϕ Change

QW-289 LOW-ENERGY CAPACITOR DISCHARGE (19) WELDING

The following requirements apply to low-energy capacitor discharge welding:

(a) The energy output shall be limited to 125 W-sec.

(b) A Welding Procedure Specification describing the capacitor discharge equipment, the combination of materials to be joined, and the technique of application shall be prepared; qualification of the welding procedure is not required.

or less

QW-290 TEMPER BEAD WELDING

When the applicable Code Section specifies the use of this paragraph for temper bead welding, QW-290.1 through QW-290.6 shall apply.

QW-290.1 Basic Qualification and Upgrading Existing WPSs. All WPSs for temper bead welding of groove and fillet weld shall be qualified for groove welding in accordance with the rules in OW-202 for gualification by groove welding or the rules in QW-283 for welds with buttering. WPSs for overlav shall be qualified in accordance with QW-214 or QW-216. Once these requirements and any additional qualification requirements of the applicable construction code have been satisfied, then it is necessary only to prepare an additional test coupon using the same procedure with the same essential and, if applicable, the supplementary essential variables with the coupon long enough to obtain the required temper bead test specimens. Qualification for groove welding, welding with buttering or cladding, and temper bead welding may also be done in a single test coupon.

When a procedure has been previously qualified to satisfy all requirements including temper bead welding, but one or more temper bead welding essential or supplementary essential variables are changed, then it is necessary only to prepare an additional test coupon using the same procedure with the same essential and, if applicable, supplementary essential variables and new temper bead welding essential variable(s) with the coupon long enough to obtain the required test specimens. **QW-290.2** Welding Process Restrictions. Temper bead welding is limited to SMAW, GTAW, SAW, GMAW (including FCAW), LLBW, and PAW. Manual and semiautomatic GTAW and PAW are prohibited, except for the root pass of groove welds made from one side and as described for making repairs to temper bead welds in QW-290.6. The essential variables listed in Table QW-290.4 apply in addition to the variables applicable for the process(es) qualified as given in QW-250. When toughness testing is the basis for acceptance, the supplementary essential variables of QW-250 applicable to the process being qualified shall apply. When these variables conflict with or provide more stringent limitations than those of QW-250, these variables shall govern.

QW-290.3 Variables for Temper Bead Welding Qualifications. Table QW-290.4 lists the additional essential, supplementary essential, and nonessential variables that apply when temper bead qualification is required. Essential variables column A shall apply when the applicable Construction Code or Design Specification specifies hardness criteria for temper bead acceptance criteria. Column B shall apply when the applicable Construction Code or Design Specification specifies toughness testing for temper bead acceptance criteria. Column C shall apply when the applicable Construction Code or Design Specification specifies neither hardness nor toughness test criteria. The column "Nonessential Variables" applies in all cases.

			Essenti	al Variables <mark>[N</mark>	ote (1)]	Nonessential
Paragi	raph	Brief of Variables	A B		C C	Variables
0111 402	.23	+ Fluid backing	Х			
QW-402	.24	+ Fluid backing		Х	Х	
	.25	ϕ P-No. or Gr. No.		Х	Х	
QW-403	.26	> Carbon equivalent	Х			
	.27	> T	Х		Х	
0111 404	.51	Storage				Х
QW-404	.52	Diffusible hydrogen	Х	Х	Х	
	.9	< Preheat temperature	Х			
	.10	Preheat soak time				Х
QW-406	.11	Postweld bakeout				Х
QW-408	.24	Gas moisture				Х
QW-409	.29	ϕ Heat input ratio	Х	Х	Х	
	.10	ϕ Single to multiple electrode	Х	Х	Х	
	.58	– Surface temper beads	Х	Х	Х	
	.59	ϕ Type of welding	Х	Х	Х	
011/ 110	.60	+ Thermal preparation	Х	Х	Х	
QW-410	.61	Surface bead placement	Х	Х	Х	
	.62	Surface bead removal method				Х
	.63	Bead overlap	X	Х	Х	
	.65	± Grinding	Х	Х	х	

 ϕ Change

Legend:

+ Addition

- Deletion

> Increase or greater than< Decrease or less than

NOTE:

(1) Construction code or design specification requirements for Essential Variable columns:

A = where maximum hardness is specified

B = where toughness testing is specified

 $C \ \ \, = \ \,$ where maximum hardness or toughness testing is not specified

یک دو سه صنعت

QW-290.5 Test Coupon Preparation and Testing.

(*a*) The test coupon may be any geometry that is suitable for removal of the required specimens. It shall consist of a groove weld, a cavity in a plate, overlay, or other suitable geometry. The distance from each edge of the weld preparation to the edge of the test coupon shall be at least 3 in. measured transverse to the direction of welding. The depth of preparation shall be such that at least two layers of weld metal are deposited, one of which may be the surface temper bead layer and deep enough to remove the required test specimens.

(*b*) Only bend tests in accordance with QW-451 are required for the additional temper bead qualification when either hardness or toughness testing is also required. No qualified limitations or process essential or supplementary essential variables, if applicable, per QW-250 may be affected. Where neither maximum hardness nor toughness testing is specified by the applicable Code or Design Specification, all of the test requirements of QW-451 apply.

(c) When hardness testing is specified by a Construction Code or Design Specification, measurements shall be taken across the weld metal, heat-affected zone, and base metal using the Vickers method with a 10-kg load. Increments between measurements shall be as specified in ASTM E384. As an alternative to the Vickers method, Instrumented Indentation Testing in accordance with ASTM E2546 may be used with test forces in the macro range of 2.2 lbf to 265 lbf (1 kgf to 120 kgf) and increments between measurements as determined in accordance with ASTM E2546.

(1) Measurements shall be taken along a line at approximately mid-plane of the thickness of the test coupon weld metal. Along this line, there shall be

(-a) a minimum of two measurements in the weld metal fill layers.

(-b) at least one measurement on each: the weld beads against base metal, first-layer tempering beads, and the second-layer tempering beads.

(-c) a minimum of three measurements in the heat-affected zone. These measurements may be taken in a line approximately parallel to the HAZ when spacing between impressions does not allow for three measurements to be taken in a single line transverse to the HAZ.

(-*d*) a minimum of two measurements in the unaffected base metal.

(2) Additional measurements shall be taken along a line approximately 0.04 in. (1 mm) below the original base metal surface. Along this line, there shall be

(-a) a minimum of two measurements in the weld metal fill layers

(-b) at least one measurement on each: the weld beads against base metal, first-layer tempering beads, and the second-layer tempering beads

(-c) one measurement located immediately below the toe of the weld bead and at least one measurement on each side of that impression (3) When the coupon is a full-penetration groove weld made from one side, additional measurements shall be taken along a line approximately 0.04 in. (1 mm) above the root side surface. Along this line, there shall be a minimum of two measurements in the weld metal, two in the heat-affected zone, and two in the unaffected base metal.

Full-penetration groove weld test coupons qualify full and partial penetration groove welds, fillet welds, and weld build-up. Partial penetration groove weld test coupons only qualify partial penetration groove welds, fillet welds, and build-up. Overlay test coupons only qualify overlay welds.

Hardness readings shall not exceed the hardness limits specified by the Construction Code or Design Specification.

(*d*) When toughness testing is specified by the applicable Construction Code or Design Specification, the test coupon shall be tested for toughness. The extent of testing (i.e., weld metal, HAZ, unaffected base metal), the testing temperature, and the acceptance criteria shall be as provided in the applicable Construction Code or Design Specification.

QW-290.6 In-Process Repair Welding.

(a) In-process repairs to welds made using temper bead welding are permitted. In-process repairs are defined as repairs in which a flaw is mechanically removed and a repair weld is made before welding of a joint is presented for final visual inspection. Examples of such repairs are areas of removal of porosity, incomplete fusion, etc., where sufficient metal has been mechanically removed that localized addition of weld metal is necessary in order to make the surface geometry suitable for continuation of normal welding.

(*b*) Surfaces to be repaired shall be prepared by mechanical removal of flaws and preparation of the surface to a suitable geometry.

(c) For processes other than manual and semiautomatic GTAW and PAW, repairs shall be made using the parameters given in the WPS for production temper bead welding. The approximate location of beads to be deposited relative to the original base metal surface shall be identified, and the applicable parameters shall be used for the layers to be deposited as specified by the WPS.

(d) When it is necessary to make repairs using manual or semiautomatic GTAW or PAW, a WPS shall be prepared based on PQRs developed for temper bead welding using machine or automatic GTAW or PAW, respectively. This WPS shall describe the size of the beads to be deposited and the volts, amps, and travel speed to be used for the beads against the base metal, for each temper bead layer and for the fill and surface temper bead layers corresponding to the locations where repair welding is to be done. These shall be within the equivalent power ratio for machine or automatic welding for the respective layers given in QW-409.29.

(e) Welders who will use manual and semiautomatic GTAW or PAW shall be qualified to use these welding processes as required by QW-300. In addition, each welder shall complete a proficiency demonstration. For this demonstration, each welder shall deposit two or more weld beads using WPS parameters for each deposit layer. The test coupon size shall be sufficiently large to make the required weld bead passes. The minimum pass length shall be 4 in. (100 mm). The heat input used by the welder shall be measured for each pass, and the size of each weld bead

shall be measured for each pass, and they shall be as required by the WPS. The following essential variables shall apply for this demonstration:

(1) a change from one welding procedure to another

(2) a change from manual to semiautomatic welding and vice versa

(3) a change in position based on a groove weld in either plate or pipe as shown in Table QW-461.9

(4) continuity of qualification in accordance with QW-322 shall be based on following the WPS that was demonstrated in addition to using the process as required by QW-322

ARTICLE III WELDING PERFORMANCE QUALIFICATIONS

QW-300 GENERAL

(19) **QW-300.1** This Article lists the welding processes separately, with the essential variables that apply to welder and welding operator performance qualifications.

The welder qualification is limited by the essential variables given for each welding process. These variables are listed in QW-350, and are defined in Article IV Welding Data. The welding operator qualification is limited by the essential variables given in QW-360 for each type of weld.

A welder or welding operator may be qualified by volumetric NDE of a test coupon or their initial production welding within the limitations of QW-304 and QW-305 or by bend tests taken from a test coupon.

For the purpose of establishing performance qualification continuity, the welder's or welding operator's qualification continuity begins from the date welding of the test piece(s) was completed, provided the required testing was performed and the test results obtained were acceptable.

QW-301 TESTS

QW-301.1 Intent of Tests. The performance qualification tests are intended to determine the ability of welders and welding operators to make sound welds.

QW-301.2 **Qualification Tests.** Each organization shall qualify each welder or welding operator for each welding process to be used in production welding. The performance qualification test shall be welded in accordance with qualified Welding Procedure Specifications (WPS), or Standard Welding Procedure Specifications (SWPS) listed in Mandatory Appendix E, except that when performance qualification is done in accordance with a WPS or SWPS that requires a preheat or postweld heat treatment, these may be omitted. Changes beyond which requalification is required are given in QW-350 for welders and in QW-360 for welding operators. Allowable visual, mechanical, and radiographic examination requirements are described in QW-304 and QW-305. Retests and renewal of qualification are given in QW-320.

The welder or welding operator who prepares the WPS qualification test coupons meeting the requirements of QW-200 is also qualified within the limits of the

performance qualifications, listed in QW-304 for welders and in QW-305 for welding operators. He is qualified only within the limits for positions specified in QW-303.

QW-301.3 Identification of Welders and Welding **Operators.** Each qualified welder and welding operator shall be assigned an identifying number, letter, or symbol by the organization, which shall be used to identify the work of that welder or welding operator.

QW-301.4 Record of Tests. The record of Welder or Welding Operator Performance Qualification (WPQ) tests shall include the essential variables (QW-350 or QW-360), the type of test and test results, and the ranges qualified in accordance with QW-452 for each welder and welding operator. Suggested forms for these records are given in Forms QW-484A/QW-484B (see Nonmandatory Appendix B).

QW-302 TYPE OF TEST REQUIRED

QW-302.1 Mechanical Tests. Except as may be specified for special processes (QW-380), the type and number of test specimens required for mechanical testing shall be in accordance with QW-452. Groove weld test specimens shall be removed in a manner similar to that shown in Figures QW-463.2(a) through QW-463.2(g). Fillet weld test specimens shall be removed in a manner similar to that shown in Figures QW-462.4(a) through QW-462.4(d) and Figure QW-463.2(h).

All mechanical tests shall meet the requirements prescribed in QW-160 or QW-180, as applicable.

QW-302.2 Volumetric NDE. When the welder or welding operator is qualified by volumetric NDE, as permitted in QW-304 for welders and QW-305 for welding operators, the minimum length of coupon(s) to be examined shall be 6 in. (150 mm) and shall include the entire weld circumference for pipe(s), except that for small diameter pipe, multiple coupons of the same diameter pipe may be required, but the number need not exceed four consecutively made test coupons. The examination technique and acceptance criteria shall be in accordance with QW-191.

QW-302.3 Test Coupons in Pipe. For test coupons made on pipe in position 1G or 2G of Figure QW-461.4, two specimens shall be removed as shown for bend specimens in Figure QW-463.2(d) or Figure QW-463.2(e), omitting the specimens in the upper-right and lower-left quadrants, and replacing the root-bend specimen in the upper-left quadrant of Figure QW-463.2(d) with a facebend specimen. For test coupons made on pipe in position 5G or 6G of Figure QW-461.4, specimens shall be removed in accordance with Figure QW-463.2(d) or Figure QW-463.2(e) and all four specimens shall pass the test. For test coupons made in both positions 2G and 5G on a single pipe test coupon, specimens shall be removed in accordance with Figure QW-463.2(f) or Figure QW-463.2(g).

QW-302.4 Visual Examination. For plate coupons all surfaces (except areas designated "discard") shall be examined visually per QW-194 before cutting of bend specimens. Pipe coupons shall be visually examined per QW-194 over the entire circumference, inside and outside.

QW-303 LIMITS OF QUALIFIED POSITIONS AND DIAMETERS (SEE QW-461)

QW-303.1 Groove Welds — **General.** Welders and welding operators who pass the required tests for groove welds in the test positions of Table QW-461.9 shall be qualified for the positions of groove welds, tack welds in joints to be groove or fillet welded, and fillet welds shown in Table QW-461.9. In addition, welders and welding operators who pass the required tests for groove welds shall also be qualified to make fillet welds in all thicknesses and pipe diameters of any size within the limits of the welding variables of QW-350 or QW-360 and tack welds in joints to be groove or fillet welded as limited in Table QW-461.9, as applicable.

QW-303.2 Fillet Welds — General. Welders and welding operators who pass the required tests for fillet welds in the test positions of Table QW-461.9 shall be qualified for the positions of fillet welds, and tack welds in joints to be fillet welded, shown in Table QW-461.9. Welders and welding operators who pass the tests for fillet welds shall be qualified to make tack welds in joints to be fillet welded as limited in Table QW-461.9 and fillet welds only in the thicknesses of material, sizes of fillet welds, and diameters of pipe and tube $2^{7}/_{8}$ in. (73 mm) O.D. and over, as shown in Table QW-452.5, within the applicable essential variables. Welders and welding operators who make fillet welds on pipe or tube less than $2\frac{7}{8}$ in. (73 mm) O.D. must pass the pipe fillet weld test per Table QW-452.4 or the required mechanical tests in QW-304 and QW-305 as applicable.

QW-303.3 Special Positions. An organization who does production welding in a special orientation may make the tests for performance qualification in this specific orientation. Such qualifications are valid only for

the flat position and for the special positions actually tested, except that an angular deviation of ± 15 deg is permitted in the inclination of the weld axis and the rotation of the weld face, as defined in Figures QW-461.1 and QW-461.2.

QW-303.4 Stud-Weld Positions. Qualification in the 4S position also qualifies for the 1S position. Qualification in the 4S and 2S positions qualifies for all positions.

QW-303.5 Tube-to-Tubesheet Welder and Welding (19) Operator Qualification.

DELETED

QW-304 WELDERS

Except for the special requirements of QW-380, each welder who welds under the rules of the Code shall have passed the mechanical and visual examinations prescribed in QW-302.1 and QW-302.4 respectively. Alternatively, welders may be qualified by volumetric NDE per QW-191 when making a groove weld using SMAW, SAW, GTAW, PAW, and GMAW (except short-circuiting mode for radiographic examination) or a combination of these processes, except for P-No. 21 through P-No. 26, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62 metals. Welders making groove welds in P-No. 21 through P-No. 26 and P-No. 51 through P-No. 53 metals with the GTAW process may also be qualified by volumetric NDE per QW-191. The Volumetric NDE shall be in accordance with QW-302.2.

A welder qualified to weld in accordance with one qualified WPS is also qualified to weld in accordance with other qualified WPSs, using the same welding process, within the limits of the essential variables of QW-350.

QW-304.1 Examination. Welds made in test coupons for performance qualification may be examined by visual and mechanical examinations (QW-302.1, QW-302.4) or by volumetric NDE (QW-302.2) for the process(es) and mode of arc transfer specified in QW-304. Alternatively, a minimum 6 in. (150 mm) length of the first production weld(s) made by a welder using the process(es) and/or mode of arc transfer specified in QW-304 may be examined by volumetric NDE.

(a) For pipe(s) welded in the 5G, 6G, or special positions, the entire production weld circumference made by the welder shall be examined.

(b) For small diameter pipe where the required minimum length of weld cannot be obtained from a single production pipe circumference, additional consecutive circumferences of the same pipe diameter made by the welder shall be examined, except that the total number of circumferences need not exceed four. (c) The examination technique and acceptance criteria for production welds shall be in accordance with QW-191.

QW-304.2 Failure to Meet Examination Standards. If a production weld is selected for welder performance qualification and it does not meet the examination standards, the welder has failed the test. In this event, the entire production weld made by this welder shall be examined and repaired by a qualified welder or welding operator. Alternatively, retests may be made as permitted in QW-320.

QW-305 WELDING OPERATORS

Except for the special requirements of QW-380, each welding operator who welds under the rules of this Code shall have passed the mechanical and visual examinations prescribed in QW-302.1 and QW-302.4, respectively. Alternatively, welding operators may be qualified by volumetric NDE per QW-191 when making a groove weld using SMAW, SAW, GTAW, PAW, EGW, LLBW, and GMAW (except short-circuiting mode for radiographic examination) or a combination of these processes, except for P-No. 21 through P-No. 26, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62 metals. Welding operators making groove welds in P-No. 21 through P-No. 26 and P-No. 51 through P-No. 53 metals with the GTAW process may also be qualified by volumetric NDE. The volumetric NDE shall be in accordance with QW-302.2.

A welding operator qualified to weld in accordance with one qualified WPS is also qualified to weld in accordance with other qualified WPSs within the limits of the essential variables of QW-360.

QW-305.1 Examination. Welds made in test coupons may be examined by volumetric NDE (QW-302.2) or by visual and mechanical examinations (QW-302.1, QW-302.4). Alternatively, a minimum 3 ft (1 m) length of the first production weld(s) made entirely by the welding operator in accordance with a qualified WPS may be examined by volumetric NDE.

(*a*) For pipe(s) welded in the 5G, 6G, or special positions, the entire production weld circumference made by the welding operator shall be examined.

(b) For small diameter pipe where the required minimum length of weld cannot be obtained from a single production pipe circumference, additional consecutive circumferences of the same pipe diameter made by the welding operator shall be examined except that the total number of circumferences need not exceed four.

(c) The examination technique and acceptance criteria for production welds shall be in accordance with QW-191.

QW-305.2 Failure to Meet Examination Standards. If a portion of a production weld is selected for welding operator performance qualification, and it does not meet the examination standards, the welding operator has failed the test. In this event, the entire production weld made by this welding operator shall be examined completely and repaired by a qualified welder or welding operator. Alternatively, retests may be made as permitted in QW-320.

QW-306 COMBINATION OF WELDING PROCESSES

Each welder or welding operator shall be qualified within the limits given in OW-301 for the specific welding process(es) he will be required to use in production welding. A welder or welding operator may be qualified by making tests with each individual welding process in separate test coupons, or with a combination of welding processes in a single test coupon. Two or more welders or welding operators, each using the same or a different welding process, may be qualified in combination in a single test coupon. For combination gualifications in a single test coupon, the limits for thicknesses of deposited weld metal, and bend and fillet testing are given in QW-452 and shall be considered individually for each welder or welding operator for each welding process or whenever there is a change in an essential variable. A welder or welding operator qualified in combination on a single test coupon is qualified to weld in production using any of his processes individually or in different combinations, provided he welds within his limits of qualification with each specific process.

Failure of any portion of a combination test in a single test coupon constitutes failure of the entire combination.

QW-310 QUALIFICATION TEST COUPONS

QW-310.1 Test Coupons. The test coupons may be plate, pipe, or other product forms. When all position qualifications for pipe are accomplished by welding one pipe assembly in both the 2G and 5G positions (Figure QW-461.4), NPS 6 (DN 150), NPS 8 (DN 200), NPS 10 (DN 250), or larger diameter pipe shall be employed to make up the test coupon as shown in Figure QW-463.2(f) for NPS 10 (DN 250) or larger pipe and in Figure QW-463.2(g) for NPS 6 (DN 150) or NPS 8 (DN 200) diameter pipe.

QW-310.2 Welding Groove With Backing. The dimensions of the welding groove on the test coupon used in making qualification tests for double-welded groove welds or single-welded groove welds with backing shall be the same as those for any Welding Procedure Specification (WPS) qualified by the organization, or shall be as shown in Figure QW-469.1.

A single-welded groove-weld test coupon with backing or a double-welded groove-weld test coupon shall be considered welding with backing. Partial penetration groove welds and fillet welds are considered welding with backing. **QW-310.3** Welding Groove Without Backing. The dimensions of the welding groove of the test coupon used in making qualification tests for single-welded groove welds without backing shall be the same as those for any WPS qualified by the organization, or as shown in Figure QW-469.2.

QW-320 RETESTS AND RENEWAL OF QUALIFICATION

QW-321 RETESTS

A welder or welding operator who fails one or more of the tests prescribed in QW-304 or QW-305, as applicable, may be retested under the following provisions.

QW-321.1 Immediate Retest Using Visual Examina-tion. When the qualification coupon has failed the visual examination of QW-302.4, retesting shall be by visual examination before conducting the mechanical testing.

When an immediate retest is made, the welder or welding operator shall make two consecutive test coupons for each position which he has failed, all of which shall pass the visual examination requirements.

The examiner may select one of the successful test coupons from each set of retest coupons which pass the visual examination for conducting the mechanical testing.

QW-321.2 Immediate Retest Using Mechanical Testing. When the qualification coupon has failed the mechanical testing of QW-302.1, retesting shall be by mechanical testing.

When an immediate retest is made, the welder or welding operator shall make two consecutive test coupons for each position which he has failed, all of which shall pass the test requirements.

QW-321.3 Immediate Retest Using Volumetric NDE. When the qualification coupon has failed the volumetric NDE of QW-302.2, the immediate retest shall be by the same examination method.

(*a*) For welders and welding operators the retest shall be to examine two 6 in. (150 mm) plate coupons; for pipe, to examine two or more pipe coupons of the same diameter for a total of 12 in. (300 mm) of weld, which shall include the entire weld circumference for pipe or pipes (for small diameter pipe the total number of consecutively made test coupons need not exceed eight).

(b) At the option of the organization, the welder who has failed the production weld alternative test may be retested by examining additional weld areas equal to twice the required length or number of pipe circumferences of the same or consecutively made production weld(s) specified in QW-304.1. If this length of weld passes the test, the welder is qualified and the area of weld on which he had previously failed the test shall be repaired by him or another qualified welder. If this length does not meet the examination standards, the welder has failed

the retest and all of the production welds made by this welder shall be examined completely and repaired by a qualified welder or welding operator.

(c) At the option of the organization, the welding operator who has failed the production weld alternative test may be retested by examining additional weld areas equal to twice the required length or number of pipe circumferences of the same or consecutively made production weld (s) specified in QW-305.1. If this length of weld passes the test, the welding operator is qualified and the area of weld on which he had previously failed the test shall be repaired by him or another qualified welder or welding operator. If this length does not meet the examination standards, the welding operator has failed the retest and all of the production welds made by this welding operator shall be examined completely and repaired by a qualified welder or welding operator.

QW-321.4 Further Training. When the welder or the welding operator has had further training or practice, a new test shall be made for each position on which he failed to meet the requirements.

QW-322 EXPIRATION, REVOCATION, AND RENEWAL OF QUALIFICATION

QW-322.1 Continuity and Revocation of Qualification.

(a) Continuity. The performance qualification of a welder or welding operator shall remain valid, provided no greater than 6 months have passed since the qualified welding process was last used under the supervision and control of the qualifying or participating organization(s) as identified in QG-106.2 and QG-106.3, respectively, by the

(1) welder using manual or semiautomatic welding, or

(2) welding operator using machine or automatic welding

(b) Revocation. When there is a specific reason to question the welder's or the welding operator's ability to make welds that meet the specification, the qualifications that support the welding he is doing shall be revoked. All other qualifications not questioned remain in effect.

QW-322.2 Renewal of Qualification.

(a) Renewal of qualification that has expired under the rules of QW-322.1(a) may be achieved for any process by welding a single test coupon of either plate or pipe, of any material, thickness or diameter, in any position, as required by QW-301 and successfully completing the testing required by QW-302. This successful test renews the welder or welding operator's previous qualifications for that process for those materials, thicknesses, diameters, positions, and other variables for which he was previously qualified.

Providing the requirements of QW-304 and QW-305 are satisfied, renewal of qualification under QW-322.1(a) may be done on production work.

(b) Welders and welding operators whose qualification(s) have been revoked under the provisions of QW-322.1(b) above shall requalify. Qualification shall utilize a test coupon appropriate for the revoked qualification(s). The coupon shall be welded as required by QW-301 and tested as required by QW-302. Successful completion of the qualification test restores the revoked qualification(s).

QW-350 WELDING VARIABLES FOR WELDERS

QW-351 GENERAL

A welder shall be requalified whenever a change is made in one or more of the essential variables listed for each welding process.

Where a combination of welding processes is required to make a weldment, each welder shall be qualified for the particular welding process or processes he will be required to use in production welding. A welder may be qualified by making tests with each individual welding process, or with a combination of welding processes in a single test coupon.

The limits of weld metal thickness for which he will be qualified are dependent upon the approximate thickness of the weld metal he deposits with each welding process, exclusive of any weld reinforcement, this thickness shall be considered the test coupon thickness as given in QW-452.

In any given production weldment, welders may not deposit a thickness greater than that permitted by QW-452 for each welding process in which they are qualified.

Table QW-352 Oxyfuel Gas Welding (OFW) Essential Variables			
Paragrap	h	Brief of Variables	
QW-402 Joints	.7	+ Backing	
QW-403	.2	Maximum qualified	
Base Metals	.18	ϕ P-Number	
	.14	± Filler	
QW-404 Filler Metals	.15	ϕ F-Number	
	.31	ϕ t Weld deposit	
QW-405 Positions	.1	+ Position	
QW-408 Gas	.7	ϕ Type fuel gas	

Table QW-353		
Shielded Metal-Arc Welding (SMAW)		

Essential Variables

Paragraph		Brief of Variables
QW-402 Joints	.4	– Backing
QW-403 Base Metals	.16	ϕ Pipe diameter
	.18	ϕ P-Number
QW-404 Filler Metals	.15	ϕ F-Number
	.30	ϕ t Weld deposit
QW-405	.1	+ Position
Positions	.3	ϕ $\uparrow \downarrow$ Vertical welding

Table QW-354 Semiautomatic Submerged-Arc Welding (SAW)

Essential Variables

Paragraph		Brief of Variables
QW-403	.16	ϕ Pipe diameter
Base Metals	.18	ϕ P-Number
QW-404	.15	ϕ F-Number
Filler Metals	.30	t Weld deposit
QW-405 Positions	.1	+ Position

Table QW-355 Semiautomatic Gas Metal-Arc Welding (GMAW)

[This Includes Flux-Cored Arc Welding (FCAW)] Essential Variables

h	Brief of Variables
.4	– Backing
.16	ϕ Pipe diameter
.18	ϕ P-Number
.15	ϕ F-Number
.30	ϕ t Weld deposit
.32	t Limit (S. Cir. Arc.)
.1	+ Position
.3	ϕ $\uparrow\downarrow$ Vertical welding
.8	- Backing gas
.2	ϕ Transfer mode
	.4 .16 .18 .15 .30 .32 .1 .3 .8

Table QW-356 Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW)			
	Essentia	ll Variables	
Paragra	ph	Brief of Variables	
QW-402 Joints	.4	– Backing	
QW-403	.16	ϕ Pipe diameter	
Base Metals	.18	ϕ P-Number	
	.14	± Filler	
	.15	ϕ F-Number	
QW-404 Filler Metals	.22	± Inserts	
Filler Metals	.23	ϕ Filler metal product form	
	.30	ϕ t Weld deposit	
QW-405	.1	+ Position	
Positions	.3	ϕ $\uparrow\downarrow$ Vertical welding	
QW-408 Gas	.8	- Backing gas	
QW-409 Electrical	.4	ϕ Current or polarity	
Legend: φ Change + Addition – Deletion		↑ Uphill ↓ Downhill	

Table QW-357 Manual and Semiautomatic Plasma-Arc Welding (PAW)

Essential Variables				
Paragraph		Brief of Variables		
QW-402 Joints	.4	– Backing		
QW-403	.16	ϕ Pipe diameter		
Base Metals	.18	ϕ P-Number		
	.14	± Filler		
	.15	ϕ F-Number		
QW-404 Filler Metals	.22	± Inserts		
Filler Metals	.23	ϕ Filler metal product form		
	.30	ϕ t Weld deposit		
QW-405	.1	+ Position		
Positions	.3	$\phi \uparrow \downarrow$ Vertical welding		
QW-408 Gas	.8	 Backing gas 		
Legend: φ Change + Addition – Deletion		↑ Uphill ↓ Downhill		

QW-360 WELDING VARIABLES FOR WELDING OPERATORS

QW-361 GENERAL

A welding operator shall be requalified whenever a change is made in one of the following essential variables (QW-361.1 and QW-361.2). There may be exceptions or additional requirements for the processes of QW-362, QW-363, and the special processes of QW-380.

QW-361.1 Essential Variables — Automatic Welding.

(a) A change from automatic to machine welding.

(*b*) A change in the welding process.

(c) For electron beam and laser welding, the addition or deletion of filler metal.

(d) For laser welding and hybrid welding using lasers, a change in laser type (e.g., a change from CO_2 to YAG).

(e) For friction welding, a change from continuous drive to inertia welding or vice versa.

(f) For electron beam welding, a change from vacuum to out-of-vacuum equipment, and vice versa.

QW-361.2 Essential Variables — Machine Welding.

(*a*) A change in the welding process.

(b) A change from direct visual control to remote visual control and vice-versa.

(c) The deletion of an automatic arc voltage control system for GTAW.

(d) The deletion of automatic joint tracking.

(e) The addition of welding positions other than those already qualified (see QW-120, QW-130, and QW-303).

(f) The deletion of consumable inserts, except that qualification with consumable inserts shall also qualify for fillet welds and welds with backing.

(g) The deletion of backing. Double-welded groove welds are considered welding with backing.

(*h*) A change from single pass per side to multiple passes per side but not the reverse.

(i) For hybrid plasma-GMAW welding, the essential variable for welding operator qualification shall be in accordance with Table QW-357.

QW-362 ELECTRON BEAM WELDING (EBW), LASER BEAM WELDING (LBW), HYBRID WELDING, AND FRICTION WELDING (FRW)

The performance qualification test coupon shall be production parts or test coupons that have joint designs permitted by any qualified WPS. The coupon shall be mechanically tested in accordance with QW-452. Alternatively, when the part or coupon does not readily lend itself to the preparation of bend test specimens, the part may be cut so that at least two full-thickness weld cross sections are exposed. Those cross sections shall be smoothed and etched with a suitable etchant (see QW-470) to give a clear definition of the weld metal and heat-affected zone. The weld metal and heat-affected zone shall exhibit complete fusion and freedom from cracks. The essential variables for welding operator qualification shall be in accordance with QW-361.

QW-363 STUD WELDING

Stud welding operators shall be performance qualified in accordance with the test requirements of QW-192.2 and the position requirements of QW-303.4.

QW-380 SPECIAL PROCESSES

(19) QW-381 CORROSION-RESISTANT WELD METAL OVERLAY

QW-381.1 The size of test coupons, limits of base metal thickness qualification, required examinations and tests, and test specimens shall be as specified in QW-381.2 and Table QW-453.

QW-381.2 The qualification test coupon for performance qualification shall consist of base metal not less than 6 in. (150 mm) × 6 in. (150 mm). The weld overlay cladding shall be a minimum of $1^{1}/_{2}$ in. (38 mm) wide by approximately 6 in. (150 mm) long. For qualification on pipe, the pipe length shall be a minimum of 6 in. (150 mm) and the diameter shall be the minimum needed to allow the required number of test specimens. The weld overlay shall be continuous around the circumference of the test coupon. For processes depositing a weld bead width greater than $1/_{2}$ in. (13 mm) wide, the weld overlay shall consist of a minimum of three weld beads in the first layer.

(a) The test coupon shall be sectioned to make sidebend test specimens perpendicular to the direction of the welding in accordance with QW-161. For coupons that are less than $\frac{3}{8}$ in. (10 mm) thick, the width of the sidebend specimens may be reduced to the thickness of the test coupon. Test specimens shall be removed at locations specified in Figure QW-462.5(c) or Figure QW-462.5(d).

(b) Welders or welding operators who pass the tests for corrosion-resistant weld metal overlay cladding shall only be qualified to apply corrosion-resistant weld metal overlay portion of a groove weld joining clad materials or lined materials.

(c) The essential variables of QW-350 and QW-360 shall apply for welders and welding operators, respectively, except there is no limit on the maximum thickness of corrosion-resistant overlay that may be applied in production. When specified as essential variables, the limitations of position and diameter qualified for groove welds shall apply to overlay welds, except the limitations on diameter qualified shall apply only to welds deposited in the circumferential direction.

QW-381.3 Qualification on Clad Materials. A welder or welding operator who has qualified on clad material or lined material as provided in QW-383.1(b) is also qualified to deposit corrosion-resistant weld metal overlay.

QW-381.4 Alternative Qualification With Groove Weld Tests. When a chemical composition is not specified in the WPS, welders or welding operators who successfully complete a groove weld performance qualification test meeting the corrosion-resistant overlay bend test requirements of QW-163 may be considered qualified for corrosion-resistant overlay welding within the ranges defined in QW-350 or QW-360.

QW-382 HARD-FACING WELD METAL OVERLAY (WEAR RESISTANT)

QW-382.1 Qualification Test.

(**19**)

(a) The test base metal coupon for performance qualification shall have minimum dimensions of 6 in. (150 mm) wide × approximately 6 in. (150 mm) long with a hard-faced layer a minimum of $1^{1}/_{2}$ in. (38 mm) wide × 6 in. (150 mm) long. The minimum hard-faced thickness shall be as specified in the WPS. Alternatively, the qualification may be performed on a test base metal coupon that represents the size of the production part. For qualification on pipe, the pipe length shall be 6 in. (150 mm) minimum and the diameter shall be the minimum needed to allow the required number of test specimens. The weld overlay shall be continuous around the circumference of the test coupon.

(b) The base metal shall be sectioned transversely to the direction of the hard-facing overlay. The two faces of the hard facing exposed by sectioning shall be polished and etched with a suitable etchant and shall be visually examined with 5X magnification for cracks in the base metal or the heat-affected zone, lack of fusion, or other linear defects. The overlay and base metal shall meet the requirements specified in the WPS. All exposed faces shall be examined. See Figure QW-462.5(b) for pipe and Figure QW-462.5(e) for plate.

(c) At a thickness greater than or equal to the minimum thickness specified in the WPS, the weld surface shall be examined by the liquid penetrant method and shall meet the acceptance standards in QW-195.2 or as specified in the WPS. Surface conditioning prior to liquid penetrant examination is permitted.

(*d*) The size of the test coupons, limits of base metal thickness qualification, required examinations and tests, and test specimens shall be as specified in Table QW-453. Base material test coupons may be as permitted in QW-423.

(e) Welders and welding operators who pass the tests for hard-facing weld metal overlay are qualified for hardfacing overlay only.

(f) The essential variable, of QW-350 and QW-360, shall apply for welders and welding operators, respectively, except there is no limit on the maximum thickness of hard-facing overlay that may be applied in production. When specified as essential variables, the limitations of position and diameter qualified for groove welds shall

apply to overlay welds except the limitations on diameter qualified shall apply only to welds deposited in the circumferential direction.

(g) Qualification with one AWS classification within an SFA specification qualifies for all other AWS classifications in that SFA specification.

(*h*) A change in welding process shall require welder and welding operator requalification.

QW-383 JOINING OF CLAD MATERIALS AND APPLIED LININGS

(19) QW-383.1 Clad Materials.

(*a*) Welders and welding operators who will join the base material portion of clad materials shall be qualified for groove welding in accordance with QW-301. Welders and welding operators who will apply the cladding portion of a weld between clad materials shall be qualified in accordance with QW-381. Welders and welding operators need only be qualified for the portions of clad material welds that they will make in production.

(b) As an alternative to (a), welders and welding operators may be qualified using clad material test coupons. The test coupon shall be at least $\frac{3}{8}$ in. (10 mm) thick and of dimensions such that a groove weld can be made to join the base materials and the corrosion-resistant weld metal overlay can be applied to the completed groove weld. Four side-bend test specimens shall be removed from the completed test coupon and tested. The groove weld portion and the corrosion-resistant weld metal overlay portion of the test coupon shall be evaluated using the respective criteria in QW-163. Welders and welding operators qualified using clad material test coupons are qualified to join base materials as provided by QW-301, and they are qualified to apply corrosion-resistant weld metal overlay as provided by QW-381.

QW-383.2 Applied Linings.

(*a*) Welders and welding operators shall be qualified following the rules for making groove or fillet welds in accordance with QW-301. Plug welds for attaching applied linings shall be considered equivalent to fillet welds for the purpose of performance qualification.

(b) An alternate test coupon shall consist of the geometry to be welded, except the base material need not exceed 1 in. (25 mm) in thickness. The welded test coupon shall be sectioned and etched to reveal the weld and heat-affected zone. The weld shall show penetration into the base metal.

QW-384 RESISTANCE WELDING OPERATOR QUALIFICATION

Each welding operator shall be tested on each machine type which he will use. Qualification testing on any P-No. 21 through P-No. 26 metal shall qualify the operator for all metals. Qualification on any P-No. 1 through P-No. 15F or any P-No. 41 through P-No. 49 metals shall qualify the operator for all P-No. 1 through P-No. 15F and P-No. 41 through P-No. 49 metals. Qualification testing on any P-No. 51 through P-No. 53, P-No. 61, or P-No. 62 metal shall qualify the operator for all P-No. 51 through P-No. 53, P-No. 61, and P-No. 53, P-No. 61, and P-No. 62 metals.

(*a*) Qualification for spot and projection welding shall consist of making a set of ten consecutive welds, five of which shall be subjected to mechanical shear tests or peel tests, and five to macro-examination. Examination, testing, and acceptance criteria shall be in accordance with QW-196.

(*b*) Qualification for seam welding shall consist of that testing specified in QW-286.3, except that only one transverse cross section and one longitudinal cross section are required.

QW-385 FLASH WELDING OPERATOR QUALIFICATION

Each welding operator shall be tested by welding a test coupon following any WPS. The test coupon shall be welded and tested in accordance with QW-199. Qualification following any flash welding WPS qualifies the operator to follow all flash welding WPSs.

Production weld sampling tests required by other Sections may be used to qualify welding operators. The test method, extent of tests, and acceptance criteria of the other Sections and QW-199.2 shall be met when this is done.

QW-386 DIFFUSION WELDING OPERATOR QUALIFICATION

Each welding operator shall be tested by welding a procedure qualification test coupon in accordance with QW-185.1. The coupon shall be metallographically examined in accordance with QW-185.3.

QW-387 TUBE-TO-TUBESHEET WELDER AND (19) WELDING OPERATOR QUALIFICATION

(*a*) When the applicable Code Section requires the use of QW-193 for tube-to-tubesheet demonstration mockup qualification tests, QW-193.2 shall apply.

(b) Essential performance qualification variables applicable for each welding process listed in QW-350 shall also be observed in addition to the variables of Table QW-388. A change in the welding process used shall require requalification.

Copyright ASME International (BPVC)

(c) If specific qualification test requirements are not specified by the applicable Code Section, welders and welding operators shall be qualified with one of the following methods:

(1) a demonstration mockup per the requirements of QW-193.2, except that for welding operators

(-a) the hole pattern does not need to be duplicated

(-*b*) the type or model of equipment is an essential variable

(2) a groove-weld qualification per the requirements of QW-303.1

(**19**)

Table QW-388 Essential Variables for Tube-to-Tubesheet Performance Qualification

(Welders; All Welding Processes)

Paragraph		Brief of Variables	
QW-402	.31	≤ Ligament size	
Joints	.32	ϕ Joint configuration	
QW-403	.16	ϕ Tube diameter	
Base Metals	.32	ϕ Tube thickness	
QW-404 Filler Metals	.58	± Preplaced filler metal	
QW-409 Electrical	.10	> Amperage	
Legend: ϕ Change \pm Addition or deletion > Increase			

QW-389 CAPACITOR DISCHARGE WELDING (19) OPERATOR QUALIFICATION (19)

Welding operators using low-energy capacitor discharge welding in accordance with QW-289 are not required to be qualified.

ARTICLE IV WELDING DATA

QW-400 VARIABLES

QW-401 GENERAL

Each welding variable described in this Article is applicable as an essential, supplementary essential, or nonessential variable for procedure qualification when referenced in QW-250 for each specific welding process. Essential variables for performance qualification are referenced in QW-350 for each specific welding process. A change from one welding process to another welding process is an essential variable and requires requalification.

QW-401.1 Supplementary Essential Variable (Procedure). Supplementary essential variables are in addition to the essential variables for each welding process.

When a procedure has been previously qualified to satisfy all requirements other than toughness, it is then necessary only to prepare an additional test coupon using the same procedure with the same essential variables, but additionally with all of the required supplementary essential variables, with the coupon long enough to provide the necessary toughness specimens.

When a procedure has been previously qualified to satisfy all requirements including toughness, but one or more supplementary essential variable is changed, then it is only necessary to prepare an additional test coupon using the same welding procedure and the new supplementary essential variable(s), with the coupon long enough to provide the necessary toughness specimens. If a previously qualified weld procedure has satisfactory toughness values in the weld metal, then it is necessary only to test toughness specimens from the heat-affected zone when such are required.

When essential variables are qualified by one or more PQRs and supplementary essential variables are qualified by other PQRs, the ranges of essential variables established by the former PQRs are only affected by the latter to the extent specified in the applicable supplementary essential variable (e.g., essential variable QW-403.8 governs the minimum and maximum thickness of base metal qualified. When supplementary essential variable QW-403.6 applies, it modifies only the minimum thickness qualified, not the maximum).

QW-401.2 The welding data includes the welding variables grouped as joints, base metals, filler metals, position, preheat, postweld heat treatment, gas, electrical

characteristics, and technique. For convenience, variables for each welding process are summarized in Table QW-416 for performance qualification.

QW-402 JOINTS

QW-402.1 A change in the type of groove (Vee-groove, U-groove, single-bevel, double-bevel, etc.).

QW-402.2 The addition or deletion of a backing.

QW-402.3 A change in the nominal composition of the backing.

QW-402.4 The deletion of the backing in single-welded groove welds. Double-welded groove welds are considered welding with backing.

QW-402.5 The addition of a backing or a change in its nominal composition.

QW-402.6 An increase in the fit-up gap, beyond that initially qualified.

QW-402.7 The addition of backing.

QW-402.8 A change in nominal size or shape of the stud at the section to be welded.

QW-402.9 In stud welding, a change in shielding as a result of ferrule or flux type.

QW-402.10 A change in the specified root spacing.

QW-402.11 The addition or deletion of nonmetallic retainers or nonfusing metal retainers.

QW-402.12 The welding procedure qualification test shall duplicate the joint configuration to be used in production within the limits listed, except that pipe or tube to pipe or tube may be used for qualification of a pipe or tube to other shapes, and solid round to solid round may be used for qualification of a solid round to other shapes

(a) any change exceeding ± 10 deg in the angle measured for the plane of either face to be joined, to the axis of rotation

(b) a change in cross-sectional area of the weld joint greater than 10%

(*c*) a change in the outside diameter of the cylindrical weld interface of the assembly greater than $\pm 10\%$

(*d*) a change from solid to tubular cross section at the joint or vice versa regardless of (b)

QW-402.13 A change in the method of joining from spot to projection to seam or vice versa.

QW-402.14 An increase or decrease of more than 10% in the spacing of the welds when they are within two diameters of each other.

QW-402.15 A change in the size or shape of the projection in projection welding.

QW-402.16 A decrease in the distance between the approximate weld interface and the final surface of the production corrosion-resistant or hard-facing weld metal overlay below the minimum thickness qualified as shown in Figures QW-462.5(a) through QW-462.5(e). There is no limit on the maximum thickness for corrosion-resistant or hard-facing weld metal overlay that may be used in production.

QW-402.17 An increase in the thickness of the production spray fuse hard-facing deposit above the thickness deposited on the procedure qualification test coupon.

QW-402.18 For lap joints,

(*a*) a decrease of more than 10% in the distance to the edge of the material

(b) an increase in the number of layers of material

(c) a change in surface preparation or finish from that qualified

QW-402.19 A change in the nominal diameter or nominal thickness for tubular cross sections, or an increase in the total cross section area beyond that qualified for all nontubular cross sections.

(19) **QW-402.20**

DELETED

QW-402.21 A change in the method or equipment used to minimize internal flash.

QW-402.22 A change in the end preparation method.

QW-402.23 For test coupons less than $1^{1}/_{2}$ in. (38 mm) thick, the addition of a cooling medium (water, flowing gas, etc.) to the back side of the weld. Qualification on test coupons less than $1^{1}/_{2}$ in. (38 mm) thick with a cooling medium on the back side of the weld qualifies base metal thickness equal to or greater than the test coupon thickness with and without coolant.

QW-402.24 Qualification with a cooling medium (water, flowing gas, etc.) on the root side of a test coupon weld that is welded from one side qualifies all thicknesses of base metal with cooling medium down to the thickness of the test coupon at the root or $\frac{1}{2}$ in. (13 mm), whichever is less.

QW-402.25 A change from lap joint to groove weld-ing, and vice versa.

QW-402.26 A reduction of more than 5 deg in the edge preparation bevel angle for groove welds.

QW-402.27 A change in material of fixed backing anvils (when used). A change in backing anvil design that affects the weld cooling rate (e.g., a change from air-cooled to water-cooled, and vice versa). This variable is not applicable to tube-to-tubesheet or double-sided welds with overlapping fusion zones, or welds completed using self-reacting pins.

QW-402.28 A change in joint design from that qualified, including edge preparation geometry (e.g., a change from square butt edge to beveled edge), reductions in the smallest joint path radius to less than the shoulder radius, or joint paths crossing themselves or another HAZ.

QW-402.29 A change in joint spacing greater than $\pm 10\%$ of the qualification test coupon thickness. For WPSs qualified using intimate edge contact, the maximum allowable joint spacing is $\frac{1}{16}$ in. (1.5 mm).

QW-402.30 A decrease of 10% or more in the speci-(19) fied width of the ligament between tube holes when the specified width of the ligament is less than the greater of $\frac{3}{8}$ in. (10 mm) or three times the specified tube wall thickness.

QW-402.31 For tube-to-tubesheet welding: an in- (19) crease in the depth by more than 10%, an increase or decrease in the preparation angle of the weld groove by more than 5 deg, or a change in the groove type.

QW-403 BASE METALS

QW-403.1 A change from a base metal listed under one P-Number in Table QW/QB-422 to a metal listed under another P-Number or to any other base metal. When joints are made between two base metals that have different P-Numbers, a procedure qualification shall be made for the applicable combination of P-Numbers, even though qualification tests have been made for each of the two base metals welded to itself.

QW-403.2 The maximum thickness qualified is the thickness of the test coupon.

QW-403.3

(*a*) For full penetration single-sided welds without backing where the verification of penetration can be made, an increase of more than 20% in base metal thickness when the test coupon thickness is less than or equal to 1 in. (25 mm), and more than 10% in base metal thickness when the test coupon thickness is greater than 1 in. (25 mm).

(*b*) For all other welds, an increase of more than 10% in base metal thickness when the test coupon thickness is less than or equal to 1 in. (25 mm), and more than 5% in base metal thickness when the test coupon thickness is greater than 1 in. (25 mm).

QW-403.4 Welding procedure qualifications shall be made using a base metal of the same type or grade or another base metal listed in the same group (see Table QW/QB-422) as the base metal to be used in production

welding. When joints are to be made between base metals from two different groups, a procedure qualification must be made for the applicable combination of base metals, even though procedure qualification tests have been made for each of the two base metals welded to itself.

(19) **QW-403.5** Welding procedure specifications shall be qualified using one of the following:

(*a*) the same base metal (including type or grade) to be used in production welding

(b) for ferrous materials, a base metal listed in the same P-Number Group Number in Table QW/QB-422 as the base metal to be used in production welding

(c) for nonferrous materials, a base metal listed with the same P-Number UNS Number in Table QW/QB-422 as the base metal to be used in production welding

For ferrous materials in Table QW/QB-422, a procedure qualification shall be made for each P-Number Group Number combination of base metals, even though procedure qualification tests have been made for each of the two base metals welded to itself. If, however, two or more qualification records have the same essential and supplementary essential variables, except that the base metals are assigned to different Group Numbers within the same P-Number, then the combination of base metals is also qualified. In addition, when base metals of two different Group Numbers within the same P-Number are qualified using a single test coupon, that coupon qualifies the welding of those two Group Numbers within the same P-Number to themselves as well as to each other using the variables qualified.

This variable does not apply when toughness testing of the heat-affected zone is not required by other Sections.

QW-403.6 The minimum base metal thickness qualified is the thickness of the test coupon T or $\frac{5}{8}$ in. (16 mm), whichever is less. However, where T is $\frac{1}{4}$ in. (6 mm) or less, the minimum thickness qualified is $\frac{1}{2}T$. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-403.8 A change in base metal thickness beyond the range qualified in QW-451, except as otherwise permitted by QW-202.4(b).

QW-403.9 For single-pass or multipass welding in which any pass is greater than $\frac{1}{2}$ in. (13 mm) thick, an increase in base metal thickness beyond 1.1 times that of the qualification test coupon.

QW-403.10 For the short-circuiting transfer mode of the gas metal-arc process, when the qualification test coupon thickness is less than $\frac{1}{2}$ in. (13 mm), an increase in thickness beyond 1.1 times that of the qualification test coupon. For thicknesses of $\frac{1}{2}$ in. (13 mm) and greater, use Table QW-451.1 or Table QW-451.2, as applicable.

QW-403.11 Base metals specified in the WPS shall be qualified by a procedure qualification test that was made using base metals in accordance with QW-424.

QW-403.12 A change from a base metal listed under one P-Number of Table QW/QB-422 to a base metal listed under another P-Number. When joints are made between two base metals that have different P-Numbers, requalification is required even though the two base metals have been independently qualified using the same procedure. When the melt-in technique is used for joining P-No. 1, P-No. 3, P-No. 4, and P-No. 5A, a procedure qualification test with one P-Number metal shall also qualify for that P-Number metal welded to each of the lower P-Number metals, but not vice versa.

QW-403.15 Welding procedure qualifications for electron beam welding shall be made using a base metal of the same type or grade or another base metal listed in the same P-Number (and the same group where given — see Table QW/QB-422) as the base metal to be used in production welding. When joints are to be made between base metals from two different P-Numbers (or two different groups), a procedure qualification must be made for the applicable combination of base metals even though procedure qualification tests have been made for each of the two base metals welded to itself.

QW-403.16 A change in the pipe diameter beyond the (19) range qualified in QW-452, except as otherwise permitted in QW-303.1, QW-303.2, QW-381.2(c), or QW-382.1(f). For tube-to-tubesheet welding: an increase or decrease greater than 10% of the specified tube diameter.

(*a*) For a groove weld attaching a set-on nozzle or branch (with the weld preparation on the nozzle or branch), the range qualified from Table QW-452.3 shall be based on the nozzle or branch pipe O.D.

(b) For a groove weld attaching a set-in nozzle or branch (with the weld preparation on the shell, head, or run pipe), the range qualified from Table QW-452.3 shall be based on the shell, head, or run pipe O.D.

QW-403.17 In stud welding, a change in combination of base metal listed under one P-Number in Table QW/QB-422 and stud metal P-Number (as defined in the following Note), or to any other base metal and stud metal combination.

NOTE: Stud metal shall be classified by nominal chemical composition and can be assigned a P-Number when it meets the nominal composition of any one of the P-Number metals.

QW-403.18 A change from one P-Number to any other P-Number or to a base metal not listed in Table QW/QB-422, except as permitted in QW-423, and in QW-420. For tube-to-tubesheet welding: a change in the P-Number or A-Number of the tubesheet cladding material (if the cladding material is part of the weld).

QW-403.19 A change to another base material type or grade (type or grade are materials of the same nominal chemical analysis and mechanical property range, even though of different product form), or to any other base material type or grade. When joints are made between two different types or grades of base material, a procedure qualification must be made for the applicable combinations of materials, even though procedure qualification tests have been made for each of the two base materials welded to itself.

(19) QW-403.20 If the chemical composition of the weld metal overlay is specified in the WPS, a change in the P-Number listed in Table QW/QB-422 to another P-Number or unlisted base metal, or a change in Group Number for P-No. 10 or P-No. 11 base metals.

If the chemical composition of the weld metal overlay is not specified in the WPS, qualification on P-No. 5A or any lower P-Number base metal also qualifies for weld metal overlay on all lower P-Number base metals.

QW-403.21 The addition or deletion of a coating, plating or cladding, or a change in the nominal chemical analysis or thickness range of the plating or cladding, or a change in type of coating as specified in the WPS.

QW-403.22 A change in the base metal thickness exceeding 10% of the thickness of the total joint from that qualified.

QW-403.23 A change in base metal thickness beyond the range qualified in Table QW-453.

QW-403.24 A change in the specification, type, or grade of the base metal. When joints are to be made between two different base metals, a procedure qualification must be made for the applicable combination even though procedure qualifications have been made for each of the two base metals welded to themselves.

QW-403.25 Welding procedure qualifications shall be made using a base metal of the same P-Number and Group Number as the base metal to be temper bead welded. When joints are to be made between base metals from two different P-Number and Group Number combinations, a temper bead procedure qualification must be made for each base metal P-Number and Group Number combination to be used in production; this may be done in separate test coupons or in combination on a single test coupon. When base metals of different P-Number and Group Number combinations are tested in the same coupon, the welding variables utilized and test results on each member of the coupon shall be documented independently but may be reported on the same qualification record. Where temper bead welding is to be applied to only one member of a joint (e.g., on the P-No. 1 member of a joint between P-No. 1 and P-No. 8 metals) or where cladding is being applied or repaired using temper bead techniques, qualification in accordance with QW-290 is required only for the portion of the WPS that applies to welding on the member to be temper bead welded.

QW-403.26 An increase in the base metal carbon equivalent using the following equation:

$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$

QW-403.27 The maximum thickness qualified is the thickness of the test coupon, *T*, or it is unlimited if the test coupon is $1^{1}/_{2}$ in. (38 mm) thick or thicker. However, where *T* is $1^{1}/_{4}$ in. (6 mm) or less, the maximum thickness qualified is 2*T*. This limitation applies to fillet welds as well as to groove welds.

QW-403.28 A change to another base metal type, grade, or UNS number.

QW-403.29 A change in the surface finish as defined by the material specification or established surface roughness range as measured in accordance with ASME B46.1–2006.

QW-403.30 A change in base metal thickness greater than 20%

(a) of the test coupon thickness for fixed-pin and retracting-pin rotating tools

(b) beyond the minimum and maximum thickness or thickness transition slopes of the test coupon for selfreacting rotating tools

QW-403.31 For tubes of specified wall thickness of (19) 0.100 in. (2.5 mm) or less, a change in tube wall thickness to increase it to more than 2T or to decrease it to less than $\frac{1}{2}T$. For tubes of specified wall thickness greater than 0.100 in. (2.5 mm), only one qualification test is required.

QW-403.32 A change in the P-Number of either the (19) tube or tubesheet material. Where the cladding or overlay material is part of the weld, a change in the P-Number or A-Number or in the nominal composition of the tubesheet cladding or overlay material when a P-Number or A-Number is not assigned.

QW-403.33 A change in the specified tube wall thick- (19) ness or diameter greater than 10% for all diameters and wall thicknesses.

QW-404 FILLER METALS

QW-404.1 An increase of greater than 10% in the cross-sectional area of the filler metal added (excluding buttering) or in the wire-feed speed beyond that qualified.

QW-404.2 A decrease in the thickness or change in nominal specified chemical analysis of weld metal buttering beyond that qualified. (Buttering or surfacing is the deposition of weld metal on one or both faces of the joint prior to preparation of the joint for final electron beam welding.)

QW-404.3 A change in the size of the filler metal.

QW-404.4 A change from one F-Number in Table QW-432 to any other F-Number or to any other filler metal not listed in Table QW-432.

(19) QW-404.5 (Applicable only to ferrous metals.) A change in the chemical composition of the weld deposit from one A-Number to any other A-Number in Table QW-442. Qualification with A-No. 1 shall qualify for A-No. 2 and vice versa.

The weld metal chemical composition may be determined by any of the following:

(a) For all welding processes — from the chemical analysis of the weld deposit taken from the procedure qualification test coupon.

(b) For SMAW, GTAW, LBW, and PAW — from the chemical analysis of the weld deposit prepared according to the filler metal specification, or from the chemical composition as reported either in the filler metal specification or the manufacturer's or supplier's certificate of compliance.

(c) For GMAW and EGW — from the chemical analysis of the weld deposit prepared according to the filler metal specification or the manufacturer's or supplier's certificate of compliance when the shielding gas used was the same as that used to weld the procedure qualification test coupon.

(*d*) For SAW — from the chemical analysis of the weld deposit prepared according to the filler metal specification or the manufacturer's or supplier's certificate of compliance when the flux used was the same as that used to weld the procedure qualification test coupon.

In lieu of an A-Number designation, the nominal chemical composition of the weld deposit shall be indicated on the WPS and on the PQR. Designation of nominal chemical composition may also be by reference to the AWS classification except for the "G" suffix classification, by the manufacturer's trade name, or by other established procurement documents.

QW-404.6 A change in the nominal size of the electrode or electrodes specified in the WPS.

QW-404.7 A change in the nominal diameter of the electrode to over $\frac{1}{4}$ in. (6 mm). This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic material is solution annealed after welding.

QW-404.8 Addition or deletion, or a change of more than 10% in the nominal amount or composition of supplementary deoxidation material (in addition to filler metal) beyond that qualified.

QW-404.9

(a) A change in the indicator for minimum tensile strength (e.g., the 7 in F7A2-EM12K) when the flux wire combination is classified in Section II, Part C.

(*b*) A change in either the flux trade name or wire trade name when neither the flux nor the wire is classified in Section II, Part C.

(c) A change in the flux trade name when the wire is classified in Section II, Part C but the flux is not classified. A change in the wire classification within the requirements of QW-404.5 does not require regualification.

(d) A change in the flux trade name for A-No. 8 deposits.

QW-404.10 Where the alloy content of the weld metal is largely dependent upon the composition of the flux used, any change in any part of the welding procedure which would result in the important alloying elements in the weld metal being outside of the specification range of chemistry given in the Welding Procedure Specification.

QW-404.12 A change in the filler metal classification (19) within an SFA specification, or for a filler metal not covered by an SFA specification or a filler metal with a "G" suffix within an SFA specification, a change in the trade name of the filler metal.

When a filler metal conforms to a filler metal classification, within an SFA specification, except for the "G" suffix classification, requalification is not required if a change is made in any of the following:

(a) from a filler metal that is designated as moisture-resistant to one that is not designated as moisture-resistant and vice versa (i.e., from E7018R to E7018)

(b) from one diffusible hydrogen level to another (i.e., from E7018-H8 to E7018-H16)

(c) for carbon, low alloy, and stainless steel filler metals having the same minimum tensile strength and the same nominal chemical composition, a change from one low hydrogen coating type to another low hydrogen coating type (i.e., a change among EXX15, 16, or 18 or EXXX15, 16, or 17 classifications)

(*d*) from one position-usability designation to another for flux-cored electrodes (i.e., a change from E70T-1 to E71T-1 or vice versa)

(e) from a classification that requires toughness testing to the same classification which has a suffix which indicates that toughness testing was performed at a lower temperature or exhibited greater toughness at the required temperature or both, as compared to the classification which was used during procedure qualification (i.e., a change from E7018 to E7018-1)

(f) from the classification qualified to another filler metal within the same SFA specification when the weld metal is exempt from toughness testing by other Sections

This exemption does not apply to hard-facing and corrosion-resistant overlays

QW-404.14 The deletion or addition of filler metal.

QW-404.15 A change from one F-Number in Table QW-432 to any other F-Number or to any other filler metal, except as permitted in QW-433.

 $\ensuremath{\textbf{QW-404.17}}$ A change in the type of flux or composition of the flux.

QW-404.18 A change from wire to plate electrodes, and vice versa.

QW-404.19 A change from consumable guide to non-consumable guide, and vice versa.

QW-404.20 Any change in the method by which filler metal is added, such as preplaced shim, top strip, wire, wire feed, or prior weld metal buttering of one or both joint faces.

QW-404.21 For filler metal additions, any change from the nominal specified analysis of the filler metal qualified.

QW-404.22 The omission or addition of consumable inserts. Qualification in a single-welded butt joint, with or without consumable inserts, qualifies for fillet welds and single-welded butt joints with backing or double-welded butt joints. Consumable inserts that conform to SFA-5.30, except that the chemical analysis of the insert conforms to an analysis for any bare wire given in any SFA specification or AWS Classification, shall be considered as having the same F-Number as that bare wire as given in Table QW-432.

QW-404.23 A change from one of the following filler metal product forms to another:

- (a) bare (solid or metal cored)
- (b) flux cored
- (c) flux coated (solid or metal cored)
- (d) powder

QW-404.24 The addition, deletion, or change of more than 10% in the volume of supplemental filler metal.

QW-404.27 Where the alloy content of the weld metal is largely dependent upon the composition of the supplemental filler metal (including powder filler metal for PAW), any change in any part of the welding procedure that would result in the important alloying elements in the weld metal being outside of the specification range of chemistry given in the Welding Procedure Specification.

QW-404.29 A change in the flux trade name and designation.

QW-404.30 A change in deposited weld metal thickness beyond that qualified in accordance with QW-451 for procedure qualification or QW-452 for performance qualification, except as otherwise permitted in QW-303.1 and QW-303.2. When a welder is qualified using volumetric examination, the maximum thickness stated in Table QW-452.1(b) applies.

QW-404.31 The maximum thickness qualified is the thickness of the test coupon.

QW-404.32 For the low voltage short-circuiting type of gas metal-arc process when the deposited weld metal thickness is less than $\frac{1}{2}$ in. (13 mm), an increase in deposited weld metal thickness beyond 1.1 times that of the qualification test deposited weld metal thickness. For

weld metal thicknesses of $\frac{1}{2}$ in. (13 mm) and greater, use Table QW-451.1, Table QW-451.2, or Tables QW-452.1(a) and QW-452.1(b), as applicable.

QW-404.33 A change in the filler metal classification within an SFA specification, or, if not conforming to a filler metal classification within an SFA specification, a change in the manufacturer's trade name for the filler metal. When optional supplemental designators, such as those which indicate moisture resistance (i.e., XXXXR), diffusible hydrogen (i.e., XXXX H16, H8, etc.), and supplemental toughness testing (i.e., XXXX-1 or EXXXXM), are specified on the WPS, only filler metals which conform to the classification with the optional supplemental designator(s) specified on the WPS shall be used.

QW-404.34 A change in flux type (i.e., neutral to active or vice versa) for multilayer deposits in P-No. 1 materials.

QW-404.35 A change in the flux-wire classification or a change in either the electrode or flux trade name when the flux-wire combination is not classified to an SFA specification. Requalification is not required when a flux-wire combination conforms to an SFA specification and the change in classification is

(*a*) from one diffusible hydrogen level to another (e.g., a change from F7A2-EA1-A1-H4 to F7A2-EA1-A1-H16), or

(b) to a larger number in the indicator for toughness, indicating classification at a lower toughness testing temperature (e.g., a change from F7A2-EM12K to F7A4-EM12K)

This variable does not apply when the weld metal is exempt from toughness testing by other Sections. This exemption does not apply to hard-facing and corrosion-resistant overlays.

QW-404.36 When flux from recrushed slag is used, each batch or blend, as defined in SFA-5.01, shall be tested in accordance with Section II, Part C by either the manufacturer or user, or qualified as an unclassified flux in accordance with QW-404.9.

QW-404.37 A change in the composition of the deposited weld metal from one A-Number in Table QW-442 to any other A-Number, or to an analysis not listed in the table. A change in the UNS number for each AWS classification of A-No. 8 or A-No. 9 analysis of Table QW-442, or each nonferrous alloy in Table QW-432, shall require separate WPS qualification. A-Numbers may be determined in accordance with QW-404.5.

QW-404.38 A change in the nominal electrode diameter used for the first layer of deposit.

QW-404.39 For submerged-arc welding and electroslag welding, a change in the nominal composition or type of flux used. Requalification is not required for a change in flux particle size.

QW-404.41 A change of more than 10% in the powdered metal feed rate recorded on the PQR. **QW-404.42** A change of more than 5% in the particle size range of the powder.

QW-404.43 A change in the powdered metal particle size range recorded on the PQR.

QW-404.44 A change from a homogeneous powdered metal to a mechanical mixed powdered metal or vice versa.

QW-404.46 A change in the powder feed rate range qualified.

QW-404.47 A change of more than 10% in the filler metal size and/or powder metal particle size.

QW-404.48 A change of more than 10% in the powder metal density.

QW-404.49 A change of more than 10% in the filler metal or powder metal feed rate.

QW-404.50 The addition or deletion of flux to the face of a weld joint for the purpose of affecting weld penetration.

QW-404.51 The method of control of moisture pickup during storage and distribution for SMAW and GMAW-FC electrodes and flux for SAW (e.g., purchasing in hermetically sealed containers and storage in heated ovens, controlled distribution time, high-temperature baking prior to use).

QW-404.52 An increase in the diffusible hydrogen designator (e.g., from E7018-H8 to E7018-H16) or to no diffusible hydrogen designator.

QW-404.53 The addition or deletion of filler metal and, when used, a change in the filler metal nominal composition.

QW-404.55 An increase in the thickness or width of preplaced filler metal.

QW-404.56 A change to another type or grade of preplaced filler metal (type or grade are materials of the same nominal chemical analysis and mechanical property range, even though of different product form).

QW-404.57 An increase in the nominal thickness or width of the electrode for strip filler metals used with the SAW and ESW processes for corrosion-resistant and hard-facing weld metal overlay.

- (19) **QW-404.58** The addition or deletion of preplaced filler metal.
- (19) **QW-404.59** If filler metal is added, a change in the A-Number of the weld deposit or a change in the nominal composition of the deposited weld metal when an A-Number is not assigned.

QW-405 POSITIONS

QW-405.1 The addition of other welding positions than those already qualified. see QW-120, QW-130, QW-203, and QW-303.

QW-405.2

DELETED

QW-405.3 A change from upward to downward, or from downward to upward, in the progression specified for any pass of a vertical weld, except that the cover or wash pass may be up or down. The root pass may also be run either up or down when the root pass is removed to sound weld metal in the preparation for welding the second side.

QW-405.4 Except as specified below, the addition of other welding positions than already qualified.

(*a*) Qualification in the horizontal, vertical, or overhead position shall also qualify for the flat position. Qualification in the horizontal fixed position, 5G, shall qualify for the flat, vertical, and overhead positions. Qualification in the horizontal, vertical, and overhead positions shall qualify for all positions. Qualification in the inclined fixed position, 6G, shall qualify for all positions.

(b) An organization who does production welding in a particular orientation may make the tests for procedure qualification in this particular orientation. Such qualifications are valid only for the positions actually tested, except that an angular deviation of ± 15 deg is permitted in the inclination of the weld axis and the rotation of the weld face as defined in Figure QW-461.1. A test specimen shall be taken from the test coupon in each special orientation.

(c) For hard-facing and corrosion-resistant weld metal overlay, qualification in the 3G, 5G, or 6G positions, where 5G or 6G pipe coupons include at least one vertical segment completed utilizing the up-hill progression or a 3G plate coupon is completed utilizing the up-hill progression, shall qualify for all positions. Chemical analysis, hardness, macro-etch, and at least two of the bend tests, as required in Table QW-453, shall be removed from the vertical uphill overlaid segment as shown in Figure QW-462.5(b).

(*d*) A change from the vertical down to vertical up-hill progression shall require requalification.

QW-406 PREHEAT

QW-406.1 A decrease of more than 100°F (55°C) in the preheat temperature qualified. The minimum temperature for welding shall be specified in the WPS.

QW-406.2 A change in the maintenance or reduction of preheat upon completion of welding prior to any required postweld heat treatment.

QW-406.3 An increase of more than 100°F (55°C) in the maximum interpass temperature recorded on the PQR. This variable does not apply when a WPS is qualified

with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-406.4 A decrease of more than 100°F (55°C) in the preheat temperature qualified or an increase in the maximum interpass temperature recorded on the PQR. The minimum temperature for welding shall be specifed in the WPS.

QW-406.5 A change in the maintenance or reduction of preheat upon completion of spraying and prior to fusing.

QW-406.7 A change of more than 10% in the amplitude or number of preheating cycles from that qualified, or if other preheating methods are employed, a change in the preheating temperature of more than 25°F (15°C).

QW-406.9 A decrease in the preheat temperature from that achieved on the test coupon and recorded on the PQR.

QW-406.10 The minimum preheating soaking time prior to the start of welding.

QW-406.11 The addition or deletion of a postweld hydrogen bakeout. When specified, the minimum soaking temperature and time shall be specified.

QW-407 POSTWELD HEAT TREATMENT

QW-407.1 A separate procedure qualification is required for each of the following:

(*a*) For P-Numbers 1 through 6 and 9 through 15F materials, the following postweld heat treatment conditions apply:

(1) no PWHT

(2) PWHT below the lower transformation temperature

(3) PWHT above the upper transformation temperature (e.g., normalizing)

(4) PWHT above the upper transformation temperature followed by heat treatment below the lower transformation temperature (e.g., normalizing or quenching followed by tempering)

(5) PWHT between the upper and lower transformation temperatures

(b) For all other materials, the following postweld heat treatment conditions apply:

(1) no PWHT

(2) PWHT within a specified temperature range

QW-407.2 A change in the postweld heat treatment (see QW-407.1) temperature and time range

The procedure qualification test shall be subjected to PWHT essentially equivalent to that encountered in the fabrication of production welds, including at least 80% of the aggregate times at temperature(s). The PWHT total time(s) at temperature(s) may be applied in one heating cycle. **QW-407.6** A change in postweld heat treatment condition in QW-407.1 or an increase of 25% or more in total time at postweld heat treating temperature.

QW-407.7 A change in the heat treatment temperature range qualified if heat treatment is applied after fusing.

QW-407.8 A separate PQR is required for each of the following:

(a) no PWHT

(*b*) a change of more than 10% in the number of PWHT heating current cycles following the welding cycle

(c) PWHT within a specified temperature and time range if heat treatment is performed separately from the welding operation

QW-407.9 A separate procedure qualification is required for each of the following:

(*a*) For weld corrosion-resistant overlay of A-No. 8 on all base materials, a change in postweld heat treatment condition in QW-407.1, or when the total time at postweld heat treatment encountered in fabrication exceeds 20 hr, an increase of 25% or more in total time at postweld heat treating temperature.

(*b*) For weld corrosion-resistant overlay of A-No. 9 on all base materials, a change in postweld heat treatment condition in QW-407.1, or an increase of 25% or more in total time at postweld heat treating temperature.

(c) For all other weld corrosion-resistant overlays on all base materials, a change in postweld heat treatment condition in QW-407.1.

QW-407.10 The addition or deletion of PWHT, or a change of $\pm 45^{\circ}$ F ($\pm 25^{\circ}$ C) in PWHT temperature or an increase in the holding time by more than 25% or change in the method of cooling (e.g., furnace, air, quench).

QW-408 GAS

QW-408.1 The addition or deletion of trailing gas and/or a change in its composition.

QW-408.2 A separate procedure qualification is required for each of the following:

(*a*) a change from a single shielding gas to any other single shielding gas

(*b*) a change from a single shielding gas to a mixture of shielding gasses, and vice versa

(*c*) a change in the specified percentage composition of a shielding gas mixture

(*d*) the addition or omission of shielding gas

The AWS classification of SFA-5.32 may be used to specify the shielding gas composition.

QW-408.3 A change in the specified flow rate range of the shielding gas or mixture of gases.

QW-408.4 A change in the composition of the orifice or shielding gas.

QW-408.5 The addition or deletion of backing gas, a change in backing gas composition, or a change in the specified flow rate range of the backing gas.

QW-408.6 A change of environment shielding such as from vacuum to an inert gas, or vice versa.

QW-408.7 A change in the type of fuel gas.

QW-408.8 The omission of backing gas except that requalification is not required when welding a single-welded butt joint with a backing strip or a double-welded butt joint or a fillet weld. This exception does not apply to P-No. 51 through P-No. 53, P-No. 61 through P-No. 62, and P-No. 10I metals.

QW-408.9 For groove welds in P-No. 41 through P-No. 49 and all welds of P-No. 10I, P-No. 10J, P-No. 10K, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62 metals, the deletion of backing gas or a change in the nominal composition of the backing gas from an inert gas to a mixture including non-inert gas(es).

QW-408.10 For P-No. 10I, P-No. 10J, P-No. 10K, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62 metals, the deletion of trailing gas, or a change in the nominal composition of the trailing gas from an inert gas to a mixture including non-inert gas(es), or a decrease of 10% or more in the trailing gas flow rate.

QW-408.11 The addition or deletion of one or more of the following:

- (a) shielding gas
- (b) trailing gas
- (c) backing gas
- (d) plasma-removing gas

QW-408.12 A decrease of more than 10% in the flow rate of one or more of the following: shielding gas, trailing gas, backing gas, and plasma-removing gas.

QW-408.14 A change in the oxygen or fuel gas pressure beyond the range qualified.

QW-408.16 A change of more than 5% in the flow rate of the plasma-arc gas or powdered metal feed gas recorded on the PQR.

QW-408.17 A change in the plasma-arc gas, shielding gas, or powdered metal feed gas from a single gas to any other single gas, or to a mixture of gases, or vice versa.

QW-408.18 A change of more than 10% in the gas mixture composition of the plasma-arc gas, shielding gas, or powdered metal feed gas recorded on the PQR.

QW-408.19 A change in the nominal composition of the powder feed gas or (plasma-arc spray) plasma gas qualified.

QW-408.20 A change of more than 5% in the plasma gas flow rate range qualified.

QW-408.21 A change in the flow rate of the orifice or shielding gas.

QW-408.22 A change in the shielding gas type, gas pressure, or purging time.

QW-408.23 For titanium, zirconium, and their alloys, the deletion of one or more of the following:

- (a) shielding gas
- (b) trailing gas
- (c) backing gas

QW-408.24 For gas-shielded processes, the maximum moisture content (dew point) of the shielding gas. Moisture control may be by specification of shielding gas classifications in SFA-5.32.

QW-408.25 A change in the furnace atmosphere from that qualified.

QW-408.26 For friction stir welding of P-No. 6, P-No. 7, P-No. 8, P-No. 10H, P-No. 10I, P-No. 41 through P-No. 47, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62, the addition or deletion of trailing or tool shielding gas, or a change in gas composition or flow rate.

QW-409 ELECTRICAL CHARACTERISTICS

QW-409.1 An increase in heat input, or an increase in volume of weld metal deposited per unit length of weld, for each process recorded on the PQR. For arc welding, the increase shall be determined by (a), (b), or (c) for non-waveform controlled welding, or by (b) or (c) for waveform controlled welding. See Nonmandatory Appendix H. For low-power density laser beam welding (LLBW), the increase shall be determined by (d).

(a) Heat input [J/in. (J/mm)]

$$= \frac{\text{Voltage} \times \text{Amperage} \times 60}{\text{Travel Speed} \left[\text{in/min} \left(\text{mm/min} \right) \right]}$$

(b) Volume of weld metal measured by

(1) an increase in bead size (width × thickness), or

(2) a decrease in length of weld bead per unit length of electrode

(c) Heat input determined using instantaneous energy or power by

(1) for instantaneous energy measurements in joules (J) *Heat input [J/in. (J/mm)*]

$$= \frac{\text{Energy}(J)}{\text{Weld Bead Length [in. (mm)]}}$$

(2) for instantaneous power measurements in joules per second (J/s) or Watts (W) *Heat input [J/in. (J/mm)*]

$$= \frac{\text{Power}(J/s \text{ or } W) \times \text{arc time } (s)}{\text{Weld Bead Length } [in. (mm)]}$$

(d) LLBW Heat input [J/in. (J/mm)]

=

$$= \frac{\text{Power}(W) \times 60}{\text{Travel Speed [in./min (mm/min)]}}$$

where Power is the power delivered to the work surface as measured by calorimeter or other suitable methods.

The requirement for measuring the heat input or volume of deposited weld metal does not apply when the WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-409.2 A change from globular, spray or pulsed spray transfer welding to short-circuiting transfer welding or vice versa.

QW-409.3 The addition or deletion of pulsing current to dc power source.

QW-409.4 A change from AC to DC, or vice versa; and in DC welding, a change from electrode negative (straight polarity) to electrode positive (reverse polarity), or vice versa.

QW-409.5 A change of ±15% in the amperage or voltage range.

QW-409.6 A change in the beam current of more than $\pm 5\%$, voltage of more than $\pm 2\%$, welding speed of more than $\pm 2\%$, beam focus current of more than $\pm 5\%$, gun-to-work distance of more than $\pm 5\%$, or a change in oscillation length or width of more than $\pm 20\%$.

QW-409.7 Any change in the beam pulsing frequency duration.

QW-409.8 A change in the range of amperage, or except for SMAW, GTAW, or waveform controlled welding, a change in the range of voltage. A change in the range of electrode wire feed speed may be used as an alternative to amperage. See Nonmandatory Appendix H:

QW-409.9 A change in the arc timing of more than $\pm \frac{1}{10}$ sec.

QW-409.10 A change in amperage of more than ±10%.

QW-409.11 A change in the power source from one model to another.

QW-409.12 A change in type or size of tungsten electrode.

QW-409.13 A change from one Resistance Welding Manufacturer's Association (RWMA) electrode class to another. In addition, a change in the following:

(a) for spot and projection welding, a change in the nominal shape or more than 10% of the contact area of the welding electrode

(*b*) for seam welding, a change of thickness, profile, orientation, or diameter of electrodes exceeding 10%

QW-409.14 Addition or deletion of upslope or downslope current control, or a change of more than 10% in the slope current time or amplitude.

QW-409.15

(a) A change of more than 5% in any of the following:(1) preheating current

- (2) preheating current amplitude
- (3) preheating current time duration
- (4) electrode pressure
- (5) welding current
- (6) welding current time duration

(b) A change from AC to DC or vice versa.

(c) The addition or deletion of pulsing current to a DC power source.

(*d*) When using pulsing DC current, a change of more than 5% in the pulse amplitude, frequency, or number of pulses per cycle.

(e) A change of more than 5% in the post-heating current time duration.

QW-409.17 A change in the power supply primary voltage or frequency, or in the transformer turns ratio, tap setting, choke position, secondary open circuit voltage or phase control setting.

QW-409.18 A change in the procedure or frequency of tip cleaning.

QW-409.19 Any change of more than ±10% in the beam pulsing frequency and pulse duration.

QW-409.20 Any change in the following variables: mode of operation (from pulsed to continuous and vice versa), energy distribution across the beam (i.e., multimode or gaussian).

QW-409.21 A decrease of more than 10% in the power delivered to the work surface as measured by calorimeter or other suitable methods.

QW-409.22 An increase of more than 10% in the amperage used in application for the first layer.

QW-409.23 A change of more than 10% in the ranges of amperage or voltage.

QW-409.24 A change of more than 10% in the filler wire wattage recorded on the PQR. Wattage is a function of current voltage, and stickout dimension.

QW-409.25 A change of more than 10% in the plasma-arc current or voltage recorded on the PQR.

QW-409.26 For the first layer only, an increase in heat input of more than 10% or an increase in volume of weld metal deposited per unit length of weld of more than 10%. The increase shall be determined by the methods of QW-409.1.

When using strip filler metal, the heat input shall be calculated as follows:

Heat Input [J/in.² (J/mm²)] = Voltage × Amperage × 60 Travel Speed [in./min (mm/min)] × Strip Width [in. (mm)]

QW-409.27 A change in the flashing time of more than 10%.

QW-409.28 A change in the upset current time by more than 10%.

QW-409.29

(*a*) A change in heat input beyond the following (see Figure QW-462.12):

(1) An increase or decrease in the ratio of heat input between the first tempering bead layer and the weld beads deposited against the base metal of more than 20% for P-No. 1 and P-No. 3 metals and 10% for all other P-Number metals.

(2) An increase or decrease in the ratio of heat input between the second tempering bead layer and the first tempering bead layer of more than 20% for P-No. 1 and P-No. 3 metals and 10% for all other P-Number metals.

(3) The ratio of heat input between subsequent layers shall be maintained until a minimum of ${}^{3}\!/_{16}$ in. (5 mm) of weld metal has been deposited over the base metal.

(4) Where the basis for acceptance is toughness testing and the filler metal is exempt from temper bead qualification, the heat input may not exceed 50% above the heat input qualified for the remaining fill passes.

(5) Where the basis for acceptance is hardness testing, a decrease of more than 20% in heat input for the remainder of the fill passes.

(b) Heat input shall be determined using the following methods:

(1) For machine or automatic GTAW or PAW, an increase or decrease of 10% in the power ratio measured as:

Power Ratio =
$$\frac{\text{Amperage } \times \text{Voltage}}{\left[\left(\text{WFS } / \text{TS}\right) \times A_{f}\right]}$$

where

 A_f = the cross-section area of the filler metal wire

TS = the welding travel speed

WFS = the filler metal wire feed speed

(2) For processes other than machine or automatic GTAW or PAW, heat input shall be determined by the method of QW-409.1.

(3) If manual GTAW or PAW is used for making inprocess repairs in accordance with QW-290.5, a record of bead size shall be made.

QW-410 TECHNIQUE

QW-410.1 For manual or semiautomatic welding, a change from the stringer bead technique to the weave bead technique, or vice versa.

QW-410.2 A change in the nature of the flame, oxidizing to reducing, or vice versa.

QW-410.3 A change in the orifice, cup, or nozzle size.

QW-410.4 A change in the welding technique, fore-hand to backhand, or vice versa.

QW-410.5 A change in the method of initial and interpass cleaning (brushing, grinding, etc.).

QW-410.6 A change in the method of back gouging.

QW-410.7 For the machine or automatic welding process, a change of more than $\pm 10\%$ in width, frequency, or dwell time of oscillation technique.

QW-410.8 A change in the contact tube to work distance.

QW-410.9 A change from multipass per side to single pass per side. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-410.10 A change from single electrode to multiple electrode, or vice versa, for machine or automatic welding only. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-410.11 A change from closed chamber to out-ofchamber conventional torch welding in P-No. 51 through P-No. 53 metals, but not vice versa.

QW-410.12 A change from the melt-in technique to the keyhole technique of welding, or vice versa, or the inclusion of both techniques though each has been individually qualified.

 $QW\mbox{-410.14}$ A change of more than ± 10 deg in the rel- (19) ative angle between the axis of the beam and the workpiece.

QW-410.15 A change in the spacing of multiple electrodes for machine or automatic welding.

QW-410.17 A change in the type or model of the welding equipment.

QW-410.18 An increase in the absolute pressure of the vacuum welding environment beyond that qualified.

QW-410.19 Any change in filament type, size, or shape.

QW-410.20 The addition of a wash pass.

QW-410.21 For full penetration groove welds, a change of welding from both sides to welding from one side only, but not vice versa.

QW-410.22 A change in either of the following stud welding parameters: a change of stud gun model; a change in the lift more than $\pm \frac{1}{32}$ in. (0.8 mm).

QW-410.25 A change from manual or semiautomatic to machine or automatic welding and vice versa.

QW-410.26 The addition or deletion of peening.

QW-410.27 A change in the rotational speed producing a change in the outside surface velocity [ft/min (m/min)] greater than $\pm 10\%$ of the outside surface velocity qualified.

QW-410.28 A change in the thrust load greater than ±10% of the thrust load qualified.

QW-410.29 A change in the rotational energy greater than $\pm 10\%$ of the rotational energy qualified.

QW-410.30 Any change in upset dimension (overall loss in length of parts being joined) greater than $\pm 10\%$ of the upset qualified.

QW-410.31 A change in the method of preparing the base metal prior to welding (e.g., changing from mechanical cleaning to chemical cleaning or to abrasive cleaning, or vice versa).

QW-410.32 A change of more than 10% in the holding (forging) pressure prior to or after welding. A change of more than 10% in the electrode holding time (electrode duration sequence).

QW-410.33 A change from one welding type to another, or modification of equipment, including Manufacturer, control panel, model number, electrical rating or capacity, type of electrical energy source, or method of applying pressure.

QW-410.34 Addition or deletion of an electrode cooling medium and where it is used.

QW-410.35 A change in the distance between arms or a change in the throat depth.

QW-410.37 A change from single to multiple pass or vice versa.

QW-410.38 A change from multiple-layer to single layer cladding/hardsurfacing, or vice versa.

QW-410.39 A change in the torch type or tip size.

QW-410.40 For submerged-arc welding and electroslag welding, the deletion of a supplementary device for controlling the magnetic field acting on the weld puddle.

QW-410.41 A change of more than 15% in the travel speed range recorded on the PQR.

QW-410.43 For the torch or workpiece, a change of more than 10% in the travel speed range qualified.

QW-410.44 A change of more than 15% in the spraytorch to workpiece distance qualified.

QW-410.45 A change in the method of surface preparation of the base metal to be hard-faced (example: sandblasting versus chemical cleaning).

QW-410.46 A change in the spray-torch model or tip orifice size.

QW-410.47 A change of more than 10% in the fusing temperature range qualified. A change in the rate of cooling from the fusing temperature of more than 50° F/hr (28°C/hr), a change in the fusing method (e.g., torch, furnace, induction).

QW-410.48 A change in the constricted arc from transferable to nontransferable or vice versa.

QW-410.49 A change in the diameter of the plasma torch-arc constricting orifice.

QW-410.50 A change in the number of electrodes acting on the same welding puddle.

QW-410.52 A change in the method of delivering the filler metal to the molten pool, such as from the leading or trailing edge of the torch, the sides of the torch, or through the torch.

QW-410.53 A change of more than 20% in the center-to-center weld bead distance.

QW-410.54 A change in the upset length or force of more than 10%.

QW-410.55 A change in the distance between the clamping dies of more than 10% or a change in the surface preparation of the clamping area.

QW-410.56 A change in the clamping force by more than 10%.

QW-410.57 A change in more than 10% of the forward or reverse speed.

QW-410.58 The deletion of surface temper beads (see Figure QW-462.12) or a change from surface temper beads that cover the weld surface to beads that are only deposited along the toes of the weld.

QW-410.59 A change from machine or automatic welding to manual or semiautomatic welding.

QW-410.60 The addition of thermal methods to prepare the surface to be welded unless the WPS requires that the metal be ground to bright metal before welding.

QW-410.61 The distance, *S*, from the toe of the weld to the edge of any tempering bead shall be limited to the distance measured on the test coupon $\pm 1/16$ in. (± 1.5 mm) (see Figure QW-462.12). Alternatively, a range for *S* may be established by locating temper beads at various distances from the toe of the weld followed by hardness traverses or toughness testing, as applicable. Temper reinforcing beads shall not be permitted to touch the toe of the weld. In addition, the ratios of heat input described in QW-409.29 shall apply to temper beads.

QW-410.62 The method of removal of surface temper bead reinforcing layer when it will be removed, including provisions to prevent overheating of the weld surface.

QW-410.63 For weld beads against the base metal and for each tempering bead layer, the range of bead width, b, relative to overlap of the previous bead width, a, as shown in Figure QW-462.13, shall be specified on the WPS. Overlap between 25% and 75% does not require qualification.

(*a*) Overlap greater than 75% shall be qualified by welding a test coupon using the desired overlap. The overlap qualified shall be the maximum overlap permitted and the minimum overlap shall be 50%.

یک دو سه صنعت 123sanat.com

Copyright ASME International (BPVC)

(*b*) Overlap less than 25% shall be qualified by welding a test coupon using the desired overlap. The overlap qualified shall be the minimum overlap permitted and the maximum overlap shall be 50%.

QW-410.64 For vessels or parts of vessels constructed with P-No. 11A and P-No. 11B base metals, weld grooves for thicknesses less than $\frac{5}{8}$ in. (16 mm) shall be prepared by thermal processes when such processes are to be employed during fabrication. This groove preparation shall also include back gouging, back grooving, or removal of unsound weld metal by thermal processes when these processes are to be employed during fabrication.

QW-410.65 The addition or deletion of grinding beyond that required to clean the surface or remove minor surface flaws (i.e., use or nonuse of half-bead technique or similar technique).

QW-410.66 A change of more than $\pm 10\%$ in the travel speed, the ratio of the beam diameter to focal length, or the lens to work distance.

QW-410.67 A change in the optical technique used to focus the welding energy from that qualified.

QW-410.68 A change in welding equipment type (e.g., YAG, TAG, etc.).

QW-410.70 A change in the method of preparing the base metal surface prior to insertion into the furnace.

QW-410.71 A decrease in the percentage of block compression (original stack height compared to height after welding) from that of the test coupon.

QW-410.72 A decrease in the welding temperature or time from that used on the procedure qualification test coupon.

QW-410.73 A change in joint restraint fixtures from that qualified (e.g., fixed anvil to self-reacting, and vice versa) or from single-sided to two-sided welding, and vice versa.

QW-410.74 A change in the welding control method from that qualified (e.g., force control method to position control method, or vice versa, in the plunge direction; and force control method to travel control method, or vice versa, in the travel direction).

QW-410.75 A change in the rotating tool

(*a*) type or design from the qualified "family" to another (i.e., threaded pin, smooth pin, fluted, self-reacting, retracting-pin, or other tool types)

(b) configuration or dimensions from that qualified beyond the following limits (as applicable):

(1) shoulder diameter greater than 10%

(2) shoulder scroll pitch greater than 10%

(3) shoulder profile (e.g., addition or deletion of shoulder feature)

(4) pin diameter greater than 5%

(5) pin length greater than the lesser of 5% of qualified pin length or 1% of base metal thickness (not minimum pin length for retracting-pin tools, and not applicable for self-reacting rotating tools)

(6) pin taper angle greater than 5 deg

(7) flute pitch greater than 5%

(8) pin tip geometry or shape

(9) thread pitch greater than 10% (as applicable)

(10) flat design resulting in a change of the total flat surface area greater than 20%

(11) number of flats

(12) cooling characteristics of the rotating pin (e.g., change from water-cooled to air-cooled, and vice versa)

(c) pin material specification, nominal chemical composition, and minimum hardness

QW-410.76 A change in the rotating tool operation from that qualified beyond the following limits (as applicable):

(*a*) decrease in rotation speed, or increase greater than 10%

(b) direction of rotation

(c) plunge force greater than 10% or plunge position set point greater than 5% when controlling the plunge direction (except during ramp-up and ramp-down when starting and stopping)

(d) angular tilt greater than 1 deg in any direction

(e) travel force or travel speed greater than 10% when controlling travel direction (except during ramp-up and ramp-down when starting and stopping)

(f) range of relative motion between tool components when using self-reacting or retractable-pin tools

(g) reduction in the smallest radius of travel path curvature that results in reversing the travel direction of the pin or the shoulder

(*h*) manner or angle of intersection, or number of coincident intersections, within the same weld or between the weld and the HAZ of other welds

QW-410.77 A change in the laser wavelength (e.g., CO₂, Nd:YAG, fiber, disk, diode) from that qualified.

QW-410.80 A change of $\pm 5\%$ in the diameter of the focused spot size.

 $\label{eq:QW-410.81} {\mbox{ W-410.81}} {\mbox{ The addition of tube expansion prior to } (19) welding.$

QW-410.82 A change in the method of pressure (19) application.

QW-410.83 A change in the type of explosive or a (19) change in the energy content greater than $\pm 10\%$.

QW-410.84 A change in the distance between the ex- (19) plosive charge and the tubesheet face greater than $\pm 10\%$.

QW-410.85 A change in the specified clearance be- (19) tween the tube and the tubesheet greater than $\pm 10\%$.

					Esse	ntial		
Paragraph [No	raph [Note (1)] Brief of Variables		OFW Table QW-352	SMAW Table QW-353	SAW Table QW-354	GMAW [Note (2)] Table QW-355	GTAW Table QW-356	PAW Table QW-357
QW-402	.4	– Backing		Х		Х	Х	Х
Joints	.7	+ Backing	Х					
	.2	Maximum qualified	X					
QW-403	.16	ϕ Pipe diameter		Х	Х	Х	Х	Х
Base Metal	.18	ϕ P-Number	X	Х	Х	Х	Х	Х
	.14	± Filler	X				Х	Х
	.15	ϕ F-Number	х	Х	Х	Х	х	х
	.22	± Inserts					Х	х
QW-404	.23	ϕ Filler metal product form					х	х
Filler Metals	.30	ϕ t Weld deposit		Х	Х	х	Х	х
	.31	ϕ t Weld deposit	X					
	.32	t Limit (s. cir. arc)				Х		
0W-405	.1	+ Position	X	Х	Х	Х	Х	х
Positions	.3	$\phi \uparrow \downarrow$ Vert. welding		Х		x	Х	х
0W-408	.7	ϕ Type fuel gas	X					
Gas	.8	– Inert backing				х	Х	х
0W-409	.2	ϕ Transfer mode				Х		
Electrical	.4	ϕ Current or polarity					Х	
Welding Proces OFW SMAW SAW GMAW GTAW PAW	ı J	Oxyfuel gas welding Shielded metal-arc welding Submerged-arc welding Gas metal-arc welding Gas tungsten-arc welding Plasma-arc welding						
Legend: φ Change + Addition - Deletion NOTES: (1) For descrip (2) Flux cored		ee Article IV. ding as shown in Table QW-355, with o	↑ ↓]	Thickness Uphill Downhill	ng faam an a	to so all so as so	14 - 4	

included.

(19) QW-420 BASE METAL GROUPINGS

P-Numbers are assigned to base metals for the purpose of reducing the number of welding and brazing procedure qualifications required.

P-Numbers are alphanumeric designations: accordingly, each P-Number shall be considered a separate P-Number (e.g., base metals assigned P-No. 5A are considered a separate P-Number from those assigned P-No. 5B or P-No. 5C).

In addition, ferrous base metals have been assigned Group Numbers creating subsets of P-Numbers that are used when WPSs are required to be qualified by toughness testing by other Sections or Codes. These assignments are based essentially on comparable base metal characteristics, such as composition, weldability, brazeability, and mechanical properties, where this can logically be done. These assignments do not imply that base metals may be indiscriminately substituted for a base metal that was used in the qualification test without consideration of compatibility from the standpoint of metallurgical properties, postweld heat treatment, design, mechanical properties, and service requirements. The following table shows the assignment groups for various alloy systems:

Base Metal	Welding	Brazing
Steel and steel alloys	P-No. 1 through	P-No. 101 through
	P-No. 15F	P-No. 103
Aluminum and	P-No. 21 through	P-No. 104 and P-No.
aluminum-base	P-No. 26	105
alloys		
Copper and copper-	P-No. 31 through	P-No. 107 and P-No.
base alloys	P-No. 35	108
Nickel and nickel-	P-No. 41 through	P-No. 110 through
base alloys	P-No. 49	P-No. 112
Titanium and	P-No. 51 through	P-No. 115
titanium- base	P-No. 53	
alloys		
Zirconium and	P-No. 61 and P-No.	P-No. 117
zirconium-base	62	
alloys		

The values given in the column heading "Minimum Specified Tensile" of Table QW/QB-422 are the acceptance values for the tensile tests of the welding or brazing procedure qualification, except as otherwise allowed in QW-153 or QB-153. Only base metals listed in Table QW/QB-422 with minimum tensile strength values may be used for procedure qualification except as modified by the following paragraph.

If an unlisted base metal has the same UNS number designation as a base metal listed in Table QW/QB-422, that base metal is also assigned that P-Number or P-Number plus Group Number. If the unlisted base metal is used for procedure qualification, the minimum tensile value of the listed base metal shall apply for the tension test specimens.

Materials listed in Table QW/QB-422 without a minimum specified tensile value shall not be used for the purpose of groove weld procedure qualification.

Material produced under an ASTM specification shall have the same P-Number or P-Number plus Group Number and minimum specified tensile strength value as that of the corresponding ASME specification listed in Table QW/QB-422 with prefix A/SA- or B/SB- (e.g., listed under A/SA-240, SA-240 Type 304 is assigned P-No. 8, Group No. 1; and A240 Type 304 is also P-No. 8, Group No. 1).

Material produced to material specifications other than ASTM specifications that have been adopted by ASME for use in the ASME Boiler and Pressure Vessel Code is provided the prefix SA or SB (e.g., SA/GB 713 Grade Q345R), and P-Numbers are assigned per Table QW/QB-422. Material produced to the source material specification (e.g., GB 713 Grade Q345R) is unassigned unless separately classified in Table QW/QB-422.

The column "AWS B2.2 BM" in Table QW/QB-422 is a listing of the assignments of materials in accordance with the brazing grouping criteria of AWS B2.2/B2.2M:2010, *Specification for Brazing Procedure and Performance Qualification.* The assignment and use of either P-Numbers, BM-Numbers, or both are permitted for brazing procedure and performance qualifications, and brazing procedure specifications.

The column "ISO/TR 15608 Group" in Table QW/QB-422 is a listing of the assignments of materials in accordance with the grouping criteria of ISO/TR 15608:2005, Welding — Guidelines for a metallic materials grouping system, and it is consistent with the assignments found in ISO/TR 20173:2008, Grouping systems for materials — American materials. While this listing is provided as a convenience to users worldwide, it is provided for information only. Section IX does not refer to this grouping as a basis for establishing the range of base metals qualified for either procedure or performance qualification.

In 2009, S-Numbers were removed from Table QW/QB-422. S-Numbers were assigned to materials that were acceptable for use by the ASME B31 Code for Pressure Piping, or by selected Boiler and Pressure Vessel Code Cases, but which were not included within ASME Boiler and Pressure Vessel Code Material Specifications (Section II). Base metals previously assigned S-Numbers were reassigned the corresponding P-Numbers or P-Numbers plus Group Numbers.

There are instances where materials assigned to one Por S-Number or Group Number have been reassigned to a different P- or S-Number or Group Number in later editions. Procedure and performance qualifications that were qualified under the previous P- or S-Numbers or Group Number assignment may continue to be used under the new P-Number or Group Number assignment, see QW-200.2(c), provided the WPS is revised to limit the materials qualified for welding to those assigned to the new P- or S-number(s) and Group number(s) for the specific material(s) originally used for the procedure qualification test coupon. Other materials from the original Por S-Number and Group Number must be reassigned to the same P- or S-Number or Group Number to be considered qualified for welding under the revised WPS.

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

97

(**19**)

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification

			Minimum Specified	Weld	ding	Bra	azing				
	Designation, Type,		Tensile, ksi		Group		AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form	_
							Ferrous				
A/SA-36			58 (400)	1	1	101	100	11.1	C–Mn–Si	Plate, bar & shapes	
A/SA-53	Е, А	K02504	48 (330)	1	1	101	100	1.1	С	Resistance welded pipe	
A/SA-53	S, A	K02504	48 (330)	1	1	101	100	1.1	С	Smls. pipe	
A/SA-53	Е, В	K03005	60 (415)	1	1	101	100	11.1	C–Mn	Resistance welded pipe	
A/SA-53	F	K03005	48 (330)	1	1	101	100	11.1	С	Furnace welded pipe	
A/SA-53	S, B	K03005	60 (415)	1	1	101	100	11.1	C-Mn	Smls. pipe	
A/SA-105		K03504	70 (485)	1	2	101	100	11.1	С	Flanges & fittings	
A/SA-106	А	K02501	48 (330)	1	1	101	100	1.1	C–Si	Smls. pipe	
A/SA-106	В	K03006	60 (415)	1	1	101	100	11.1	C–Mn–Si	Smls. pipe	
A/SA-106	С	K03501	70 (485)	1	2	101	100	11.1	C-Mn-Si	Smls. pipe	
A108	1015	G10150		1	1	101	100	1.1	С	Bar	
A108	1018	G10180		1	1	101	100	1.1	С	Bar	
A108	1020	G10200		1	1	101	100	1.1	С	Bar	
A108	8620	G86200		3	3	102	100	4.1	0.5Ni-0.5Cr-Mo	Bar	
A/SA-134	SA283 A	K01400	45 (310)	1	1	101	100	1.1	С	Welded pipe	
A/SA-134	SA285 A	K01700	45 (310)	1	1	101	100	1.1	С	Welded pipe	
A/SA-134	SA283 B	K01702	50 (345)	1	1	101	100	1.1	С	Welded pipe	
A/SA-134	SA285 B	K02200	50 (345)	1	1	101	100	1.1	С	Welded pipe	
A/SA-134	SA283 C	K02401	55 (380)	1	1	101	100	1.1	С	Welded pipe	
A/SA-134	SA283 D	K02702	60 (415)	1	1	101	100	11.1	С	Welded pipe	
A/SA-134	SA285 C	K02801	55 (380)	1	1	101	100	11.1	С	Welded pipe	
A/SA-135	А	K02509	48 (330)	1	1	101	100	1.1	С	E.R.W. pipe	
A/SA-135	В	K03018	60 (415)	1	1	101	100	11.1	С	E.R.W. pipe	
A139	А	K02508	48 (330)	1	1	101	100	1.1	С	Welded pipe	
A139	В	K03003	60 (415)	1	1	101	100	11.1	С	Welded pipe	
A139	С	K03004	60 (415)	1	1	101	100	11.1	С	Welded pipe	
A139	D	K03010	60 (415)	1	1	101	100	11.1	С	Welded pipe	
A139	Е	K03012	66 (455)	1	1	101	100	11.1	С	Welded pipe	
A167	302B	S30215	75 (515)	8	1	102	130	8.1	18Cr-8Ni-2Si	Plate, sheet & strip	
A167	308	S30800	75 (515)	8	2	102	130	8.2	20Cr-10Ni	Plate, sheet & strip	
A167	309	S30900	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Plate, sheet & strip	
A167	310	S31000	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Plate, sheet & strip	صنعت

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd) Wolding Progin

	Designation, Type,		Minimum Specified Tensile, ksi	Wel	ding Group	Br	azing	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	AWS B2.2 BM	Group	Nominal Composition	Typical Product Form
						Fer	rous (Con	ťd)		
						4.0.4	100			
A/SA-178	А	K01200	47 (325)	1	1	101	100	1.1	C	E.R.W. tube
A/SA-178	D	K02709	70 (485)	1	2	101	100	11.1	C-Mn-Si	E.R.W. tube
A/SA-178	С	K03503	60 (415)	1	1	101	100	11.1	С	E.R.W. tube
A/SA-179		K01200	47 (325)	1	1	101	100	1.1	С	Smls. tube
A/SA-181	Cl. 60	K03502	60 (415)	1	1	101	100	11.1	C-Si	Pipe flange & fittings
A/SA-181	Cl. 70	K03502	70 (485)	1	2	101	100	11.1	C–Si	Pipe flange & fittings
A/SA-182	F12, Cl. 1	K11562	60 (415)	4	1	102	110	5.1	1Cr-0.5Mo	Forgings
A/SA-182	F12, Cl. 2	K11564	70 (485)	4	1	102	110	5.1	1Cr-0.5Mo	Forgings
A/SA-182	F11, Cl. 2	K11572	70 (485)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Forgings
A/SA-182	F11, Cl. 3	K11572	75 (515)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Forgings
A/SA-182	F11, Cl. 1	K11597	60 (415)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Forgings
A/SA-182	F2	K12122	70 (485)	3	2	101	100	4.2	0.5Cr-0.5Mo	Forgings
A/SA-182	F1	K12822	70 (485)	3	2	101	100	1.1	C-0.5Mo	Forgings
A/SA-182	F22, Cl. 1	K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	Forgings
A/SA-182	F22, Cl. 3	K21590	75 (515)	5A	1	102	110	5.2	2.25Cr-1Mo	Forgings
A/SA-182	FR	K22035	63 (435)	9A	1	101	100	9.1	2Ni-1Cu	Forgings
A/SA-182	F3VCb	K31390	85 (585)	5C	1	102	110	6.2	3Cr-1Mo-0.25V-Cb-Ca	Forgings
A/SA-182	F21	K31545	75 (515)	5A	1	102	110	5.2	3Cr-1Mo	Forgings
A/SA-182	F3V	K31830	85 (585)	5C	1	102	120	6.2	3Cr-1Mo-V-Ti-B	Forgings
A/SA-182	F22V	K31835	85 (585)	5C	1	102	110	6.2	2.25Cr-1Mo-V	Forgings
A/SA-182	F5	K41545	70 (485)	5B	1	102	110	5.3	5Cr-0.5Mo	Forgings
A/SA-182	F5a	K42544	90 (620)	5B	1	102	110	5.3	5Cr-0.5Mo	Forgings
A/SA-182	F91	K90901	90 (620)	15E	1	102	110	6.4	9Cr-1Mo-V	Forgings
A/SA-182	F9	K90941	85 (585)	5B	1	102	110	5.4	9Cr-1Mo	Forgings
A/SA-182	F92	K92460	90 (620)	15E	1	102	110	6.4	9Cr-2W	Forgings
A/SA-182		N08367	95 (655)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Forgings
A/SA-182	F904L	N08904	71 (490)	45		111	150	8.2	44Fe-25Ni-21Cr-Mo	Forgings
, A/SA-182	FXM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Forgings
, A/SA-182	FXM-11	S21904	90 (620)	8	3	102	130	8.3	21Cr-6Ni-9Mn	Forgings
, A/SA-182	F304	S30400	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Forgings > 5 in. (127 mm)
, A/SA-182	F304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Forgings
A/SA-182	F304L	S30403	65 (450)	8	1	102	130	8.1	18Cr–8Ni	Forgings > 5 in. (127 mm)
, A/SA-182	F304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Forgings
, A/SA-182	F304H	S30409	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Forgings > 5 in. (127 mm)

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

			Minimum Specified	Wel	ding	Bra	azing				
	Designation, Type,		Tensile, ksi		Group		AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form	
						Fer	rous (Con	t'd)			
A/SA-182	F304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Forgings	
A/SA-182	F304N	S30451	80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Forgings	
A/SA-182	F304LN	S30453	70 (485)	8	1	102	130	8.1	18Cr-8Ni-N	Forgings > 5 in. (127 mm)	
A/SA-182	F304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr–8Ni–N	Forgings	
A/SA-182	F46	S30600	78 (540)	8	1	102	130	8.1	18Cr-15Ni-4Si	Forgings	
A/SA-182	F45	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Forgings	
A/SA-182	F310	S31000	70 (485)	8	2	102	130	8.2	25Cr-20Ni	Forgings > 5 in. (127 mm)	
A/SA-182	F310	S31000	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Forgings	
A/SA-182	F310H	S31009	70 (485)	8	2	102	130	8.2	25Cr-20Ni	Forgings > 5 in. (127 mm)	
A/SA-182	F310H	S31009	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Forgings	A
A/SA-182	F310MoLN	S31050	78 (540)	8	2	102	130	8.2	25Cr-22Ni-2Mo-N	Forgings	SM
A/SA-182	F50	S31200	100 (690)	10H	1	102	145	10.2	25Cr-6Ni-Mo-N	Forgings	
A/SA-182	F44	S31254	94 (650)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Forgings	PV
A/SA-182	F58	S31266	109 (750)	45		102	420	8.2	24Cr-22Ni-6Mo-3Mn-Cu-W-N	Forgings	E E
A/SA-182	F316	S31600	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Forgings > 5 in. (127 mm)	ASME BPVC.IX-2019
A/SA-182	F316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Forgings	201
A/SA-182	F316L	S31603	65 (450)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Forgings > 5 in. (127 mm)	9
A/SA-182	F316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Forgings	
A/SA-182	F316H	S31609	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Forgings > 5 in. (127 mm)	
A/SA-182	F316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Forgings	
A/SA-182	F316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Forgings	
A/SA-182	F316LN	S31653	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Forgings > 5 in. (127 mm)	
A/SA-182	F316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Forgings	
A/SA-182	F317	S31700	70 (485)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Forgings > 5 in. (127 mm)	
A/SA-182	F317	S31700	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Forgings	
A/SA-182	F317L	S31703	65 (450)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Forgings > 5 in. (127 mm)	
A/SA-182	F317L	S31703	70 (485)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Forgings	
A/SA-182	F51	S31803	90 (620)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Forgings	
A/SA-182		S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Forgings	
A/SA-182	F321	S32100	70 (485)	8	1	102	140	8.1	18Cr–10Ni–Ti	Forgings > 5 in. (127 mm)	
A/SA-182	F321	S32100	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Forgings	
A/SA-182	F321H	S32109	70 (485)	8	1	102	140	8.1	18Cr–10Ni–Ti	Forgings > 5 in. (127 mm)	
A/SA-182	F321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Forgings	
A/SA-182		S32202	94 (650)	10H	1	102	145	10.1	22Cr-2Ni-Mo-N	Forgings	
A/SA-182	F60	S32205	95 (655)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Forgings	
A/SA-182	F53	S32750	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-4Mo-N	Forgings	
, A/SA-182	F55	S32760	109 (750)	10H	1	102	145	10.1	25Cr-8Ni-3Mo-W-Cu-N	Forgings	ک دو سه صنعت

66

			Grou		rous a	and N		us P-Num	ibers tion (Cont'd)	
	Designation Trans		Minimum Specified	We	lding	Bra	azing	ISO 15608		
Spec. No.	Designation, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	P-No	AWS B2.2 BM	150 15608 Group	Nominal Composition	Typical Product Form
Spec. No.	of drade	UNJ NO.	(Mi a)	1-110.	110.		rous (Cor		Nominal composition	
A/SA-182	F10	S33100	80 (550)	8	2	102	130	8.1	20Ni-8Cr	Forgings
A/SA-182	F49	S34565	115 (795)	8	4	102	130	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Forgings
A/SA-182	F347	S34700	70 (485)	8	1	102	130	8.1	18Cr-10Ni-Cb	Forgings > 5 in. (127 mm)
A/SA-182	F347	S34700	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Forgings
A/SA-182	F347H	S34709	70 (485)	8	1	102	130	8.1	18Cr-10Ni-Cb	Forgings > 5 in. (127 mm)
A/SA-182	F347H	S34709	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Forgings
A/SA-182	F348	S34800	70 (485)	8	1	102	130	8.1	18Cr-10Ni-Cb	Forgings > 5 in. (127 mm)
A/SA-182	F348	S34800	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Forgings
A/SA-182	F348H	S34809	70 (485)	8	1	102	130	8.1	18Cr-10Ni-Cb	Forgings > 5 in. (127 mm)
A/SA-182	F348H	S34809	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Forgings
A/SA-182	F54	S39274	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-3Mo-2W-Cu-N	Forgings
A/SA-182	F6a, Cl. 1	S41000	70 (485)	6	1	102	420	7.2	13Cr	Forgings
A/SA-182	F6a, Cl. 2	S41000	85 (585)	6	3	102	150	7.2	13Cr	Forgings
A/SA-182	F6a, Cl. 3	S41000	110 (760)	6	3	102	150	7.2	13Cr	Forgings
A/SA-182	F6a, Cl. 4	S41000	130 (895)	6	3	102	150	7.2	13Cr	Forgings
A/SA-182	F6b	S41026	110 (760)	6	3	102	150	7.2	13Cr-0.5Mo	Forgings
A/SA-182	F6NM	S41500	115 (795)	6	4	102	150	7.2	13Cr-4.5Ni-Mo	Forgings
A/SA-182	F429	S42900	60 (415)	6	2	102	150	7.2	15Cr	Forgings
A/SA-182	F430	S43000	60 (415)	7	2	102	150	7.1	17Cr	Forgings
A/SA-182	FXM-27Cb	S44627	60 (415)	10I	1	102	150	7.1	27Cr-1Mo	Forgings
A/SA-192		K01201	47 (325)	1	1	101	100	1.1	C–Si	Smls. tube
A199	T11	K11597	60 (415)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Smls. tube
A199	T22	K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	Smls. tube
A199	T21	K31545	60 (415)	5A	1	102	110		3Cr-1Mo	Smls. tube
A199	Т5	K41545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo	Smls. tube
A199	Т9	K81590	60 (415)	5B	1	102	110	5.4	9Cr-1Mo	Smls. tube
A/SA-203	F		75 (515)	9B	1	101	100	9.2	3.5Ni	Plate > 2 in. (51 mm)
A/SA-203	F		80 (550)	9B	1	101	100	9.2	3.5Ni	Plate, 2 in. (51 mm) & under
A/SA-203	А	K21703	65 (450)	9A	1	101	100	9.1	2.25Ni	Plate
A/SA-203	В	K22103	70 (485)	9A	1	101	100	9.1	2.25Ni	Plate
A/SA-203	D	K31718	65 (450)	9B	1	101	100	9.2	3.5Ni	Plate
A/SA-203	Е	K32018	70 (485)	9B	1	101	100	9.2	3.5Ni	Plate
A/SA-204	А	K11820	65 (450)	3	1	101	100	1.1	C-0.5Mo	Plate
A/SA-204	В	K12020	70 (485)	3	2	101	100	1.1	C-0.5Mo	Plate

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

	Designation, Type,		Minimum Specified Tensile, ksi		lding Group		azing AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form	
							rous (Con				
A/SA-204	С	K12320	75 (515)	3	2	101	100	1.2	C-0.5Mo	Plate	
A/SA-209	T1b	K11422	53 (365)	3	1	101	100	1.1	C-0.5Mo	Smls. tube	
A/SA-209	T1	K11522	55 (380)	3	1	101	100	1.1	C-0.5Mo	Smls. tube	
A/SA-209	T1a	K12023	60 (415)	3	1	101	100	1.1	C-0.5Mo	Smls. tube	
A/SA-210	A-1	K02707	60 (415)	1	1	101	100	11.1	C-Si	Smls. tube	
, A/SA-210	С	K03501	70 (485)	1	2	101	100	11.1	C-Mn-Si	Smls. tube	
A211	A570-30	K02502	49 (340)	1	1	101	100	1.1	С	Welded pipe	
A211	A570-33	K02502	52 (360)	1	1	101	100	1.1	C	Welded pipe	A
A211	A570-40	K02502	55 (380)	1	1	101	100	1.1	C	Welded pipe	ASME BPVC.IX-2019
A/SA-213	T2	K11547	60 (415)	3	1	101	100	4.2	0.5Cr-0.5Mo	Smls. tube	BH
A/SA-213	T12	K11517 K11562	60 (415)	4	1	101	110	5.1	1Cr-0.5Mo	Smls. tube	No.
A/SA-213	T12 T11	K11502 K11597	60 (415)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Smls. tube	
A/SA-213	T17	K11357 K12047	60 (415)	10B	1	102	110	4.1	1Cr-V	Smls. tube	-2
A/SA-213 A/SA-213	T22	K12047 K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	Smls. tube	010
A/SA-213	T21	K31545	60 (415)	5A	1	102	110	5.2	3Cr-1Mo	Smls. tube	Ŭ
A/SA-213	T5c	K41245	60 (415)	5B	1	102	120	5.3	5Cr-0.5Mo-Ti	Smls. tube	
A/SA-213	T5	K41545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo	Smls. tube	
A/SA-213	T5b	K51545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo-Si	Smls. tube	
A/SA-213	T91	K90901	85 (585)	15E	1	102	110	6.4	9Cr-1Mo-V	Smls. tube	
A/SA-213	Т9	K90941	60 (415)	5B	1	102	110	5.4	9Cr–1Mo	Smls. tube	
, A/SA-213	T92	K92460	90 (620)	15E	1	102	110	6.4	9Cr-2W	Smls. tube	
, A/SA-213	TP201	S20100	95 (655)	8	3	102	130	8.3	17Cr-4Ni-6Mn	Smls. tube	
A/SA-213	TP202	S20200	90 (620)	8	3	102	130	8.3	18Cr-5Ni-9Mn	Smls. tube	
A/SA-213	XM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Smls. tube	
A/SA-213	TP304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Smls. tube	
A/SA-213	TP304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Smls. tube	
A/SA-213	TP304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Smls. tube	
A/SA-213		S30432	86 (595)	8	1	102	130	8.1	18Cr-9Ni-3Cu-Cb-N	Smls. tube	
A/SA-213	TP304N	S30451	80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Smls. tube	
A/SA-213	TP304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr-8Ni-N	Smls. tube	
A/SA-213	S30815	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Smls. tube	
A/SA-213	TP309S	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Smls. tube	
A/SA-213	TP309H	S30909	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Smls. tube	
A/SA-213	TP309Cb	S30940	75 (515)	8	2	102	130	8.2	23Cr–12Ni–Cb	Smls. tube	دو سه صنعت

			Grou		rous a	and No		us P-Num	ibers ion (Cont'd)	
			Minimum	We	lding	Bra	azing	_		
	Designation, Type,		Specified Tensile, ksi		Group		AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form
						Fer	rous (Con	ıt'd)		
A/SA-213	TP309HCb	S30941	75 (515)	8	2	102	130	8.2	23Cr-12Ni-Cb	Smls. tube
A/SA-213	TP310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Smls. tube
A/SA-213	TP310H	S31009	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Smls. tube
A/SA-213	TP310Cb	S31040	75 (515)	8	2	102	130	8.2	25Cr-20Ni-Cb	Smls. tube
A/SA-213	TP310HCb	S31041	75 (515)	8	2	102	130	8.2	25Cr-20Ni-Cb	Smls. tube
A/SA-213	TP310HCbN	S31042	95 (655)	8	3	102	130	8.2	25Cr-20Ni-Cb-N	Smls. tube
A/SA-213	TP310MoLN	S31050	78 (540)	8	2	102	130	8.2	25Cr-22Ni-2Mo-N	Smls. tube, $t > \frac{1}{4}$ in. (6 mm)
A/SA-213	TP310MoLN	S31050	84 (580)	8	2	102	130	8.2	25Cr-22Ni-2Mo-N	Smls. tube, $t \leq \frac{1}{4}$ in. (6 mm)
A/SA-213		S31254	95 (655)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Smls. tube, $t > \frac{3}{16}$ in. (5 mm)
A/SA-213		S31254	98 (675)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Smls. tube, $t \leq \frac{3}{16}$ in. (5 mm)
A/SA-213	TP316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. tube
A/SA-213	TP316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. tube
A/SA-213	TP316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. tube
A/SA-213	TP316Ti	S31635	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-Ti	Smls. tube
A/SA-213	TP316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Smls. tube
A/SA-213	TP316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Smls. tube
A/SA-213	TP317	S31700	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Smls. tube
A/SA-213	TP317L	S31703	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Smls. tube
A/SA-213	TP317LM	S31725	75 (515)	8	4	102	130	8.1	19Cr-15Ni-4Mo	Smls. tube
A/SA-213	TP317LMN	S31726	80 (550)	8	4	102	130	8.1	19Cr-15.5Ni-4Mo	Smls. tube
A/SA-213	TP321	S32100	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Smls. tube
A/SA-213	TP321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Smls. tube
A/SA-213	S32615	S32615	80 (550)	8	1	102	130	8.1	18Cr-20Ni-5.5Si	Smls. tube
A/SA-213	S34565	S34565	115 (795)	8	4	102	130	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Smls. tube
A/SA-213	TP347	S34700	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Smls. tube
A/SA-213	TP347H	S34709	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Smls. tube
A/SA-213	TP347HFG	S34710	80 (550)	8	1	102	130	8.1	18Cr–10Ni–Cb	Smls. tube
A/SA-213	TP347LN	S34751	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb-N	Smls. tube
A/SA-213	TP348	S34800	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Smls. tube
A/SA-213	TP348H	S34809	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Smls. tube
A/SA-213	XM-15	S38100	75 (515)	8	1	102	130	8.1	18Cr-18Ni-2Si	Smls. tube
A/SA-213		S38815	78 (540)	8	1	102	130	8.1	14Cr-16Ni-6Si-Cu-Mo	Smls. tube
A/SA-214		K01807	47 (325)	1	1	101	100	1.1	С	E.R.W. tube
A/SA-216	WCA	J02502	60 (415)	1	1	101	100	1.1	C–Si	Castings
A/SA-216	WCC	102503	70 (485)	1	2	101	100	1.1	C–Mn–Si	Castings
A/SA-216	WCB	103002	70 (485)	1	2	101	100	1.1	C–Si	Castings

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

	Designation, Type,		Minimum Specified Tensile, ksi	Wel	lding Group		azing AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form	
						Fer	rous (Con	t'd)			_
A/SA-217	WC6	J12072	70 (485)	4	1	102	110	5.1	1.25Cr-0.5Mo	Castings	
A/SA-217	WC4	J12082	70 (485)	4	1	101	100	9.1	1Ni-0.5Cr-0.5Mo	Castings	
A/SA-217	WC1	J12524	65 (450)	3	1	101	100	1.1	C-0.5Mo	Castings	
A/SA-217	WC9	J21890	70 (485)	5A	1	102	110	5.2	2.25Cr-1Mo	Castings	
, A/SA-217	WC5	J22000	70 (485)	4	1	101	100	4.2	0.75Ni-1Mo-0.75Cr	Castings	
A/SA-217	C5	J42045	90 (620)	5B	1	102	110	5.3	5Cr-0.5Mo	Castings	
A/SA-217	C12	J82090	90 (620)	5B	1	102	110	5.4	9Cr-1Mo	Castings	
A/SA-217	C12A	J84090	85 (585)	15E	1	102	110	6.4	9Cr-1Mo-V	Castings	
A/SA-217	CA15	J91150	90 (620)	6	3	102	150	7.2	13Cr	Castings	AS
A/SA-225	D	K12004	75 (515)	10A	1	101	100	2.1	Mn-0.5Ni-V	Plate > 3 in. (76 mm)	ASME BPVC.IX-2019
A/SA-225	D	K12004	80 (550)	10A	1	101	100	2.1	Mn-0.5Ni-V	Plate, 3 in. (76 mm) & under	B
A/SA-225	С	K12524	105 (725)	10A	1	101	100	4.1	Mn-0.5Ni-V	Plate	νC.
A/SA-234	WP11, Cl. 1		60 (415)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Piping fittings	IX-2
A/SA-234	WP11, Cl. 3		75 (515)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Piping fittings	101
A/SA-234	WPB	K03006	60 (415)	1	1	101	100	11.1	C-Mn-Si	Piping fittings	9
A/SA-234	WPC	K03501	70 (485)	1	2	101	100	11.1	C–Mn–Si	Piping fittings	
A/SA-234	WP12, Cl. 1	K12062	60 (415)	4	1	101	110	5.1	1Cr-0.5Mo	Piping fittings	
A/SA-234	WP12, Cl. 2	K12062	70 (485)	4	1	101	110	5.1	1Cr-0.5Mo	Piping fittings	
A/SA-234	WP1	K12821	55 (380)	3	1	101	100	11.2	C-0.5Mo	Piping fittings	
A/SA-234	WP22, Cl. 1	K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	Piping fittings	
A/SA-234	WP22, Cl. 3	K21590	75 (515)	5A	1	102	110	5.2	2.25Cr-1Mo	Piping fittings	
A/SA-234	WPR	K22035	63 (435)	9A	1	101	100	9.1	2Ni-1Cu	Piping fittings	
A/SA-234	WP5, Cl. 1	K41545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo	Piping fittings	
A/SA-234	WP5, Cl. 3	K41545	75 (515)	5B	1	102	110	5.3	5Cr-0.5Mo	Piping fittings	
A/SA-234	WP91	K90901	85 (585)	15E	1	102	110	6.4	9Cr-1Mo-V	Piping fittings	
A/SA-234	WP9, Cl. 1	K90941	60 (415)	5B	1	102	110	5.4	9Cr-1Mo	Piping fittings	
A/SA-234	WP9, Cl. 3	K90941	75 (515)	5B	1	102	110	5.4	9Cr-1Mo	Piping fittings	
A/SA-234	WP92	K92460	90 (620)	15E	1	102	110	6.4	9Cr-2W	Piping fittings	
A/SA-240		N08367	95 (655)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Plate ≥ 0.1875 in. (5 mm)	
A/SA-240		N08367	100 (690)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Sheet & strip < 0.1875 in. (5 mm)	
A/SA-240	904L	N08904	71 (490)	45		111	420	8.2	44Fe-25Ni-21Cr-Mo	Plate, sheet & strip	
A/SA-240	201-1	S20100	75 (515)	8	3	102	130	8.3	17Cr-4Ni-6Mn	Plate, sheet & strip	
A/SA-240	201-2	S20100	95 (655)	8	3	102	130	8.3	17Cr-4Ni-6Mn	Plate, sheet & strip	
A/SA-240	201LN	S20153	95 (655)	8	3		130	8.3	16Cr-4Ni-6Mn	Plate, sheet & strip	و سه صنعت 🗕

			Grou		rous a	nd N		us P-Num	bers ion (Cont'd)	
			Minimum	Wel	ding	Bra	azing			
Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
Spee. No.	Of Grade	0110 110.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 110.	10.		rous (Con	•	Nominal Composition	Typical Floater Form
A/SA-240	202	S20200	90 (620)	8	3	102	130	8.3	18Cr-5Ni-9Mn	Plate, sheet & strip
, A/SA-240		S20400	95 (655)	8	3	102	130	8.3	16Cr-9Mn-2Ni-N	Plate, sheet & strip
A/SA-240	XM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Plate
, A/SA-240	XM-19	S20910	105 (725)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Sheet & strip
A/SA-240	XM-17	S21600	90 (620)	8	3	102	130	8.3	19Cr-8Mn-6Ni-Mo-N	Plate
A/SA-240	XM-17	S21600	100 (690)	8	3	102	130	8.3	19Cr-8Mn-6Ni-Mo-N	Sheet & strip
A/SA-240	XM-18	S21603	90 (620)	8	3	102	130	8.3	19Cr-8Mn-6Ni-Mo-N	Plate
A/SA-240	XM-18	S21603	100 (690)	8	3	102	130	8.3	19Cr-8Mn-6Ni-Mo-N	Sheet & strip
A/SA-240	S21800	S21800	95 (655)	8	3	102	130	8.1	18Cr-8Ni-4Si-N	Plate, sheet & strip
A/SA-240	XM-29	S24000	100 (690)	8	3	102	130	8.3	18Cr-3Ni-12Mn	Plate, sheet & strip
A/SA-240	301	S30100	75 (515)	8	1	102	130	8.1	17Cr–7Ni	Plate, sheet & strip
A/SA-240	302	S30200	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Plate, sheet & strip
A/SA-240	304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Plate, sheet & strip
A/SA-240	304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Plate, sheet & strip
A/SA-240	304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Plate, sheet & strip
A/SA-240	304N	S30451	80 (550)	8	1	102	130	8.1	18Cr–8Ni–N	Plate, sheet & strip
A/SA-240	XM-21	S30452	85 (585)	8	1	102	130	8.1	18Cr–8Ni–N	Plate
A/SA-240	XM-21	S30452	90 (620)	8	1	102	130	8.1	18Cr–8Ni–N	Sheet & strip
A/SA-240	304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr–8Ni–N	Plate, sheet & strip
A/SA-240	305	S30500	70 (485)	8	1	102	130	8.1	18Cr–11Ni	Plate, sheet & strip
A/SA-240	S30600	S30600	78 (540)	8	1	102	130	8.1	18Cr–15Ni–4Si	Plate, sheet & strip
A/SA-240	S30601	S30601	78 (540)	8	1	102	130	8.1	17.5Cr–17.5Ni–5.3Si	Plate, sheet & strip
A/SA-240	S30815	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Plate, sheet & strip
A/SA-240	309S	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Plate, sheet & strip
A/SA-240	309H	S30909	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Plate, sheet & strip
A/SA-240	309Cb	S30940	75 (515)	8	2	102	130	8.2	23Cr-12Ni-Cb	Plate, sheet & strip
A/SA-240	309HCb	S30941	75 (515)	8	2	102	130	8.2	23Cr–12Ni–Cb	Plate, sheet & strip
A/SA-240	310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Plate, sheet & strip
A/SA-240	310H	S31009	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Plate, sheet & strip
A/SA-240	310Cb	S31040	75 (515)	8	2	102	130	8.2	25Cr–20Ni–Cb	Plate, sheet & strip
A/SA-240	310HCb	S31041	75 (515)	8	2	102	130	8.2	25Cr–20Ni–Cb	Plate, sheet & strip
A/SA-240	310MoLN	S31050	78 (540)	8	2	102	130	8.2	25Cr-22Ni-2Mo-N	Plate, sheet & strip, $t > \frac{1}{4}$ in. (6 mm
A/SA-240	310MoLN	S31050	84 (580)	8	2	102	130	8.2	25Cr-22Ni-2Mo-N	Plate, sheet & strip, $t \leq \frac{1}{4}$ in. (6 mm
A/SA-240	S31200	S31200	100 (690)	10H	1	102	145	10.2	25Cr-6Ni-Mo-N	Plate, sheet & strip
A/SA-240	S31254	S31254	95 (655)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Plate
A/SA-240	S31254	S31254	100 (690)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Sheet & strip
A/SA-240	S31260	S31260	100 (690)	10H	1	102	145	10.2	25Cr–6.5Ni–3Mo–N	Plate, sheet & strip

یک دو سه صنعت 123sanat.com

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

105

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

	Designation, Type,		Minimum Specified Tensile, ksi	Wel	ding Group		azing AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form	_
						Fer	rous (Con	ťd)			_
A/SA-240		S31266	109 (750)	45		102	420	8.2	24Cr-22Ni-6Mo-3Mn-Cu-W-N	Plate, sheet & strip	
A/SA-240	S31277	S31277	112 (770)	45		111	420	8.2	27Ni-22Cr-7Mo-Mn-Cu	Plate, sheet & strip	
A/SA-240	316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip	
A/SA-240	316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip	
A/SA-240	316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip	
A/SA-240	316Ti	S31635	75 (515)	8	1	102	130	8.1	16Cr–12Ni–2Mo–Ti	Plate, sheet & strip	
A/SA-240	316Cb	S31640	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-Cb	Plate, sheet & strip	
A/SA-240	316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Plate, sheet & strip	
A/SA-240	316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Plate, sheet & strip	
A/SA-240	317	S31700	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Plate, sheet & strip	AS
A/SA-240	317L	S31703	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Plate, sheet & strip	SM
A/SA-240	S31725	S31725	75 (515)	8	4	102	130	8.1	19Cr-15Ni-4Mo	Plate, sheet & strip	ЕВ
/SA-240	S31726	S31726	80 (550)	8	4	102	130	8.1	19Cr-15.5Ni-4Mo	Plate, sheet & strip	ASME BPVC.IX-2019
/SA-240	S31753	S31753	80 (550)	8	1	102	130	8.1	18Cr-13Ni-3Mo-N	Plate, sheet & strip	CI CI
/SA-240	S31803	S31803	90 (620)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Plate, sheet & strip	X-2
/SA-240		S32003	90 (620)	10H	1	102	145	10.1	21Cr-3.5Ni-Mo-N	Plate, sheet & strip	101
/SA-240		S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Plate, sheet & strip	[9]
/SA-240	321	S32100	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Plate, sheet & strip	
A/SA-240		S32101	95 (655)	10H	1	102	145	10.1	21Cr-5Mn-1.5Ni-Cu-N	Plate, sheet & strip > 0.187 in. (5 mm)	
A/SA-240		S32101	101 (700)	10H	1	102	145	10.1	21Cr-5Mn-1.5Ni-Cu-N	Plate, sheet & strip ≤ 0.187 in. (5 mm)	
A/SA-240	321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Plate, sheet & strip	
A/SA-240		S32202	94 (650)	10H	1	102	145	10.1	22Cr-2Ni-Mo-N	Plate, sheet & strip	
A/SA-240	2205	S32205	95 (655)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Plate, sheet & strip	
A/SA-240		S32304	87 (600)	10H	1	102	145	10.1	23Cr-4Ni-Mo-Cu-N	Plate, sheet & strip	
A/SA-240	S32550	S32550	110 (760)	10H	1	102	145	10.2	25Cr-5Ni-3Mo-2Cu	Plate, sheet & strip	
A/SA-240	S32615	S32615	80 (550)	8	1	102	130	8.1	18Cr-20Ni-5.5Si	Plate, sheet & strip	
A/SA-240		S32654	109 (750)	8	4	102	130	8.2	24Cr-22Ni-7Mo-3Mn	Plate, sheet & strip	
A/SA-240	S32750	S32750	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-4Mo-N	Plate, sheet & strip	
A/SA-240	S32760	S32760	108 (745)	10H	1	102	145	10.2	25Cr-8Ni-3Mo-W-Cu-N	Plate, sheet & strip	
A/SA-240	329	S32900	90 (620)	10H	1	102	145	10.2	26Cr-4Ni-Mo	Plate, sheet & strip	
A/SA-240	S32906	S32906	109 (750)	10H	1	102	145	10.2	29Cr-6.5Ni-2Mo-N	Plate, sheet & strip ≥ 0.40 in. (10 mm)	
A/SA-240	S32906	S32906	116 (800)	10H	1	102	145	10.2	29Cr-6.5Ni-2Mo-N	Plate, sheet & strip < 0.40 in. (10 mm)	
A/SA-240	S32950	S32950	100 (690)	10H	1	102	145	10.2	26Cr-4Ni-Mo-N	Plate, sheet & strip	
A/SA-240	S34565	S34565	115 (795)	8	4	102	130	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Plate, sheet & strip	
A/SA-240	347	S34700	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Plate, sheet & strip	
A/SA-240	347H	S34709	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Plate, sheet & strip	
A/SA-240	348	S34800	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Plate, sheet & strip	سه صنعت

A/SA-249

A/SA-249

TP XM-19

TP XM-29

				Minimum	We	lding	Bra	azing	
	Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	AWS B2.2 BM	ISO G
	spec. No.	01 Glaue	UNS NO.	(Mraj	r-NO.	NU.		rous (Con	-
	A/SA-240	348H	S34809	75 (515)	8	1	102	130	it uj
	A/SA-240	XM-15	S38100	75 (515) 75 (515)	8	1	102	130	
	A/SA-240		S38815	78 (540)	8	1	102	130	
	A/SA-240	405	S40500	60 (415)	7	1	102	160	
	A/SA-240	409	S40910	55 (380)	, 7	1	102	150	
	A/SA-240	409	S40920	55 (380)	, 7	1	102	150	
	A/SA-240	409	S40930	55 (380)	, 7	1	102	150	
	A/SA-240	410	S41000	65 (450)	6	1	102	150	
	A/SA-240	4105	S41008	60 (415)	7	1	102	150	
	A/SA-240	S41500	S41500	115 (795)	6	4	102	150	
	A/SA-240	429	S42900	65 (450)	6	2	102	150	
	A/SA-240	430	S43000	65 (450)	7	2	102	150	
106	A/SA-240	439	S43035	60 (415)	7	2	102	150	
9	A/SA-240	S43932	S43932	60 (415)	7	2	102	150	
	A/SA-240	S43940	S43940	62 (425)	7	2	102	150	
	A/SA-240		S44100	60 (415)	7	2	102	150	
	A/SA-240	S44400	S44400	60 (415)	7	2	102	150	
	A/SA-240	XM-33	S44626	68 (470)	10I	1	102	150	
	A/SA-240	XM-27	S44627	65 (450)	10I	1	102	150	
	A/SA-240	S44635	S44635	90 (620)	10I	1	102	150	
	A/SA-240	S44660	S44660	85 (585)	10K	1	102	150	
	A/SA-240	S44700	S44700	80 (550)	10J	1	102	150	
	A/SA-240	S44800	S44800	80 (550)	10K	1	102	150	
	A/SA-240		S82012	94 (650)	10H	1	102	145	
	A/SA-240		S82012	102 (705)	10H	1	102	145	
	A/SA-240		S82031	94 (650)	10H	1	102	145	
	A/SA-240		S82031	102 (705)	10H	1	102	145	
	A/SA-240		S82441	99 (680)	10H	1	102	145	
	A/SA-240		S82441	107 (740)	10H	1	102	145	
	A/SA-249		N08367	95 (655)	45		111	420	
	A/SA-249		N08367	100 (690)	45		111	420	
	A/SA-249		N08904	71 (490)	45		111	420	
	A/SA-249	TP 201	S20100	95 (655)	8	3	102	130	
	A/SA-249	TP 202	S20200	90 (620)	8	3	102	130	
	1 ·								

S20910

S24000

100 (690)

100 (690)

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

ISO 15608 Group

8.1

8.1

8.1

7.1

7.1

7.1

7.1

7.2

7.2

7.2

7.2

7.1

7.1

7.1

7.1

7.1

7.1

7.1

7.1

7.1

7.1

7.1

7.1

10.1

10.1

10.1

10.1

10.1

10.1

8.2

8.2

8.2

8.3

8.3

8.3

8.3

Nominal Composition

14Cr-16Ni-6Si-Cu-Mo

18Cr-10Ni-Cb

18Cr-18Ni-2Si

13Cr-4.5Ni-Mo

12Cr-Al

11Cr-Ti

11Cr-Ti

11Cr-Ti

13Cr

13Cr

15Cr

17Cr

18Cr-Ti

18Cr-Ti-Cb

18Cr-Ti-Cb

18Cr-Cb-Ti

18Cr-2Mo

27Cr-1Mo

29Cr-4Mo

27Cr-1Mo-Ti

25Cr-4Ni-4Mo-Ti

26Cr-3Ni-3Mo

29Cr-4Mo-2Ni

20Cr-1Ni-Mo-N

20Cr-1Ni-Mo-N

21Cr-3Ni-1Mo-N

21Cr-3Ni-1Mo-N

24Cr-4Ni-3Mn-1.5Mo-N

24Cr-4Ni-3Mn-1.5Mo-N

46Fe-24Ni-21Cr-6Mo-N

46Fe-24Ni-21Cr-6Mo-N

44Fe-25Ni-21Cr-Mo

17Cr-4Ni-6Mn

18Cr-5Ni-9Mn

22Cr-13Ni-5Mn

18Cr-3Ni-12Mn

Typical Product Form

Plate, sheet & strip

Welded tube

Welded tube

Welded tube

Welded tube

Welded tube

Plate, sheet & strip > 0.187 in. (5 mm)

Plate, sheet & strip ≤ 0.187 in. (5 mm)

Plate, sheet & strip > 0.187 in. (5 mm)

Plate, sheet & strip ≤ 0.187 in. (5 mm)

Plate, sheet & strip ≥ 0.40 in. (10 mm)

Plate, sheet & strip < 0.40 in. (10 mm)

Welded tube > 0.1875 in. (5 mm)

Welded tube ≤ 0.1875 in. (5 mm)

3

3

102

102

130

130

8

8

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

	Designation, Type,		Minimum Specified Tensile, ksi		ding Group		AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form	_
							rous (Con	,			_
A/SA-249	TP304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Welded tube	
A/SA-249	TP304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Welded tube	
A/SA-249	TP304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Welded tube	
A/SA-249	TP304N	S30451	80 (550)	8	1	102	130	8.1	18Cr–8Ni–N	Welded tube	
A/SA-249	TP304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr–8Ni–N	Welded tube	
A/SA-249	S30815	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Welded tube	
A/SA-249	TP309S	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Welded tube	
A/SA-249	ТР309Н	S30909	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Welded tube	
A/SA-249	TP309Cb	S30940	75 (515)	8	2	102	130	8.2	23Cr-12Ni-Cb	Welded tube	Þ
A/SA-249	TP309HCb	S30941	75 (515)	8	2	102	130	8.2	23Cr-12Ni-Cb	Welded tube	ASME BPVC.IX-2019
A/SA-249	TP310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Welded tube	Ē
A/SA-249	TP310H	S31009	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Welded tube	BP
A/SA-249	TP310Cb	S31040	75 (515)	8	2	102	130	8.2	25Cr-20Ni-Cb	Welded tube	VC
A/SA-249	TP310HCb	S31041	75 (515)	8	2	102	130	8.2	25Cr-20Ni-Cb	Welded tube	I IX
A/SA-249	TP310MoLN	S31050	78 (540)	8	2	102	130	8.2	25Cr-22Ni-2Mo-N	Welded tube, $t > \frac{1}{4}$ in. (6 mm)	-20
A/SA-249	TP310MoLN	S31050	84 (580)	8	2	102	130	8.2	25Cr-22Ni-2Mo-N	Welded tube, $t \leq \frac{1}{4}$ in. (6 mm)	119
A/SA-249	S31254	S31254	95 (655)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Welded tube, $t > \frac{3}{16}$ in. (5 mm)	
A/SA-249	S31254	S31254	98 (675)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Welded tube, $t \leq \frac{3}{16}$ in. (5 mm)	
A/SA-249	TP316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded tube	
A/SA-249	TP316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded tube	
A/SA-249	TP316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded tube	
A/SA-249	TP316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Welded tube	
A/SA-249	TP316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Welded tube	
A/SA-249	TP317	S31700	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Welded tube	
A/SA-249	TP317L	S31703	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Welded tube	
A/SA-249	S31725	S31725	75 (515)	8	4	102	130	8.1	19Cr-15Ni-4Mo	Welded tube	
A/SA-249	S31726	S31726	80 (550)	8	4	102	130	8.1	19Cr-15.5Ni-4Mo	Welded tube	
A/SA-249		S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Welded tube	
, A/SA-249	TP321	S32100	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Welded tube	
, A/SA-249	TP321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Welded tube	
, A/SA-249	TP347	S34700	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Welded tube	
, A/SA-249	TP347H	S34709	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Welded tube	
A/SA-249	TP348	S34800	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Welded tube	
A/SA-249	TP348H	S34809	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Welded tube	
A/SA-249	TP XM-15	S38100	75 (515)	8	1	102	130	8.1	18Cr-18Ni-2Si	Welded tube	
A/SA-249		S38815	78 (540)	8	1	102	130	8.1	14Cr–16Ni–6Si–Cu–Mo	Welded tube	

107

			Grou		rous a	and N		us P-Num	ibers ion (Cont'd)	
Spec. No.	Designation, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	We	lding Group No.	Bra P-No.	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
spec. No.	01 Graue	UN3 NO.	(Mra)	r-NU.	NU.		rous (Con		Nommar Composition	
						ren	ious (con	it uj		
A/SA-250	T1b	K11422	53 (365)	3	1	101	100	1.1	С-0.5Мо	E.R.W. tube
A/SA-250	T1	K11522	55 (380)	3	1	101	100	1.1	С-0.5Мо	E.R.W. tube
A/SA-250	T2	K11547	60 (415)	3	1	101	100	4.2	0.5Cr-0.5Mo	E.R.W. tube
A/SA-250	T12	K11562	60 (415)	4	1	102	110	5.1	1Cr-0.5Mo	E.R.W. tube
A/SA-250	T11	K11597	60 (415)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	E.R.W. tube
A/SA-250	T1a	K12023	60 (415)	3	1	101	100	1.1	C-0.5Mo	E.R.W. tube
A/SA-250	T22	K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	E.R.W. tube
A254	Cl. 1	K01001	42 (290)			101	100	NA	С	Cu brazed tube
A254	Cl. 2	K01001	42 (290)			101	100	NA	С	Cu brazed tube
A/SA-266	4	K03017	70 (485)	1	2	101	100	11.1	C-Mn-Si	Forgings
A/SA-266	1	K03506	60 (415)	1	1	101	100	11.1	C–Si	Forgings
A/SA-266	2	K03506	70 (485)	1	2	101	100	11.1	C–Si	Forgings
A/SA-266	3	K05001	75 (515)	1	2	101	100	11.2	C–Si	Forgings
A/SA-268	TP405	S40500	60 (415)	7	1	102	160	7.1	12Cr–Al	Smls. & welded tube
A/SA-268	S40800	S40800	55 (380)	7	1	102	150	7.1	12Cr–Ti	Smls. & welded tube
A/SA-268	TP409	S40900	55 (380)	7	1	102	150	7.1	11Cr–Ti	Smls. & welded tube
A/SA-268	TP410	S41000	60 (415)	6	1	102	150	7.2	13Cr	Smls. & welded tube
A/SA-268	S41500	S41500	115 (795)	6	4	102	150	7.2	13Cr-4.5Ni-Mo	Smls. & welded tube
A/SA-268	TP429	S42900	60 (415)	6	2	102	150	7.2	15Cr	Smls. & welded tube
A/SA-268	TP430	S43000	60 (415)	7	2	102	150	7.1	17Cr	Smls. & welded tube
A/SA-268	TP439	S43035	60 (415)	7	2	102	150	7.1	18Cr–Ti	Smls. & welded tube
A/SA-268	TP430Ti	S43036	60 (415)	7	2	102	160	7.1	18Cr–Ti	Smls. & welded tube
A/SA-268	18Cr-2Mo	S44400	60 (415)	7	2	102	150	7.1	18Cr-2Mo	Smls. & welded tube
A/SA-268	TP446-1	S44600	70 (485)	10I	1	102	150	7.1	27Cr	Smls. & welded tube
A/SA-268	TP446-2	S44600	65 (450)	10I	1	102	150	7.1	27Cr	Smls. & welded tube
A/SA-268	TPXM-33	S44626	68 (470)	10I	1	102	150	7.1	27Cr-1Mo-Ti	Smls. & welded tube
A/SA-268	TPXM-27	S44627	65 (450)	10I	1	102	150	7.1	27Cr-1Mo	Smls. & welded tube
A/SA-268	25-4-4	S44635	90 (620)	10I	1	102	150	7.1	25Cr-4Ni-4Mo-Ti	Smls. & welded tube
A/SA-268	26-3-3	S44660	85 (585)	10K	1	102	150	7.1	26Cr-3Ni-3Mo	Smls. & welded tube
A/SA-268	29-4	S44700	80 (550)	10J	1	102	150	7.1	29Cr-4Mo	Smls. & welded tube
A/SA-268	S44735	S44735	75 (515)	10J	1	102	150	7.1	29Cr-4Mo-Ti	Smls. & welded tube
A/SA-268	29-4-2	S44800	80 (550)	10K	1	102	150	7.1	29Cr-4Mo-2Ni	Smls. & welded tube
A269	TP304	S30400		8	1	102	130	8.1	18Cr–8Ni	Smls. & welded tube
A269	TP304L	S30403		8	1	102	130	8.1	18Cr–8Ni	Smls. & welded tube

			Grou		rous a	and N		us P-Num	ibers tion (Cont'd)	
			Minimum	We	lding	Br	azing	_		
Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
opeentor	or drude		(Mu)	1 1101	1101		rous (Con	_	Nominal Composition	Typical Product Form
A269	TP316	S31600		8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. & welded tube
A269	TP316L	S31603		8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. & welded tube
A/SA-276	304	S30400	75 (515)	8	1	102	130	8.1	18Cr-8Ni	Bars & shapes
A/SA-276	304L	S30403	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Bars & shapes
A/SA-276	314	S31400		8	2	102	130	8.2	24Cr-20Ni-Si	Bars & shapes
A/SA-276	316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Bars & shapes
A/SA-276	316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Bars & shapes
A/SA-276	410	S41000	70 (485)	6	1	102	150	7.2	13Cr	Bars & shapes
A/SA-283	А	K01400	45 (310)	1	1	101	100	1.1	С	Plate
A/SA-283	В	K01702	50 (345)	1	1	101	100	1.1	С	Plate
A/SA-283	С	K02401	55 (380)	1	1	101	100	1.1	С	Plate
A/SA-283	D	K02702	60 (415)	1	1	101	100	1.1	С	Plate
A/SA-285	А	K01700	45 (310)	1	1	101	100	1.1	С	Plate
A/SA-285	В	K02200	50 (345)	1	1	101	100	1.1	С	Plate
A/SA-285	С	K02801	55 (380)	1	1	101	100	11.1	С	Plate
A/SA-299	А	K02803	75 (515)	1	2	101	100	11.1	C-Mn-Si	Plate
A/SA-299	В	K02803	80 (550)	1	3	101	100	11.1	C-Mn-Si	Plate
A/SA-302	А	K12021	75 (515)	3	2	101	100	1.1	Mn-0.5Mo	Plate
A/SA-302	В	K12022	80 (550)	3	3	101	100	1.2	Mn-0.5Mo	Plate
A/SA-302	С	K12039	80 (550)	3	3	101	100		Mn-0.5Mo-0.5Ni	Plate
A/SA-302	D	K12054	80 (550)	3	3	101	100		Mn-0.5Mo-0.75Ni	Plate
A/SA-312	N08367	N08367	95 (655)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Smls. & welded pipe > 0.1875 in. (5 mm)
A/SA-312	N08367	N08367	100 (690)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Smls. & welded pipe ≤ 0.1875 in. (5 mm)
A/SA-312		N08904	71 (490)	45		111	420	8.2	44Fe-25Ni-21Cr-Mo	Smls. & welded pipe
A/SA-312	TPXM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Smls. & welded pipe
A/SA-312	TPXM-11	S21904	90 (620)	8	3	102	130	8.3	21Cr-6Ni-9Mn	Smls. & welded pipe
A/SA-312	TPXM-29	S24000	100 (690)	8	3	102	130	8.3	18Cr-3Ni-12Mn	Smls. & welded pipe
A/SA-312	TP304	S30400	75 (515)	8	1	102	130	8.1	18Cr-8Ni	Smls. & welded pipe
A/SA-312	TP304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Smls. & welded pipe
A/SA-312	TP304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Smls. & welded pipe
A/SA-312	TP304N	S30451	80 (550)	8	1	102	130	8.1	18Cr–8Ni–N	Smls. & welded pipe

یک دو سه صنعت 123sanat.com

109

		A/SA-3
		A/SA-3
	110	A/SA-3
Z E	0	A/SA-3
Licensee=Khalda Petroleum/5986215001 Not for Resale, 07/02/2019 13:22:09 MDT		A/SA-3
Res:		A/SA-3
hald: ale, (A/SA-3
a Pe)7/02		A/SA-3
trolei 2/201		A/SA-3
um/5 9 13		A/SA-3
9862		A/SA-3
2150 99 MI		A/SA-3
01,C		A/SA-3
Jser=		A/SA-3
Licensee=Khaida Petroleum/5986215001, User=Amer, Mohamed Notfor Resale, 07/02/2019 13-22-09 MDT		A/SA-3
¥Γ, Μ		A/SA-3
ohan		A/SA-3
ned		A/SA-3

-	able QW/QB-422
Ferrous a	nd Nonferrous P-Numbers
Grouping of Bas	e Metals for Qualification (Cont'd)

			Minimum	Wel	ding	Bra	azing			
			Specified							
	Designation, Type,		Tensile, ksi		Group		AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form
						Fer	rous (Con	ıt'd)		
A/SA-312	TP304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr-8Ni-N	Smls. & welded pipe
A/SA-312	S30600	S30600	78 (540)	8	1	102	130	8.1	18Cr-15Ni-4Si	Smls. & welded pipe
A/SA-312	S30815	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Smls. & welded pipe
A/SA-312	TP309S	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Smls. & welded pipe
A/SA-312	ТР309Н	S30909	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Smls. & welded pipe
A/SA-312	TP309Cb	S30940	75 (515)	8	2	102	130	8.2	23Cr-12Ni-Cb	Smls. & welded pipe
A/SA-312	TP309HCb	S30941	75 (515)	8	2	102	130	8.2	23Cr–12Ni–Cb	Smls. & welded pipe
A/SA-312	TP310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Smls. & welded pipe
A/SA-312	TP310H	S31009	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Smls. & welded pipe
A/SA-312	TP310Cb	S31040	75 (515)	8	2	102	130	8.2	25Cr–20Ni–Cb	Smls. & welded pipe
A/SA-312	TP310HCb	S31041	75 (515)	8	2	102	130	8.2	25Cr-20Ni-Cb	Smls. & welded pipe
A/SA-312	TP310MoLN	S31050	78 (540)	8	2	102	130	8.2	25Cr-22Ni-2Mo-N	Smls. & welded pipe, $t > \frac{1}{4}$ in. (6 mm)
A/SA-312	TP310MoLN	S31050	84 (580)	8	2	102	130	8.2	25Cr-22Ni-2Mo-N	Smls. & welded pipe, $t \leq \frac{1}{4}$ in. (6 mm)
A/SA-312	S31254	S31254	95 (655)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Smls. & welded pipe, $t > \frac{3}{16}$ in. (5 mm)
A/SA-312	S31254	S31254	98 (675)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Smls. & welded pipe, $t \leq \frac{3}{16}$ in. (5 mm)
A/SA-312	TP316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. & welded pipe
A/SA-312	TP316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. & welded pipe
A/SA-312	TP316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. & welded pipe
A/SA-312	TP316Ti	S31635	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-Ti	Smls. & welded pipe
A/SA-312	TP316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Smls. & welded pipe
A/SA-312	TP316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Smls. & welded pipe
A/SA-312	TP317	S31700	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Smls. & welded pipe
A/SA-312	TP317L	S31703	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Smls. & welded pipe
A/SA-312	S31725	S31725	75 (515)	8	4	102	130	8.1	19Cr-15Ni-4Mo	Smls. & welded pipe
A/SA-312	S31726	S31726	80 (550)	8	4	102	130	8.1	19Cr-15.5Ni-4Mo	Smls. & welded pipe
A/SA-312		S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Smls. & welded pipe
A/SA-312	TP321	S32100	70 (485)	8	1	102	140	8.1	18Cr-10Ni-Ti	Smls. pipe > $\frac{3}{8}$ in. (10 mm)
A/SA-312	TP321	S32100	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Smls. pipe $\leq \frac{3}{8}$ in. (10 mm)
A/SA-312	TP321	S32100	75 (515)	8	1	102	140	8.1	18Cr-10Ni-Ti	Welded pipe
A/SA-312	TP321H	S32109	70 (485)	8	1	102	140	8.1	18Cr-10Ni-Ti	Smls. pipe > $\frac{3}{8}$ in. (10 mm)
A/SA-312	TP321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Smls. pipe $\leq \frac{3}{8}$ in. (10 mm)
A/SA-312	TP321H	S32109	75 (515)	8	1	102	140	8.1	18Cr-10Ni-Ti	Welded pipe
A/SA-312	S32615	S32615	80 (550)	8	1	102	130	8.1	18Cr-20Ni-5.5Si	Smls. & welded pipe
, A/SA-312	S34565	S34565	115 (795)	8	4	102	130	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Smls. & welded pipe
, A/SA-312	TP347	S34700	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Smls. & welded pipe
A/SA-312	TP347H	S34709	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Smls. & welded pipe
A/SA-312	TP347LN	S34751	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb-N	Smls. & welded pipe

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd) -

			Minimum	We	lding	Bra	azing				
	Designation, Type,		Specified Tensile, ksi		Group			ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	-	P-No	AWS B2.2 BM	Group	Nominal Composition	Typical Product Form	
Spee. No.	01 drade	0115 110.	(Ma)	1 110.	110.		rous (Con	*	Nominal Composition	Typical Floadet Form	
A/6A 212	TP348	S34800		8	1	102	130		18Cr–10Ni–Cb	Smls. & welded pipe	
A/SA-312 A/SA-312	TP348	S34800 S34809	75 (515) 75 (515)	8		102	130	8.1 8.1	18Cr-10Ni-Cb	Smls. & welded pipe Smls. & welded pipe	
<i>'</i>					1						
A/SA-312	TPXM-15	S38100	75 (515)	8	1	102	130	8.1	18Cr-18Ni-2Si	Smls. & welded pipe	
A/SA-333	10		80 (550)	1	3	101	100	11.1	C-Mn-Si	Smls. & welded pipe	
A/SA-333	6	K03006	60 (415)	1	1	101	100	11.1	C-Mn-Si	Smls. & welded pipe	
A/SA-333	1	K03008	55 (380)	1	1	101	100	11.1	C-Mn	Smls. & welded pipe	
A/SA-333	4	K11267	60 (415)	4	2	102	120	4.1	0.75Cr-0.75Ni-Cu-Al	Smls. & welded pipe	
A/SA-333	7	K21903	65 (450)	9A	1	101	100	9.1	2.5Ni	Smls. & welded pipe	
A/SA-333	9	K22035	63 (435)	9A	1	101	100	9.1	2Ni-1Cu	Smls. & welded pipe	A
A/SA-333	3	K31918	65 (450)	9B	1	101	100	9.2	3.5Ni	Smls. & welded pipe	SM
A/SA-333	8	K81340	100 (690)	11A	1	101	100	9.3	9Ni	Smls. & welded pipe	ЕВ
A/SA-334	6	K03006	60 (415)	1	1	101	100	11.1	C-Mn-Si	Welded tube	ASME BPVC.IX-2019
A/SA-334	1	K03008	55 (380)	1	1	101	100	11.1	C-Mn	Welded tube	
A/SA-334	7	K21903	65 (450)	9A	1	101	100	9.1	2.5Ni	Welded tube	(-2)
A/SA-334	9	K22035	63 (435)	9A	1	101	100	9.1	2Ni-1Cu	Welded tube	019
A/SA-334	3	K31918	65 (450)	9B	1	101	100	9.2	3.5Ni	Welded tube	e
A/SA-334	8	K81340	100 (690)	11A	1	101	100	9.3	9Ni	Welded tube	
A/SA-335	P1	K11522	55 (380)	3	1	101	100	1.1	C-0.5Mo	Smls. pipe	
A/SA-335	P2	K11547	55 (380)	3	1	101	100	4.2	0.5Cr-0.5Mo	Smls. pipe	
A/SA-335	P12	K11562	60 (415)	4	1	102	110	5.1	1Cr-0.5Mo	Smls. pipe	
A/SA-335	P15	K11578	60 (415)	3	1	101	100		1.5Si-0.5Mo	Smls. pipe	
A/SA-335	P11	K11597	60 (415)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Smls. pipe	
A/SA-335	P22	K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	Smls. pipe	
A/SA-335	P21	K31545	60 (415)	5A	1	102	110	5.2	3Cr-1Mo	Smls. pipe	
A/SA-335	P5c	K41245	60 (415)	5B	1	102	120	5.3	5Cr-0.5Mo-Ti	Smls. pipe	
A/SA-335	P5	K41545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo	Smls. pipe	
A/SA-335	P5b	K51545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo-Si	Smls. pipe	
A/SA-335	P91	K90901	85 (585)	15E	1	102	110	6.4	9Cr-1Mo-V	Smls. pipe	
A/SA-335	Р9	K90941	60 (415)	5B	1	102	110	5.4	9Cr-1Mo	Smls. pipe	
A/SA-335	P92	K92460	90 (620)	15E	1	102	110	6.4	9Cr-2W	Smls. pipe	
A/SA-336	F12	K11564	70 (485)	4	1	102	110	5.1	1Cr-0.5Mo	Forgings	
A/SA-336	F11, Cl. 2	K11572	70 (485)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Forgings	
A/SA-336	F11, Cl. 3	K11572	75 (515)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Forgings	
A/SA-336	F11, Cl. 1	K11597	60 (415)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Forgings	یک دو سه صنعت

TOT			Designation,
rom IHS		Spec. No.	or Grad
0			
		A/SA-336	F1
		A/SA-336	F22, Cl.
		A/SA-336	F22, Cl. 1
		A/SA-336	F3VCb
		A/SA-336	F21, Cl.
		A/SA-336	F21, Cl. 1
		A/SA-336	F3V
		A/SA-336	F22V
		A/SA-336	F5
		A/SA-336	F5A
		A/SA-336	F91
		A/SA-336	F9
	112	A/SA-336	F92
S E	2	A/SA-336	F6
t for F		A/SA-350	LF1
esa		A/SA-350	LF2
lalda		A/SA-350	LF6, Cl. 1
Petr 7/02/		A/SA-350	LF5 Cl. 1
oleu 2019		A/SA-350	LF5 Cl. 2
m/59 13:		A/SA-350	LF9
Licensee=Khalda Petroleum/5986215001, Not for Resale, 07/02/2019 13:22:09 MDT		A/SA-350	LF3
Licensee≞Khalda Petroleum/5986215001, User≃Amer, Mohamed Not⊺or Resale, 07/02/2019 13:22:09 MDT		A/SA-351	CF3
Use		A/SA-351	CF3A
r=An		A/SA-351	CF10
ner, I		A/SA-351	CF8
Noha		A/SA-351	CF8A
med		A/SA-351	CF8C
_		A/SA-351	CF3M
		A/SA-351	CE20N
		A/SA-351	CF8M

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

			Minimum Specified	Wel	ding	Bra	azing			
	Designation, Type,		Tensile, ksi		Group		AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form
						Fer	rous (Con	t'd)		
A/SA-336	F1	K12520	70 (485)	3	2	101	100	1.1	C-0.5Mo	Forgings
A/SA-336	F22, Cl. 1	K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	Forgings
A/SA-336	F22, Cl. 3	K21590	75 (515)	5A	1	102	110	5.2	2.25Cr-1Mo	Forgings
A/SA-336	F3VCb	K31390	85 (585)	5C	1	102	110	6.2	3Cr-1Mo-0.25V-Cb-Ca	Forgings
A/SA-336	F21, Cl. 1	K31545	60 (415)	5A	1	102	110	5.2	3Cr-1Mo	Forgings
A/SA-336	F21, Cl. 3	K31545	75 (515)	5A	1	102	110	5.2	3Cr-1Mo	Forgings
A/SA-336	F3V	K31830	85 (585)	5C	1	102	120	6.2	3Cr-1Mo-V-Ti-B	Forgings
A/SA-336	F22V	K31835	85 (585)	5C	1	102	110	6.2	2.25Cr-1Mo-V	Forgings
A/SA-336	F5	K41545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo	Forgings
A/SA-336	F5A	K42544	80 (550)	5B	1	102	110	5.3	5Cr-0.5Mo	Forgings
A/SA-336	F91	K90901	90 (620)	15E	1	102	110	6.4	9Cr-1Mo-V	Forgings
A/SA-336	F9	K90941	85 (585)	5B	1	102	110	5.4	9Cr-1Mo	Forgings
A/SA-336	F92	K92460	90 (620)	15E	1	102	110	6.4	9Cr-2W	Forgings
A/SA-336	F6	S41000	85 (585)	6	3	102	150	7.2	13Cr	Forgings
A/SA-350	LF1	K03009	60 (415)	1	1	101	100	11.1	C-Mn-Si	Forgings
A/SA-350	LF2	K03011	70 (485)	1	2	101	100	11.1	C-Mn-Si	Forgings
A/SA-350	LF6, Cl. 2	K12202	75 (515)	1	3	101	100	4.1	C-Mn-Si-V	Forgings
A/SA-350	LF5 Cl. 1	K13050	60 (415)	9A	1	101	100	9.1	1.5Ni	Forgings
A/SA-350	LF5 Cl. 2	K13050	70 (485)	9A	1	101	100	9.1	1.5Ni	Forgings
A/SA-350	LF9	K22036	63 (435)	9A	1	101	100	9.1	2Ni-1Cu	Forgings
A/SA-350	LF3	K32025	70 (485)	9B	1	101	100	9.2	3.5Ni	Forgings
A/SA-351	CF3	J92500	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Castings
A/SA-351	CF3A	J92500	77 (530)	8	1	102	130	8.1	18Cr–8Ni	Castings
A/SA-351	CF10	J92590	70 (485)	8	1	102	130	8.1	19Cr-9Ni-0.5Mo	Castings
A/SA-351	CF8	J92600	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Castings
A/SA-351	CF8A	J92600	77 (530)	8	1	102	130	8.1	18Cr–8Ni	Castings
A/SA-351	CF8C	J92710	70 (485)	8	1	102	130	8.1	18Cr–10Ni–Cb	Castings
A/SA-351	CF3M	J92800	70 (485)	8	1	102	130	8.1	18Cr-12Ni-2Mo	Castings
A/SA-351	CE20N	J92802	80 (550)	8	2	102	130	8.2	25Cr-8Ni-N	Castings
A/SA-351	CF8M	J92900	70 (485)	8	1	102	130	8.1	18Cr-12Ni-2Mo	Castings
A/SA-351	CF10M	J92901	70 (485)	8	1	102	130	8.1	19Cr-9Ni-2Mo	Castings
A/SA-351	CF10MC	J92971	70 (485)	8	1	102	130	8.1	16Cr-14Ni-2Mo	Castings
A/SA-351	CG8M	J93000	75 (515)	8	1	102	130	8.1	19Cr-10Ni-3Mo	Castings
A/SA-351	CK3MCuN	J93254	80 (550)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Castings
A/SA-351	CD3MWCuN	J93380	100 (690)	10H	1	102	145	10.2	25Cr-8Ni-3Mo-W-Cu-N	Castings
A/SA-351	CH8	J93400	65 (450)	8	2	102	130	8.2	25Cr-12Ni	Castings

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

113

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

	Designation, Type,		Minimum Specified Tensile, ksi		lding Group		azing AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form	
						Fer	rous (Con	t'd)			
A/SA-351	CH10	J93401	70 (485)	8	2	102	130	8.2	25Cr-12Ni	Castings	
A/SA-351	CH20	J93402	70 (485)	8	2	102	130	8.2	25Cr-12Ni	Castings	
/SA-351	CG6MMN	J93790	85 (585)	8	3	102	130	8.3	22Cr-12Ni-5Mn	Castings	
/SA-351	CK20	J94202	65 (450)	8	2	102	130	8.2	25Cr-20Ni	Castings	
/SA-351	HK30	J94203	65 (450)	8	2	102	130	8.2	25Cr-20Ni-0.5Mo	Castings	
/SA-351	HK40	J94204	62 (425)	8	2	102	130	8.2	25Cr-20Ni-0.5Mo	Castings	
/SA-351	CN3MN	J94651	80 (550)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Castings	
/SA-351	CN7M	N08007	62 (425)	45		111	420	8.2	28Ni-19Cr-Cu-Mo	Castings	
A/SA-351	CT15C	N08151	63 (435)	45		111	420	45	32Ni-45Fe-20Cr-Cb	Castings	
/SA-351	HT30	N08603	65 (450)	45		111	420	45	35Ni-15Cr-0.5Mo	Castings	ASME BPVC.IX-2019
/SA-352	LCA	J02504	60 (415)	1	1	101	100	11.1	C–Si	Castings	IE B
/SA-352	LCC	J02505	70 (485)	1	2	101	100	11.1	C-Mn-Si	Castings	I P
/SA-352	LCB	J03003	65 (450)	1	1	101	100	1.1	C-Si	Castings	l 2
/SA-352	LC1	J12522	65 (450)	3	1	101	100	1.1	C-0.5Mo	Castings	IX.
/SA-352	LC2	J22500	70 (485)	9A	1	101	100	9.1	2.5Ni	Castings	20
/SA-352	LC3	J31550	70 (485)	9B	1	101	100	9.3	3.5Ni	Castings	19
/SA-352	LC4	J41500	70 (485)	9C	1	101	100	9.3	4.5Ni	Castings	
/SA-352	LC2-1	J42215	105 (725)	11A	5	102	110	9.2	3Ni-1.5Cr-0.5Mo	Castings	
/SA-352	CA6NM	J91540	110 (760)	6	4	102	150	7.2	13Cr-4Ni	Castings	
/SA-353		K81340	100 (690)	11A	1	101	100	9.3	9Ni	Plate	
356	1	J03502	70 (485)	1	2	101	100	11.1	C–Si	Castings	
356	8	J11697	80 (550)	4	1	102	110	6.2	1Cr-1Mo-V	Castings	
356	6	J12073	70 (485)	4	1	102	110	5.1	1.25Cr-0.5Mo	Castings	
356	2	J12523	65 (450)	3	1	101	100	1.1	C-0.5Mo	Castings	
356	9	J21610	85 (585)	4	1	102	110	6.2	1Cr-1Mo-V	Castings	
356	10	J22090	85 (585)	5A	1	102	110	5.2	2.25Cr-1Mo	Castings	
356	12A	J84090	85 (585)	15E	1	102	110	6.4	9Cr-1Mo-V	Castings	
/SA-358	N08367	N08367	95 (655)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Fusion welded pipe ≥ 0.1875 in. (5 mm)	
/SA-358	N08367	N08367	100 (690)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Fusion welded pipe < 0.1875 in. (5 mm)	
/SA-358	XM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Fusion welded pipe	
/SA-358	XM-29	S24000	100 (690)	8	3	102	130	8.3	18Cr-3Ni-12Mn	Fusion welded pipe	
/SA-358	304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Fusion welded pipe	دو سه صنعت

			Minimum	We	ding	Bra	azing			
Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
opeer nor	of didde		(1 1101	noi		rous (Con	•	Nominal Composition	Typical Product Form
A/SA-358	304L	S30403	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Fusion welded pipe
A/SA-358	304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Fusion welded pipe
A/SA-358	304N	S30451	80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Fusion welded pipe
A/SA-358	304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr-8Ni-N	Fusion welded pipe
A/SA-358	S30815	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Fusion welded pipe
A/SA-358	3095	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Fusion welded pipe
A/SA-358	309Cb	S30940	75 (515)	8	2	102	130	8.2	23Cr-12Ni-Cb	Fusion welded pipe
A/SA-358	3105	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Fusion welded pipe
A/SA-358	310Cb	S31040	75 (515)	8	2	102	130	8.2	25Cr-20Ni-Cb	Fusion welded pipe
A/SA-358	S31254	S31254	95 (655)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Fusion welded pipe ≥ 0.1875 in. (5 mr
A/SA-358	S31254	S31254	100 (690)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Fusion welded pipe < 0.1875 in. (5 mm
A/SA-358		S31266	109 (750)	45		102	420	8.2	24Cr-22Ni-6Mo-3Mn-Cu-W-N	Fusion welded pipe
A/SA-358	316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Fusion welded pipe
A/SA-358	316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Fusion welded pipe
A/SA-358	316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Fusion welded pipe
A/SA-358	316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Fusion welded pipe
A/SA-358	316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Fusion welded pipe
A/SA-358	S31725	S31725	75 (515)	8	4	102	130	8.1	19Cr-15Ni-4Mo	Fusion welded pipe
A/SA-358	S31726	S31725	80 (550)	8	4	102	130	8.1	19Cr-15.5Ni-4Mo	Fusion welded pipe
A/SA-358		S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Fusion welded pipe
A/SA-358	321	S32000	75 (515)	8	1	102	140	8.1	18Cr-10Ni-Ti	Fusion welded pipe
A/SA-358	347	S34700	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Fusion welded pipe
A/SA-358	348	S34800	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Fusion welded pipe
A/SA-369	FPA	K02501	48 (330)	1	1	101	100	1.1	C–Si	Forged pipe
, A/SA-369	FPB	K03006	60 (415)	1	1	101	100	1.1	C–Mn–Si	Forged pipe
, A/SA-369	FP1	K11522	55 (380)	3	1	101	100	1.1	C-0.5Mo	Forged pipe
A/SA-369	FP2	K11547	55 (380)	3	1	101	100	4.2	0.5Cr-0.5Mo	Forged pipe
A/SA-369	FP12	K11562	60 (415)	4	1	102	110	5.1	1Cr-0.5Mo	Forged pipe
A/SA-369	FP11	K11597	60 (415)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Forged pipe
A/SA-369	FP22	K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	Forged pipe
A/SA-369	FP21	K31545	60 (415)	5A	1	102	110	5.2	3Cr-1Mo	Forged pipe
A/SA-369	FP5	K41545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo	Forged pipe
A/SA-369	FP91	K90901	85 (585)	15E	1	102	110	6.4	9Cr-1Mo-V	Forged pipe
A/SA-369	FP9	K90941	60 (415)	5B	1	102	110	5.4	9Cr-1Mo	Forged pipe
A/SA-369	FP92	K92460	90 (620)	15E	1	102	110	6.4	9Cr-2W	Forged pipe
										0
A/SA-372	А	K03002	60 (415)	1	1	101	100	11.1	C-Si	Forgings

یک دو سه صنعت 123sanat.com

114

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

			Minimum Specified	We	lding	Bra	azing				
Spec. No.	Designation, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	D No.	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form	
spec. No.	or Grade	UNS NO.	(MPa)	P-NO.	NO.			-	Nominal composition	Typical Product Form	—
							rous (Con				
A/SA-372	В	K04001	75 (515)	1	2	101	100	11.1	C-Mn-Si	Forgings	
A/SA-376	16-8-2H	S16800	75 (515)	8	1	102	130	8.1	16Cr-8Ni-2Mo	Smls. pipe	
4/SA-376	TP304	S30400	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Smls. pipe ≥ 0.812 in. (21 mm)	
A/SA-376	TP304	S30400	75 (515)	8	1	102	130	8.1	18Cr-8Ni	Smls. pipe < 0.812 in. (21 mm)	
A/SA-376	TP304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Smls. pipe	
A/SA-376	TP304N	S30451	80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Smls. pipe	
A/SA-376	TP304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr-8Ni-N	Smls. pipe	
A/SA-376	TP316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. pipe	
A/SA-376	TP316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Smls. pipe	A
A/SA-376	TP316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Smls. pipe	NSM
A/SA-376	TP316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Smls. pipe	ASME BPVC.IX-2019
A/SA-376	S31725	S31725	75 (515)	8	4	102	130	8.1	19Cr-15Ni-4Mo	Smls. pipe	BP
/SA-376	S31726	S31726	80 (550)	8	4	102	130	8.1	19Cr-15.5Ni-4Mo	Smls. pipe	VC
, /SA-376	TP321	S32100	70 (485)	8	1	102	140	8.1	18Cr–10Ni–Ti	Smls. pipe > $\frac{3}{8}$ in. (10 mm)	.IX
, /SA-376	TP321	S32100	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Smls. pipe $\leq \frac{3}{8}$ in. (10 mm)	-20
A/SA-376	TP321H	S32109	70 (485)	8	1	102	140	8.1	18Cr–10Ni–Ti	Smls. pipe > $\frac{3}{16}$ in. (10 mm)	119
, A/SA-376	TP321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Smls. pipe $\leq \frac{3}{8}$ in. (10 mm)	-
, A/SA-376	S34565	S34565	115 (795)	8	4	102	130	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Smls. pipe	
A/SA-376	TP347	S34700	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Smls. pipe	
, A/SA-376	TP347H	S34709	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Smls. pipe	
A/SA-376	TP348	S34800	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Smls. pipe	
A381	Y35		60 (415)	1	1	101	100	11.1	С	Welded pipe	
381	Y42		60 (415)	1	1	101	100	11.1	C	Welded pipe	
381	Y46		63 (435)	1	1	101	100	11.1	C	Welded pipe	
381	Y48		62 (425)	1	1	101	100	11.1	C	Welded pipe	
381	Y50		64 (440)	1	1	101	100	11.1	C	Welded pipe	
381	Y52		66 (455)	1	2	101	100	11.1	c	Welded pipe	
381	Y56		71 (490)	1	2	101	100	11.1	C	Welded pipe	
381	Y60		75 (515)	1	2	101	100	11.1	C	Welded pipe	
A/SA-387	12, Cl. 1	K11757	55 (380)	А	1	102	110	5.1	1Cr-0.5Mo	Plate	
A/SA-387 A/SA-387	12, Cl. 1 12, Cl. 2	K11757 K11757	55 (380) 65 (450)	4 4	1	102	110	5.1	1Cr-0.5Mo	Plate	
A/SA-387 A/SA-387	12, Cl. 2 11, Cl. 1	K11757 K11789	65 (450) 60 (415)	4 4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Plate	
/SA-387 /SA-387	11, Cl. 1 11, Cl. 2		• •			102		5.1 5.1	1.25Cr-0.5Mo-Si 1.25Cr-0.5Mo-Si	Plate	
		K11789	75 (515)	4	1		110				
A/SA-387	2, Cl. 1	K12143	55 (380)	3	1	101	100	4.2	0.5Cr-0.5Mo	Plate	
A/SA-387	2, Cl. 2	K12143	70 (485)	3	2	101	100	4.2	0.5Cr-0.5Mo	Plate	و سه صنعت

123sanat.com

A/SA-403

(SME tred wit					Grou	ping o	of Bas	e Met	als fo
hout lice					Minimum	Wel	ding	Bra	azing
3) (SME tred without license from IHS		Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	AWS B2.2 E
07								Fer	rous (C
		A/SA-387	22, Cl. 1	K21590	60 (415)	5A	1	102	110
		A/SA-387	22, Cl. 2	K21590	75 (515)	5A	1	102	110
		A/SA-387	21, Cl. 1	K31545	60 (415)	5A	1	102	110
		A/SA-387	21, Cl. 2	K31545	75 (515)	5A	1	102	110
		A/SA-387	5, Cl. 1	K41545	60 (415)	5B	1	102	110
		A/SA-387	5, Cl. 2	K41545	75 (515)	5B	1	102	110
		A/SA-387	91, Cl. 2	K90901	85 (585)	15E	1	102	110
		A/SA-387	9, Cl. 1	K90941	60 (415)	5B	1	102	110
		A/SA-387	9, Cl. 2	K90941	75 (515)	5B	1	102	110
		A403		N08367	95 (655)	45		111	420
		A/SA-403		N08904	71 (490)	45		111	420
	116	A/SA-403	WPXM-19	S20910	100 (690)	8	3	102	130
ZE	5	A/SA-403	WP304	S30400	75 (515)	8	1	102	130
ot for		A/SA-403	WP304L	S30403	70 (485)	8	1	102	130
Res		A/SA-403	WP304H	S30409	75 (515)	8	1	102	130
ale,		A/SA-403	WP304N	S30451	80 (550)	8	1	102	130
la Pe 07/0		A/SA-403	WP304LN	S30453	75 (515)	8	1	102	130
atrole 2/20		A/SA-403	WP309	S30900	75 (515)	8	2	102	130
9um/		A/SA-403	WP310S	S31008	75 (515)	8	2	102	130
5986 3:22:		A/SA-403		S31254	94 (650)	8	4	102	130
09 N		A/SA-403	WP316	S31600	75 (515)	8	1	102	130
Р <u>1</u> ,		A/SA-403	WP316L	S31603	70 (485)	8	1	102	130
Licensee=Khalda Petroleum/5986215001 , User⊨Amer, Mohamed Notfor Resale, 07/02/2019 13:22:09 MDT		A/SA-403	WP316H	S31609	75 (515)	8	1	102	130
r=An		A/SA-403	WP316N	S31651	80 (550)	8	1	102	130
ner, I		A/SA-403	WP316LN	S31653	75 (515)	8	1	102	130
Noha		A/SA-403	WP317	S31700	75 (515)	8	1	102	130
Imec		A/SA-403	WP317L	S31703	75 (515)	8	1	102	130
-		A/SA-403	WP S31726	S31726	80 (550)	8	4	102	130
		A/SA-403		S32053	93 (640)	8	4	102	130
		A/SA-403	WP321	S32100	75 (515)	8	1	102	140
		A/SA-403	WP321H	S32109	75 (515)	8	1	102	140
		A/SA-403	S34565	S34565	115 (795)	8	4	102	130
		A/SA-403	WP347	S34700	75 (515)	8	1	102	130
		A/SA-403	WP347H	S34709	75 (515)	8	1	102	130
		A/SA-403	WP348	S34800	75 (515)	8	1	102	130
		A/SA_403	WP348H	\$34809	75 (515)	8	1	102	130

Table QW/QB-422 Ferrous and Nonferrous P-Numbers ing of Base Metals for Qualification (Cont'd)

		Minimum		aing	Dit	izing			
		Specified							
Designation, Type,		Tensile, ksi		Group		AWS	ISO 15608		
or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form
					Feri	rous (Cont	:'d)		
22, Cl. 1	K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	Plate
22, Cl. 2	K21590	75 (515)	5A	1	102	110	5.2	2.25Cr-1Mo	Plate
21, Cl. 1	K31545	60 (415)	5A	1	102	110	5.2	3Cr-1Mo	Plate
21, Cl. 2	K31545	75 (515)	5A	1	102	110	5.2	3Cr-1Mo	Plate
5, Cl. 1	K41545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo	Plate
5, Cl. 2	K41545	75 (515)	5B	1	102	110	5.3	5Cr-0.5Mo	Plate
91, Cl. 2	K90901	85 (585)	15E	1	102	110	6.4	9Cr-1Mo-V	Plate
9, Cl. 1	K90941	60 (415)	5B	1	102	110	5.4	9Cr-1Mo	Plate
9, Cl. 2	K90941	75 (515)	5B	1	102	110	5.4	9Cr-1Mo	Plate
	N08367	95 (655)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Wrought piping fittings
	N08904	71 (490)	45		111	420	8.2	44Fe-25Ni-21Cr-Mo	Wrought piping fittings
WPXM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Wrought piping fittings
WP304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Wrought piping fittings
WP304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Wrought piping fittings
WP304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Wrought piping fittings
WP304N	S30451	80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Wrought piping fittings
WP304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr-8Ni-N	Wrought piping fittings
WP309	S30900	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Wrought piping fittings
WP310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Wrought piping fittings
	S31254	94 (650)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Wrought piping fittings
WP316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Wrought piping fittings
WP316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Wrought piping fittings
WP316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Wrought piping fittings
WP316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Wrought piping fittings
WP316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Wrought piping fittings
WP317	S31700	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Wrought piping fittings
WP317L	S31703	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Wrought piping fittings
WP S31726	S31726	80 (550)	8	4	102	130	8.1	19Cr-15.5Ni-4Mo	Wrought piping fittings
	S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Wrought piping fittings
WP321	S32100	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Wrought piping fittings
WP321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Wrought piping fittings
S34565	S34565	115 (795)	8	4	102	130	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Wrought piping fittings
WP347	S34700	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Wrought piping fittings
WP347H	S34709	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Wrought piping fittings
WP348	S34800	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Wrought piping fittings
WP348H	S34809	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Wrought piping fittings

Table QW/QB-422	
Ferrous and Nonferrous P-Numbers	
Grouping of Base Metals for Qualification (Cont'd)	

			Minimum	We	lding	Bra	azing			
	Designation, Type,		Specified Tensile, ksi		Group			ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	AWS B2.2 BM	Group	Nominal Composition	Typical Product Form
							rous (Con	•	I	
A/SA-403	WP \$38815	S38815	78 (540)	8	1	102	130	8.1	14Cr-16Ni-6Si-Cu-Mo	Wrought piping fittings
A/SA-409	TP304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Welded pipe
A/SA-409	TP304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Welded pipe
A/SA-409	S30815	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Welded pipe
A/SA-409	TP309S	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Welded pipe
A/SA-409	TP309Cb	S30940	75 (515)	8	2	102	130	8.2	23Cr–12Ni–Cb	Welded pipe
A/SA-409	TP310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Welded pipe
A/SA-409	TP310Cb	S31040	75 (515)	8	2	102	130	8.2	25Cr–20Ni–Cb	Welded pipe
A/SA-409	S31254	S31254	94 (650)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Welded pipe
A/SA-409	TP316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded pipe
A/SA-409	TP316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded pipe
A/SA-409	TP317	S31700	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Welded pipe
A/SA-409	S31725	S31725	75 (515)	8	4	102	130	8.1	19Cr–15Ni–4Mo	Welded pipe
A/SA-409	S31726	S31726	80 (550)	8	4	102	130	8.1	19Cr-15.5Ni-4Mo	Welded pipe
A/SA-409		S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Welded pipe
A/SA-409	TP321	S32100	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Welded pipe
A/SA-409	S34565	S34565	115 (795)	8	4	102	130	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Welded pipe
A/SA-409	TP347	S34700	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Welded pipe
A/SA-409	TP348	S34800	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Welded pipe
A/SA-414	А	K01501	45 (310)	1	1	101	100	1.1	С	Sheet
A/SA-414	В	K02201	50 (345)	1	1	101	100	1.1	С	Sheet
A/SA-414	С	K02503	55 (380)	1	1	101	100	1.1	С	Sheet
A/SA-414	D	K02505	60 (415)	1	1	101	100	1.1	C-Mn	Sheet
A/SA-414	Е	K02704	65 (450)	1	1	101	100	11.1	C-Mn	Sheet
A/SA-414	F	K03102	70 (485)	1	2	101	100	11.1	C-Mn	Sheet
A/SA-414	G	K03103	75 (515)	1	2	101	100	11.1	C-Mn	Sheet
A/SA-420	WPL6	K03006	60 (415)	1	1	101	100	11.1	C-Mn-Si	Piping fittings
A/SA-420	WPL9	K22035	63 (435)	9A	1	101	100	9.1	2Ni-1Cu	Piping fittings
A/SA-420	WPL3	K31918	65 (450)	9B	1	101	100	9.2	3.5Ni	Piping fittings
A/SA-420	WPL8	K81340	100 (690)	11A	1	101	100	9.3	9Ni	Piping fittings
A/SA-423	1	K11535	60 (415)	4	2	102	110	5.1	0.75Cr-0.5Ni-Cu	Smls. & welded tube
A/SA-423	2	K11540	60 (415)	4	2	102	100	5.1	0.75Ni-0.5Cu-Mo	Smls. & welded tube
A/SA-426	CP15	J11522	60 (415)	3	1	101	100	1.1	C-0.5Mo-Si	Centrifugal cast pipe
A/SA-426	CP2	J11547	60 (415)	3	1	101	100	4.2	0.5Cr-0.5Mo	Centrifugal cast pipe

			Minimum Specified	We	lding	Bra	azing			
Spec. No.	Designation, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	P-No	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
opeer nor	of didde		(1 1101	1101		rous (Con		Nominal Composition	Typical Product Form
A/SA-426	CP12	J11562	60 (415)	4	1	102	110	5.1	1Cr-0.5Mo	Centrifugal cast pipe
A/SA-426	CP11	J12072	70 (485)	4	1	102	110	5.1	1.25Cr-0.5Mo	Centrifugal cast pipe
A/SA-426	CP1	J12521	65 (450)	3	1	101	100	1.1	C-0.5Mo	Centrifugal cast pipe
A/SA-426	CP22	J21890	70 (485)	5A	1	101	110	5.2	2.25Cr-1Mo	Centrifugal cast pipe
A/SA-426	CP21	J31545	60 (415)	5A	1	102	110	5.2	3Cr-1Mo	Centrifugal cast pipe
A/SA-426	CP5	J42045	90 (620)	5B	1	102	110	5.3	5Cr-0.5Mo	Centrifugal cast pipe
A/SA-426	CP5b	J51545	60 (415)	5B	1	102	110	5.3	5Cr-1.5Si-0.5Mo	Centrifugal cast pipe
A/SA-426	CP9	J82090	90 (620)	5B	1	102	110	5.4	9Cr-1Mo	Centrifugal cast pipe
A/SA-426	CPCA15	J91150	90 (620)	6	3	102	150	7.2	13Cr	Centrifugal cast pipe
A/SA-451	CPF3	J92500	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Centrifugal cast pipe
A/SA-451	CPF3A	J92500	77 (530)	8	1	102	130	8.1	18Cr–8Ni	Centrifugal cast pipe
, A/SA-451	CPF8	, J92600	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Centrifugal cast pipe
, A/SA-451	CPF8A	, J92600	77 (530)	8	1	102	130	8.1	18Cr–8Ni	Centrifugal cast pipe
, A/SA-451	CPF8C	J92710	70 (485)	8	1	102	130	8.1	18Cr–10Ni–Cb	Centrifugal cast pipe
A/SA-451	CPF3M	J92800	70 (485)	8	1	102	130	8.1	18Cr-12Ni-2Mo	Centrifugal cast pipe
A/SA-451	CPE20N	J92802	80 (550)	8	2	102	130	8.2	25Cr-8Ni-N	Centrifugal cast pipe
A/SA-451	CPF8M	J92900	70 (485)	8	1	102	130	8.1	18Cr-12Ni-2Mo	Centrifugal cast pipe
A/SA-451	CPF10MC	J92971	70 (485)	8	1	102	130	8.1	16Cr-14Ni-2Mo	Centrifugal cast pipe
A/SA-451	CPH8	J93400	65 (450)	8	2	102	130	8.2	25Cr–12Ni	Centrifugal cast pipe
A/SA-451	CPH20	J93402	70 (485)	8	2	102	130	8.2	25Cr–12Ni	Centrifugal cast pipe
A/SA-451	CPK20	J94202	65 (450)	8	2	102	130	8.2	25Cr-20Ni	Centrifugal cast pipe
A/SA-455		K03300	70 (485)	1	2	101	100	11.2	C-Mn-Si	Plate > 0.580 in0.750 in. (15 mm- 19 mm)
A/SA-455		K03300	73 (505)	1	2	101	100	11.2	C-Mn-Si	Plate > 0.375 in0.580 in. (10 mm- 15 mm)
A/SA-455		K03300	75 (515)	1	2	101	100	11.2	C-Mn-Si	Plate, up to 0.375 in. (10 mm)
A/SA-479		N08367	95 (655)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Bars & shapes
A479	904L	N08904	71 (490)	45		111	420	8.2	44Fe-25Ni-21Cr-Mo	Bars & shapes
A/SA-479	XM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Bars & shapes
A/SA-479	XM-17	S21600	90 (620)	8	3	102	130	8.3	19Cr-8Mn-6Ni-Mo-N	Bars & shapes
A/SA-479	XM-18	S21603	90 (620)	8	3	102	130	8.3	19Cr-8Mn-6Ni-Mo-N	Bars & shapes
A/SA-479	S21800	S21800	95 (655)	8	3	102	130	8.1	18Cr-8Ni-4Si-N	Bars & shapes
A/SA-479	XM-11	S21904	90 (620)	8	3	102	130	8.3	21Cr-6Ni-9Mn	Bars & shapes
A/SA-479	XM-29	S24000	100 (690)	8	3	102	130	8.3	18Cr-3Ni-12Mn	Bars & shapes

ASME BPVC.IX-2019

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd) -

			Minimum	Wel	ding	Bra	azing				I
	Designation, Type,		Specified Tensile, ksi		Group			ISO 15608			I
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No	AWS B2.2 BM	Group	Nominal Composition	Typical Product Form	ľ
spec. No.	UI GIAUE	UN3 NU.	(Mr a)	r-no.	NU.				Nominal Composition	Typical Floudet Form	
							rous (Con	,			
A/SA-479	302	S30200	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Bars & shapes	ł
A/SA-479	304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Bars & shapes	ł
A/SA-479	304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Bars & shapes	ł
A/SA-479	304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Bars & shapes	ł
A/SA-479	304N	S30451	80 (550)	8	1	102	130	8.1	18Cr–8Ni–N	Bars & shapes	ł
A/SA-479	304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr–8Ni–N	Bars & shapes	ł
A/SA-479	S30600	S30600	78 (540)	8	1	102	130	8.1	18Cr-15Ni-4Si	Bars & shapes	ł
A/SA-479	S30815	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Bars & shapes	ł
A/SA-479	309S	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Bars & shapes	ł
A/SA-479	309Cb	S30940	75 (515)	8	2	102	130	8.2	23Cr-12Ni-Cb	Bars & shapes	ł
A/SA-479	310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Bars & shapes	ł
A/SA-479	310Cb	S31040	75 (515)	8	2	102	130	8.2	25Cr-20Ni-Cb	Bars & shapes	ł
A/SA-479	S31254	S31254	95 (655)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Bars & shapes	ł
A/SA-479	316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Bars & shapes	ł
A/SA-479	316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Bars & shapes	ł
A/SA-479	316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Bars & shapes	ł
A/SA-479	316Ti	S31635	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-Ti	Bars & shapes	ł
A/SA-479	316Cb	S31640	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-Cb	Bars & shapes	ł
A/SA-479	316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Bars & shapes	ł
A/SA-479	316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Bars & shapes	ł
A/SA-479	S31725	S31725	75 (515)	8	4	102	130	8.1	19Cr-15Ni-4Mo	Bars & shapes	ł
A/SA-479	S31726	S31726	80 (550)	8	4	102	130	8.1	19Cr-15.5Ni-4Mo	Bars & shapes	ł
A/SA-479		S31803	90 (620)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Bars & shapes	ł
A/SA-479		S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Bars & shapes	ł
A/SA-479	321	S32100	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Bars & shapes	ł
, A/SA-479		S32101	94 (650)	10H	1	102	145	10.1	21Cr-5Mn-1.5Ni-Cu-N	Bars & shapes	ł
A/SA-479	321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Bars & shapes	ł
, A/SA-479		S32202	94 (650)	10H	1	102	145	10.1	22Cr-2Ni-Mo-N	Bars & shapes	ł
, A/SA-479		S32205	95 (655)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Bars & shapes	ł
, A/SA-479	S32550	S32550	110 (760)	10H	1	102	145	10.2	25Cr-5Ni-3Mo-2Cu	Bars & shapes	ł
A/SA-479	S32615	S32615	80 (550)	8	1	102	130	8.1	18Cr-20Ni-5.5Si	Bars & shapes	I
A/SA-479	S32750	S32750	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-4Mo-N	Bars & shapes	I
A/SA-479	S32906	S32906	109 (750)	10H	1	102	145	10.2	29Cr-6.5Ni-2Mo-N	Bars & shapes	
A/SA-479		S34565	115 (795)	8	4	102	130	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Bars & shapes	
A/SA-479	347	S34700	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Bars & shapes	I
A/SA-479	347H	S34709	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Bars & shapes	
A/SA-479	348	S34800	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Bars & shapes	ł

			Grou					us P-Num Qualificat	ibers tion (Cont'd)	
			Minimum	We	ding	Bra	azing			
Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
						Fer	rous (Con	t'd)		
A/SA-479	348H	S34809	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Bars & shapes
A/SA-479		S38815	78 (540)	8	1	102	130	8.1	14Cr-16Ni-6Si-Cu-Mo	Bars & shapes
A/SA-479	403	S40300	70 (485)	6	1	102	150	7.1	12Cr	Bars & shapes
A/SA-479	405	S40500	60 (415)	7	1	102	160	7.1	12Cr–Al	Bars & shapes
A/SA-479	410	S41000	70 (485)	6	1	102	150	7.2	13Cr	Bars & shapes
A/SA-479	414	S41400	115 (795)	6	4	102	150	7.2	12.5Cr-2Ni-Si	Bars & shapes
A/SA-479	S41500	S41500	115 (795)	6	4	102	150	7.2	13Cr-4.5Ni-Mo	Bars & shapes
A/SA-479	430	S43000	70 (485)	7	2	102	150	7.1	17Cr	Bars & shapes
A/SA-479	439	S43035	70 (485)	7	2	102	150	7.1	18Cr–Ti	Bars & shapes
A/SA-479	S44400	S44400	60 (415)	7	2	102	150	7.1	18Cr-2Mo	Bars & shapes
A/SA-479	XM-27	S44627	65 (450)	10I	1	102	150	7.1	27Cr-1Mo	Bars & shapes
A/SA-479	S44700	S44700	70 (485)	10J	1	102	150	7.1	29Cr-4Mo	Bars & shapes
A/SA-479	S44800	S44800	70 (485)	10K	1	102	150	7.1	29Cr-4Mo-2Ni	Bars & shapes
A/SA-479		S82441	99 (680)	10H	1	102	145	10.1	24Cr-4Ni-3Mn-1.5Mo-N	Bars ≥ $\frac{7}{16}$ in. (11 mm)
A/SA-479		S82441	107 (740)	10H	1	102	145	10.1	24Cr-4Ni-3Mn-1.5Mo-N	Bars < ⁷ / ₁₆ in. (11 mm)
A/SA-487	1, Cl. A	J13002	85 (585)	10A	1	101	100	2.1	Mn-V	Castings
A/SA-487	1, Cl. B	J13002	90 (620)	10A	1	101	100	2.1	Mn-V	Castings
A/SA-487	2, Cl. A	J13005	85 (585)	3	3	101	100	2.1	Mn-0.25Mo-V	Castings
A/SA-487	2, Cl. B	J13005	90 (620)	3	3	101	100	2.1	Mn-0.25Mo-V	Castings
A/SA-487	4, Cl. A	J13047	90 (620)	3	3	101	100	3.1	0.5Ni-0.5Cr-0.25Mo-V	Castings
A/SA-487	4, Cl. B	J13047	105 (725)	11A	3	101	100	3.1	0.5Ni-0.5Cr-0.25Mo-V	Castings
A/SA-487	4, Cl. E	J13047	115 (795)	11A	3	101	100	3.1	0.5Ni-0.5Cr-0.25Mo-V	Castings
A/SA-487	8, Cl. A	J22091	85 (585)	5C	1	102	110	5.2	2.25Cr-1Mo	Castings
A/SA-487	8, Cl. B	J22091	105 (725)	5C	4	102	110	5.2	2.25Cr-1Mo	Castings
A/SA-487	8, Cl. C	J22091	100 (690)	5C	4	102	110	5.2	2.25Cr-1Mo	Castings
A/SA-487	16, Cl. A	J31200	70 (485)	1	2	101	100	1.1	Low C-Mn-Ni	Castings
A/SA-487	CA15 Cl. C	J91150	90 (620)	6	3	102	150	7.2	13Cr	Castings
A/SA-487	CA15M Cl. A	J91151	90 (620)	6	3	102	150	7.2	13Cr-Mo	Castings
A/SA-487	CA15 Cl. B	J91171	90 (620)	6	3	102	150	7.2	13Cr	Castings
A/SA-487	CA15 Cl. D	J91171	100 (690)	6	3	102	150	7.2	13Cr	Castings
A/SA-487	CA6NM Cl. A	J91540	110 (760)	6	4	102	150	7.2	13Cr-4Ni	Castings
A/SA-487	CA6NM Cl. B	J91540	100 (690)	6	4	102	150	7.2	13Cr-4Ni	Castings
A/SA-494	M35-2	N04020	65 (450)	42		110	400	42	67Ni-30Cu-Fe-Si	Castings
A/SA-494	CY40	N06040	70 (485)	43		111	420	43	72Ni-15Cr-8Fe-Si	Castings
A/SA-494	CU5MCuC	N08826	75 (515)	45		111	420	45	42Ni-21.5Cr-3Mo-2.3Cu	Castings
A/SA-494	M30C	N24130	65 (450)	42		110	400	42	67Ni-30Cu-2Fe-Cb	Castings

Table QW/QB-422

120

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

Spec. No.	Designation, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	Wel	lding Group No.		AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form			
opeernor	of didde		Ferrous (Cont'd)										
A/SA-494	M35-1	N24135	65 (450)	42		110	400	42	67Ni-30Cu-2Fe-Cb	Castings			
A/SA-494	CX2MW	N26022	80 (550)	43		111	420	44	59Ni-22Cr-14Mo-4Fe-3W	Castings			
A/SA-494	CW2M	N26455	72 (495)	43		111	420	43	66Ni-16Mo-16Cr-Fe-W	Castings			
A/SA-494	CW6MC	N26625	70 (485)	43		111	420	43	60Ni-21.5Cr-9Mo-4Cb-Fe	Castings			
A/SA-494	N7M	N30007	76 (525)	44		112	410	44	65Ni-31.5Mo-1.5Fe-Cr	Castings			
A/SA-494	CW6M	N30107	72 (495)	44		112	420	44	56Ni-19Mo-18Cr-2Fe	Castings			
A500	С	K02705	62 (425)	1	1	101	100	1.2	С	Smls. & welded tube			
A500	В	K03000	58 (400)	1	1	101	100	11.1	С	Smls. & welded tube			
A501	А	K03000	58 (400)	1	1	101	100	11.1	С	Smls. & welded tube			
A501	В	K03000	70 (485)	1	2	101	100	1.2	C	Smls. & welded tube			
A/SA-508	3, Cl. 1	K12042	80 (550)	3	3	101	100	3.1	0.75Ni-0.5Mo-Cr-V	Forgings			
A/SA-508	3, Cl. 2	K12042	90 (620)	3	3	102	100	3.1	0.75Ni-0.5Mo-Cr-V	Forgings			
A/SA-508	2, Cl. 1	K12766	80 (550)	3	3	101	100	3.1	0.75Ni-0.5Mo-0.3Cr-V	Forgings			
A/SA-508	2, Cl. 2	K12766	90 (620)	3	3	101	100	3.1	0.75Ni-0.5Mo-0.3Cr-V	Forgings			
A/SA-508	1	K13502	70 (485)	1	2	101	100	11.1	С	Forgings			
A/SA-508	1A	K13502	70 (485)	1	2	101	100	11.1	С	Forgings			
A/SA-508	22, Cl. 3	K21590	85 (585)	5C	1	102	110	5.2	2.25Cr-1Mo	Forgings			
A/SA-508	4N, Cl. 1	K22375	105 (725)	11A	5	102	110	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings			
A/SA-508	4N, Cl. 2	K22375	115 (795)	11B	10	102	110	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings			
A/SA-508	4N, Cl. 3	K22375	90 (620)	3	3	102	110	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings			
A/SA-508	3VCb	K31390	85 (585)	5C	1	102	110	6.2	3Cr-1Mo-0.25V-Cb-Ca	Forgings			
A/SA-508	3V	K31830	85 (585)	5C	1	102	120	6.2	3Cr-1Mo-V-Ti-B	Forgings			
A/SA-508	5, Cl. 1	K42365	105 (725)	11A	5	102	110	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings			
A/SA-508	5, Cl. 2	K42365	115 (795)	11B	10	102	110	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings			
A/SA-513	1008	G10080	42 (290)	1	1	101	100	1.1	С	Tube			
A/SA-513	1010	G10100	45 (310)	1	1	101	100	1.1	С	Tube			
A/SA-513	1015	G10150	48 (330)	1	1	101	100	1.1	С	Tube			
A513	1015 CW	G10150		1	1	101	100	1.1	С	Tube			
A513	1020 CW	G10200		1	2	101	100	1.1	С	Tube			
A513	1025 CW	G10250		1	2	101	100	1.2	С	Tube			
A513	1026 CW	G10260		1	3	101	100	11.1	С	Tube			
A514	Q		100 (690)	11B	9	102	100	3.1	1.3Ni-1.3Cr-0.5Mo-V	Plate > 2½ in6 in. (64 mm- 152 mm), incl.	صنعت		

ut licens			
ut license from IHS		Spec. No.	Designation, or Grad
		-	
		A514	Q
		A514	F
		A514	В
		A514	А
		A514	Е
		A514	Е
		A514	Р
		A514	Р
		A/SA-515	60
	122	A/SA-515	60
7 5	2	A/SA-515	65
Licensee=Khalda Petroleum/5986215001, Not for Resale, 07/02/2019 13:22:09 MDT		A/SA-515	70
e=Kh Resal		A/SA-516	55
alda e, 07		A/SA-516	60
Petri //02/2		A/SA-516	65
oleum 2019 1		A/SA-516	70
/598 13:22		A/SA-517	F
5215		A/SA-517	В
001, 101		A/SA-517	А
User=		A/SA-517	E
Amer,		A/SA-517	Е
Licensee=Khalda Petroleum/5386215001, User≃Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT		A/SA-517	P
ned		A/SA 517	D

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

			Minimum	Welding		Bra	azing			
	Design at a Trans		Specified		C					
Spec. No.	Designation, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	P-No.	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
•						Fer	rous (Con	 t'd)	•	
A514	Q		110 (760)	11B	9	102	100	3.1	1.3Ni-1.3Cr-0.5Mo-V	Plate, $2\frac{1}{2}$ in. (64 mm) max.
A514	F	K11576	110 (760)	11B	3	101	100	3.1	0.75Ni-0.5Cr-0.5Mo-V	Plate, $2^{1}/_{2}$ in. (64 mm) max.
A514	В	K11630	110 (760)	11B	4	101	100	3.1	0.5Cr-0.2Mo-V	Plate, $1^{1}/_{4}$ in. (32 mm) max.
A514	А	K11856	110 (760)	11B	1	101	100	3.1	0.5Cr-0.25Mo-Si	Plate, 1 ¹ / ₄ in. (32 mm) max.
A514	Е	K21604	100 (690)	11B	2	102	110	3.1	1.75Cr-0.5Mo-Cu	Plate > $2^{1}/_{2}$ in6 in. (64 mm- 152 mm), incl.
A514	Е	K21604	110 (760)	11B	2	102	110	3.1	1.75Cr-0.5Mo-Cu	Plate, $2\frac{1}{2}$ in. (64 mm) max.
A514	Р	K21650	100 (690)	11B	8	102	110	3.1	1.25Ni-1Cr-0.5Mo	Plate > $2\frac{1}{2}$ in6 in. (64 mm- 152 mm), incl.
A514	Р	K21650	110 (760)	11B	8	102	110	3.1	1.25Ni-1Cr-0.5Mo	Plate, $2\frac{1}{2}$ in. (64 mm) max.
A/SA-515	60		60 (415)	1	1	101	100	11.1	C-Si	Plate > 1 in. (25 mm)
A/SA-515	60	K02401	60 (415)	1	1	101	100	1.1	С	Plate ≤ 1 in. (25 mm)
A/SA-515	65	K02800	65 (450)	1	1	101	100	11.1	C–Si	Plate
A/SA-515	70	K03101	70 (485)	1	2	101	100	11.1	C–Si	Plate
A/SA-516	55	K01800	55 (380)	1	1	101	100	1.1	C-Si	Plate
A/SA-516	60	K02100	60 (415)	1	1	101	100	1.1	C-Mn-Si	Plate
A/SA-516	65	K02403	65 (450)	1	1	101	100	1.1	C-Mn-Si	Plate
A/SA-516	70	K02700	70 (485)	1	2	101	100	11.1	C-Mn-Si	Plate
A/SA-517	F	K11576	115 (795)	11B	3	101	100	3.1	0.75Ni-0.5Cr-0.5Mo-V	Plate ≤ $2^{1}/_{2}$ in. (64 mm)
A/SA-517	В	K11630	115 (795)	11B	4	101	100	3.1	0.5Cr-0.2Mo-V	Plate $\leq 1^{1}/_{4}$ in. (32 mm)
A/SA-517	А	K11856	115 (795)	11B	1	101	100	3.1	0.5Cr-0.25Mo-Si	Plate $\leq 1^{1}/_{4}$ in. (32 mm)
A/SA-517	Е	K21604	105 (725)	11B	2	102	110	3.1	1.75Cr-0.5Mo-Cu	Plate > $2^{1}/_{2}$ in6 in. (64 mm- 152 mm), incl.
A/SA-517	Е	K21604	115 (795)	11B	2	102	110	3.1	1.75Cr-0.5Mo-Cu	Plate ≤ $2^{1}/_{2}$ in. (64 mm)
A/SA-517	Р	K21650	105 (725)	11B	8	102	110	3.1	1.25Ni-1Cr-0.5Mo	Plate > $2\frac{1}{2}$ in4 in. (64 mm- 102 mm), incl.
A/SA-517	Р	K21650	115 (795)	11B	8	102	110	3.1	1.25Ni-1Cr-0.5Mo	Plate $\le 2^{1/2}$ in. (64 mm)
A519	1018 CW	G10180		1	2	101	100	1.1	С	Tube
A519	1018 HR	G10180		1	1	101	100	1.1	С	Tube
A519	1020 CW	G10200		1	2	101	100	1.1	С	Tube
A519	1020 HR	G10200		1	1	101	100	1.1	С	Tube
A519	1022 CW	G10220		1	2	101	100	1.1	С	Tube
A519	1022 HR	G10220		1	1	101	100	1.1	С	Tube
A519	1025 CW	G10250		1	2	101	100	1.2	С	Tube

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd) **-**

			Minimum	Welding		Brazing					
	Designation, Type,		Specified Tensile, ksi		Group		AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form	
							rous (Con	t'd)			
A519	1025 HR	G10250		1	1	101	100	1.1	С	Tube	
A519	1026 CW	G10260		1	2	101	100	11.1	С	Tube	
A519	1026 HR	G10260		1	1	101	100	11.1	С	Tube	
A/SA-522	II	K71340	100 (690)	11A	1	101	100	9.3	8Ni	Forgings	
A/SA-522	Ι	K81340	100 (690)	11A	1	101	100	9.3	9Ni	Forgings	
A/SA-524	I	K02104	60 (415)	1	1	101	100	1.1	C-Mn-Si	Smls. pipe	
A/SA-524	II	K02104	55 (380)	1	1	101	100	1.1	C-Mn-Si	Smls. pipe	
A/SA-533	A, Cl. 1	K12521	80 (550)	3	3	101	100	3.1	Mn-0.5Mo	Plate	
A/SA-533	A, Cl. 2	K12521	90 (620)	3	3	101	100	3.1	Mn-0.5Mo	Plate	ISN ISN
A/SA-533	A, Cl. 3	K12521	100 (690)	11A	4	101	100	3.1	Mn-0.5Mo	Plate	Ē
A/SA-533	D, Cl. 1	K12521	80 (550)	3	3	101	100	3.1	Mn-0.5Mo-0.25Ni	Plate	BP
A/SA-533	D, Cl. 2	K12529	90 (620)	3	3	101	100	3.1	Mn-0.5Mo-0.25Ni	Plate	VC
A/SA-533	D, Cl. 3	K12529	100 (690)	11A	4	101	100	3.1	Mn-0.5Mo-0.25Ni	Plate	.IX
A/SA-533	B, Cl. 1	K12529	80 (550)	3	3	101	100	3.1	Mn-0.5Mo-0.5Ni	Plate	-20
A/SA-533	B, Cl. 2	K12539	90 (620)	3	3	101	100	3.1	Mn-0.5Mo-0.5Ni	Plate	ASME BPVC.IX-2019
A/SA-533	B, Cl. 3	K12539	100 (690)	11A	4	101	100	3.2	Mn-0.5Mo-0.5Ni	Plate	
A/SA-533	C, Cl. 1	K12554	80 (550)	3	3	101	100	3.1	Mn-0.5Mo-0.75Ni	Plate	
A/SA-533	C, Cl. 2	K12554	90 (620)	3	3	101	100	3.1	Mn-0.5Mo-0.75Ni	Plate	
A/SA-533	C, Cl. 3	K12554	100 (690)	11A	4	101	100	3.2	Mn-0.5Mo-0.75Ni	Plate	
A/SA-533	E, Cl. 1	K12554	80 (550)	3	3	101	100	3.1	Mn-0.5Mo-0.75Ni	Plate	
A/SA-533	E, Cl. 2	K12554	90 (620)	3	3	101	100	3.1	Mn-0.5Mo-0.75Ni	Plate	
A/SA-537	Cl. 1	K12437	65 (450)	1	2	101	100	1.2	C-Mn-Si	Plate > $2^{1}/_{2}$ in4 in. (64 mm- 102 mm), incl.	
A/SA-537	Cl. 1	K12437	70 (485)	1	2	101	100	1.2	C–Mn–Si	Plate, $2\frac{1}{2}$ in. (64 mm) & under	
A/SA-537	Cl. 2	K12437	70 (485)	1	3	101	100	1.2	C–Mn–Si	Plate > 4 in6 in. (102 mm- 152 mm), incl.	
A/SA-537	Cl. 2	K12437	75 (515)	1	3	101	100	1.2	C-Mn-Si	Plate > $2\frac{1}{2}$ in4 in. (64 mm- 102 mm), incl.	
A/SA-537	Cl. 2	K12437	80 (550)	1	3	101	100	1.2	C-Mn-Si	Plate, $2\frac{1}{2}$ in. (64 mm) & under	
A/SA-537	Cl. 3	K12437	70 (485)	1	3	101	100	1.2	C-Mn-Si	Plate > 4 in. (102 mm)	
A/SA-537	Cl. 3	K12437	75 (515)	1	3	101	100	1.2	C-Mn-Si	Plate, $2^{1/2}$ in. $< t \le 4$ in. (64 mm $< t \le 102$ mm)	
A/SA-537	Cl. 3	K12437	80 (550)	1	3	101	100	1.2	C-Mn-Si	Plate $\leq 2^{1}/_{2}$ in. (64 mm)	
A/SA-541	1A	K03020	70 (485)	1	2	101	100	11.1	C-Mn-Si	Forgings	یک دو سه صنعت

			Minimum	Wel	ding	Brazing			
Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	AWS B2.2 BM	ISO 15608 Group	Nominal Composition
						Fer	rous (Con	ťd)	
A/SA-541	1	K03506	70 (485)	1	2	101	100	11.1	C–Si
A/SA-541	11, Cl. 4	K11572	80 (550)	4	1	102	110	5.2	1.25Cr-0.5Mo-Si
A/SA-541	3, Cl. 1	K12045	80 (550)	3	3	101	100	4.1	0.5Ni-0.5Mo-V
A/SA-541	3, Cl. 2	K12045	90 (620)	3	3	101	100	4.1	0.5Ni-0.5Mo-V
A/SA-541	2, Cl. 1	K12765	80 (550)	3	3	101	100	4.2	0.75Ni-0.5Mo-0.3Cr-V
A/SA-541	2, Cl. 2	K12765	90 (620)	3	3	101	100	4.2	0.75Ni-0.5Mo-0.3Cr-V
A/SA-541	22, Cl. 3	K21390	85 (585)	5C	1	102	110	5.2	2.25Cr-1Mo
A/SA-541	22, Cl. 4	K21390	105 (725)	5C	4	102	110	5.2	2.25Cr-1Mo
A/SA-541	22, Cl. 5	K21390	115 (795)	5C	5	102	110	5.2	2.25Cr-1Mo
A/SA-541	3VCb	K31390	85 (585)	5C	1	102	110	6.2	3Cr-1Mo-0.25V-Cb-Ca
A/SA-541	3V	K31830	85 (585)	5C	1	102	120	6.2	3Cr-1Mo-V-Ti-B
A/SA-541	22V	K31835	85 (585)	5C	1	102	110	5.2	2.25Cr-1Mo-V
A/SA-542	A, Cl. 1	K21590	105 (725)	5C	4	102	110	5.2	2.25Cr-1Mo
A/SA-542	A, Cl. 2	K21590	115 (795)	5C	5	102	110	5.2	2.25Cr-1Mo
A/SA-542	A, Cl. 3	K21590	95 (655)	5C	3	102	110	5.2	2.25Cr-1Mo
A/SA-542	A, Cl. 4	K21590	85 (585)	5C	1	102	110	5.2	2.25Cr-1Mo
A/SA-542	A, Cl. 4a	K21590	85 (585)	5C	1	102	110	5.2	2.25Cr-1Mo
A/SA-542	B, Cl. 1	K21590	105 (725)	5C	4	102	110	5.2	2.25Cr-1Mo
A/SA-542	B, Cl. 2	K21590	115 (795)	5C	5	102	110	5.2	2.25Cr-1Mo
A/SA-542	B, Cl. 3	K21590	95 (655)	5C	3	102	110	5.2	2.25Cr-1Mo
A/SA-542	B, Cl. 4	K21590	85 (585)	5C	1	102	110	5.2	2.25Cr-1Mo
A/SA-542	B, Cl. 4a	K21590	85 (585)	5C	1	102	110	5.2	2.25Cr-1Mo
A/SA-542	E, Cl. 4a	K31390	85 (585)	5C	1	102	110	6.2	3Cr-1Mo-0.25V-Cb-Ca
A/SA-542	C, Cl. 1	K31830	105 (725)	5C	4	102	120	6.2	3Cr-1Mo-V-Ti-B
A/SA-542	C, Cl. 2	K31830	115 (795)	5C	5	102	120	6.2	3Cr-1Mo-V-Ti-B
A/SA-542	C, Cl. 3	K31830	95 (655)	5C	3	102	120	6.2	3Cr-1Mo-V-Ti-B
A/SA-542	C, Cl. 4	K31830	85 (585)	5C	1	102	120	6.2	3Cr-1Mo-V-Ti-B
A/SA-542	C, Cl. 4a	K31830	85 (585)	5C	1	102	120	6.2	3Cr-1Mo-V-Ti-B
A/SA-542	D, Cl. 4a	K31835	85 (585)	5C	1	102	110	6.3	2.25Cr-1Mo-V

105 (725)

115 (795)

90 (620)

105 (725)

115 (795)

90 (620)

...

...

...

K42339

K42339

K42339

11A

11B

3

11A

11B

3

5

10

3

5

10

3

102

102

102

102

102

102

110

110

110

110

110

110

3.1

3.1

3.1

3.1

3.1

3.1

2.75Ni-1.5Cr-0.5Mo

2.75Ni-1.5Cr-0.5Mo

2.75Ni-1.5Cr-0.5Mo

3Ni-1.75Cr-0.5Mo

3Ni-1.75Cr-0.5Mo

3Ni-1.75Cr-0.5Mo

C, Cl. 1

C, Cl. 2

C, Cl. 3

B, Cl. 1

B, Cl. 2

B, Cl. 3

Typical Product Form

Forgings

Plate

A/SA-543

A/SA-543

A/SA-543

A/SA-543

A/SA-543

A/SA-543

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

125

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

	.		Minimum Specified	Wel	ding	Bra	azing				
Spec. No.	Designation, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	P-No.	AWS B2.2 BM	ISO 15608 Group Nominal Comp	Nominal Composition	Typical Product Form	
1							rous (Con	•	1		
/SA-553	III		100 (690)	11A	1	101	100	9.2	7Ni	Plate	
/SA-553	II	 K71340	100 (690)	11A 11A	1	101	100	9.3	8Ni	Plate	
/SA-553	I	K71340 K81340	100 (690)	11A 11A	1	101	100	9.3	9Ni	Plate	
/JA-JJJ	I	K01540	100 (050)	IIA	1	101	100	2.5	JINI .	Trace	
/SA-556	A2	K01807	47 (325)	1	1	101	100	1.1	С	Smls. tube	
/SA-556	B2	K02707	60 (415)	1	1	101	100	11.1	C–Si	Smls. tube	
/SA-556	C2	K03006	70 (485)	1	2	101	100	11.1	C–Mn–Si	Smls. tube	
/SA-557	A2	K01807	47 (325)	1	1	101	100	1.1	С	E.R.W. tube	
/SA-557	B2	K03007	60 (415)	1	1	101	100	11.1	С	E.R.W. tube	A
, /SA-557	C2	K03505	70 (485)	1	2	101	100	11.1	C-Mn	E.R.W. tube	SMI
A/SA-562		K11224	55 (380)	1	1	101	120	1.1	C-Mn-Ti	Plate	ASME BPVC.IX-2019
/SA-572	42		60 (415)	1	1	101	100	1.2	C-Mn-Si	Plate & shapes	VC.I
/SA-572	50		65 (450)	1	1	101	100	1.2	C-Mn-Si	Plate & shapes	X-2
, /SA-572	55		70 (485)	1	2	101	100	1.3	C-Mn-Si	Plate & shapes	101
, /SA-572	60		75 (515)	1	2	101	100	11.1	C-Mn-Si	Plate & shapes	9
/SA-572	65		80 (550)	1	3	101	100	1.3	C-Mn-Si	Plate & shapes	
573	58		58 (400)	1	1	101	100	11.1	С	Plate	
573	65		65 (450)	1	1	101	100	11.1	С	Plate	
573	70		70 (485)	1	2	101	100	11.1	С	Plate	
575	M 1008			1	1	101	100	1.1	С	Bar	
575	M 1010			1	1	101	100	1.1	С	Bar	
575	M 1012			1	1	101	100	1.1	С	Bar	
575	M 1015			1	1	101	100	1.1	С	Bar	
575	M 1017			1	1	101	100	1.1	С	Bar	
575	M 1020			1	1	101	100	11.1	C	Bar	
575	M 1023			1	1	101	100	11.1	C	Bar	
575	M 1025			1	1	101	100	11.1	C	Bar	
576	G10080			1	1	101	100	1.1	С	Bar	
576	G10100			1	1	101	100	1.1	С	Bar	
576	G10120			1	1	101	100	1.1	С	Bar	
576	G10150			1	1	101	100	1.1	С	Bar	
576	G10160			1	1	101	100	1.1	С	Bar	
576	G10170			1	1	101	100	1.1	C	Bar	دو سه صنعت

123sanat.com

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

Spec. No.	Designation, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	Wel	lding Group No.		AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
spec. No.	of Glade	UNS NO.	(MFa)	r-NO.	NU.		rous (Con		Nominal Composition	Typical Floudet Form
A576	G10180			1	1	101	1003 (001	1.1	С	Bar
A576	G10130			1	1	101	100	1.1	C	Bar
A576	G10200			1	1	101	100	1.1	C	Bar
A576	G10210			1	1	101	100	11.1	C	Bar
A576	G10220			1	1	101	100	11.1	C	Bar
A576	G10230			1	1	101	100	11.1	C	Bar
A576	G10250			1	1	101	100	11.1	C	Bar
A/SA-587		K11500	48 (330)	1	1	101	100	1.1	С	E.R.W. pipe
A588	А	K11430	63 (435)	3	1	101	100	1.4	Mn-0.5Cr-0.3Cu-Si-V	Plate & bar > 5 in8 in. (125 mm- 200 mm), incl.
A588	А	K11430	67 (460)	3	1	101	100	1.4	Mn-0.5Cr-0.3Cu-Si-V	Plate & bar > 4 in.–5 in. (100 mm– 125 mm), incl.
A588	А	K11430	70 (485)	3	1	101	100	1.4	Mn-0.5Cr-0.3Cu-Si-V	Shapes
A588	А	K11430	70 (485)	3	1	101	100	1.4	Mn-0.5Cr-0.3Cu-Si-V	Plate & bar ≤ 4 in. (100 mm)
A588	В	K12043	63 (435)	3	1	101	100	1.4	Mn-0.6Cr-0.3Cu-Si-V	Plate & bar > 5 in8 in. (125 mm- 200 mm), incl.
A588	В	K12043	67 (460)	3	1	101	100	1.4	Mn-0.6Cr-0.3Cu-Si-V	Plate & bar > 4 in.–5 in. (100 mm– 125 mm), incl.
A588	В	K12043	70 (485)	3	1	101	100	1.4	Mn-0.6Cr-0.3Cu-Si-V	Shapes
A588	В	K12043	70 (485)	3	1	101	100	1.4	Mn-0.6Cr-0.3Cu-Si-V	Plate & bar ≤ 4 in. (100 mm)
A/SA-592	F	K11576	105 (725)	11B	3	101	100	3.1	0.75Ni-0.5Cr-0.5Mo-V	Forgings, 2 ¹ / ₂ in.–4 in. (64 mm– 102 mm), incl.
A/SA-592	F	K11576	115 (795)	11B	3	101	100	3.1	0.75Ni-0.5Cr-0.5Mo-V	Forgings, $2^{1}/_{2}$ in. (64 mm) & under
A/SA-592	Е	K11695	105 (725)	11B	2	102	110	3.1	1.75Cr-0.5Mo-Cu	Forgings, $2\frac{1}{2}$ in4 in. (64 mm- 102 mm), incl.
A/SA-592	Е	K11695	115 (795)	11B	2	102	110	3.1	1.75Cr-0.5Mo-Cu	Forgings, $2\frac{1}{2}$ in. (64 mm) & under
A/SA-592	А	K11856	115 (795)	11B	1	101	100	3.1	0.5Cr-0.25Mo-Si	Forgings, $1^{1/2}$ in. (38 mm) & under
A/SA-612		K02900	81 (560)	10C	1	101	100	1.3	C-Mn-Si	Plate > $\frac{1}{2}$ in1 in. (13 mm-25 mm)
A/SA-612		K02900	83 (570)	10C	1	101	100	1.3	C–Mn–Si	Plate, $\frac{1}{2}$ in. (13 mm) & under
A618	Ia		67 (460)	1	2	101	100	1.2	Mn-Cu-V	Tube > ³ / ₄ in.–1 ¹ / ₂ in. (19 mm– 38 mm)
A618	Ia		70 (485)	1	2	101	100	1.2	Mn-Cu-V	Tube $\leq \frac{3}{4}$ in. (19 mm)
A618	Ib	K02601	67 (460)	1	2	101	100	1.2	Mn-Cu-V	Tube > $\frac{3}{4}$ in. $-1\frac{1}{2}$ in. (19 mm- 38 mm)

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

			Minimum	Wel	ding	Bra	azing				
	Designation, Type,		Specified Tensile, ksi		Group			ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	-	P-No.	AWS B2.2 BM	Group	Nominal Composition	Typical Product Form	
							rous (Con	•	•		
.618	Ib	K02601	70 (485)	1	2	101	100	1.2	Mn-Cu-V	Tube $\leq \frac{3}{4}$ in. (19 mm)	
618	II	K12609	67 (460)	1	2	101	100	1.2	Mn-Cu-V	Tube > ${}^{3}/_{4}$ in. $-1{}^{1}/_{2}$ in. (19 mm- 38 mm)	
A618	II	K12609	70 (485)	1	2	101	100	1.2	Mn-Cu-V	Tube, $\frac{3}{4}$ in. (19 mm) & under	
618	III	K12700	65 (450)	1	1	101	100	1.2	Mn-V	Tube	
4633	А	K01802	63 (435)	1	1	101	100	1.1	Mn-Cb	Plate	
633	С	K12000	65 (450)	1	1	101	100	1.1	Mn–Cb	Plate > 2 ¹ / ₂ in4 in. (64 mm- 102 mm), incl.	
A633	С	K12000	70 (485)	1	2	101	100	1.1	Mn-Cb	Plate to $2\frac{1}{2}$ in. (64 mm)	>
A633	D	K12037	65 (450)	1	1	101	100	1.1	C-Mn-Si	Plate > 2 ¹ / ₂ in4 in. (64 mm- 102 mm), incl.	ASME BPVC.IX-2019
A633	D	K12037	70 (485)	1	2	101	100	1.1	C-Mn-Si	Plate to $2\frac{1}{2}$ in. (64 mm)	BP
633	Е	K12202	80 (550)	1	3	101	100	4.1	C-Mn-Si-V	Plate	VC.I
/SA-645	А	K41583	95 (655)	11A	2	101	100	9.2	5Ni-0.25Mo	Plate	IX-20
A/SA-656	T3, 50		60 (415)	1	1	101	100	1.2	C-Mn-Si-V-Cb	Plate	19
A/SA-656	T3, 60		70 (485)	1	2	101	100	1.3	C-Mn-Si-V-Cb	Plate	
/SA-656	T3, 70		80 (550)	1	3	101	100	2.2	C-Mn-Si-V-Cb	Plate	
/SA-656	T3, 80		90 (620)	1	4	101	100	2.2	C-Mn-Si-V-Cb	Plate	
A/SA-656	T7, 50		60 (415)	1	1	101	100	1.2	C-Mn-Si-V-Cb	Plate	
A/SA-656	T7, 60		70 (485)	1	2	101	100	1.3	C-Mn-Si-V-Cb	Plate	
/SA-656	T7, 70		80 (550)	1	3	101	100	2.2	C-Mn-Si-V-Cb	Plate	
/SA-656	T7, 80		90 (620)	1	4	101	100	2.2	C-Mn-Si-V-Cb	Plate	
/SA-660	WCA	J02504	60 (415)	1	1	101	100	11.1	C–Si	Centrifugal cast pipe	
A/SA-660	WCC	J02505	70 (485)	1	2	101	100	11.1	C-Mn-Si	Centrifugal cast pipe	
/SA-660	WCB	J03003	70 (485)	1	2	101	100	1.1	C-Si	Centrifugal cast pipe	
A/SA-662	А	K01701	58 (400)	1	1	101	100	1.1	C-Mn-Si	Plate	
A/SA-662	С	K02007	70 (485)	1	2	101	100	1.1	C-Mn-Si	Plate	
/SA-662	В	K02203	65 (450)	1	1	101	100	1.1	C-Mn-Si	Plate	
.663				1	1	101	100		С	Bar	
A/SA-666	201-1	S20100	75 (515)	8	3	102	130	8.3	17Cr-4Ni-6Mn	Plate, sheet & strip	
A/SA-666	201-2	S20100	95 (655)	8	3	102	130	8.3	17Cr-4Ni-6Mn	Plate, sheet & strip	
, A/SA-666	XM-11	S21904	90 (620)	8	3	102	130	8.3	21Cr-6Ni-9Mn	Plate, sheet & strip	
/SA-666	302	S30200	75 (515)	8	1	102	130	8.1	18Cr-8Ni	Plate, sheet & strip	دو سه صنعت

123sanat.com

Licensee=Khalda Petroleum/5986215001, User-Not for Resale, 07/02/2019 13:22:09 MDT

Amer, Mohamed

			Minimum Specified	Wel	ding	Br	azing			
	Designation, Type,		Tensile, ksi		Group		AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form
						Fer	rous (Con	t'd)		
A/SA-666	304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Plate, sheet & strip
A/SA-666	304L	S30403	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Plate, sheet & strip
A/SA-666	304N	S30451	80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Plate, sheet & strip
A/SA-666	304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr-8Ni-N	Plate, sheet & strip
A/SA-666	316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip
A/SA-666	316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip
A/SA-666	316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Plate, sheet & strip
A/SA-671	CC60	K02100	60 (415)	1	1	101	100	1.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CE55	K02202	55 (380)	1	1	101	100	11.1	С	Fusion welded pipe
A/SA-671	CB60	K02401	60 (415)	1	1	101	100	1.1	С	Fusion welded pipe
A/SA-671	CE60	K02402	60 (415)	1	1	101	100	11.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CC65	K02403	65 (450)	1	1	101	100	1.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CC70	K02700	70 (485)	1	2	101	100	11.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CB65	K02800	65 (450)	1	1	101	100	11.1	C–Si	Fusion welded pipe
A/SA-671	CA55	K02801	55 (380)	1	1	101	100	11.1	С	Fusion welded pipe
A/SA-671	CK75	K02803	75 (515)	1	2	101	100	11.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CB70	K03101	70 (485)	1	2	101	100	11.1	C–Si	Fusion welded pipe
A/SA-671	CD70	K12437	70 (485)	1	2	101	100	1.2	C-Mn-Si	Fusion welded pipe
A/SA-671	CD80	K12437	80 (550)	1	3	101	100	1.2	C-Mn-Si	Fusion welded pipe
A/SA-672	J80		80 (550)	3	3	101	100	3.1	Mn-0.5Mo-0.75Ni	Fusion welded pipe
A/SA-672	J90		90 (620)	3	3	101	100	3.1	Mn-0.5Mo-0.75Ni	Fusion welded pipe
A/SA-672	A45	K01700	45 (310)	1	1	101	100	1.1	С	Fusion welded pipe
A/SA-672	C55	K01800	55 (380)	1	1	101	100	1.1	C–Si	Fusion welded pipe
A/SA-672	B55	K02001	55 (380)	1	1	101	100	1.1	C–Si	Fusion welded pipe
A/SA-672	C60	K02100	60 (415)	1	1	101	100	1.1	C-Mn-Si	Fusion welded pipe
A/SA-672	A50	K02200	50 (345)	1	1	101	100	1.1	С	Fusion welded pipe
A/SA-672	E55	K02202	55 (380)	1	1	101	100	11.1	С	Fusion welded pipe
A/SA-672	B60	K02401	60 (415)	1	1	101	100	1.1	С	Fusion welded pipe
A/SA-672	E60	K02402	60 (415)	1	1	101	100	11.1	C-Mn-Si	Fusion welded pipe
A/SA-672	C65	K02403	65 (450)	1	1	101	100	1.1	C–Mn–Si	Fusion welded pipe
A/SA-672	C70	K02700	70 (485)	1	2	101	100	11.1	C-Mn-Si	Fusion welded pipe
A/SA-672	B65	K02800	65 (450)	1	1	101	100	11.1	C–Si	Fusion welded pipe
A/SA-672	A55	K02801	55 (380)	1	1	101	100	11.1	С	Fusion welded pipe
A/SA-672	N75	K02803	75 (515)	1	2	101	100	11.1	C–Mn–Si	Fusion welded pipe
A/SA-672	B70	K03101	70 (485)	1	2	101	100	11.1	C–Si	Fusion welded pipe
A/SA-672	L65	K11820	65 (450)	3	1	101	100	1.1	C-0.5Mo	Fusion welded pipe

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

			Minimum	We	lding	Bra	azing				
	Designation, Type,		Specified Tensile, ksi		Group			ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		AWS B2.2 BM	Group	Nominal Composition	Typical Product Form	
-						Fer	rous (Con				
A/SA-672	L70	K12020	70 (485)	3	2	101	100	1.2	C-0.5Mo	Fusion welded pipe	
A/SA-672	H75	K12021	75 (515)	3	2	101	100	1.1	Mn-0.5Mo	Fusion welded pipe	
A/SA-672	H80	K12022	80 (550)	3	3	101	100	1.2	Mn-0.5Mo	Fusion welded pipe	
A/SA-672	L75	K12320	75 (515)	3	2	101	100	1.2	C-0.5Mo	Fusion welded pipe	
A/SA-672	D70	K12437	70 (485)	1	2	101	100	1.2	C-Mn-Si	Fusion welded pipe	
A/SA-672	D80	K12437	80 (550)	1	3	101	100	1.2	C-Mn-Si	Fusion welded pipe	
A/SA-672	J100	K12521	100 (690)	11A	4	101	100	3.2	Mn-0.5Mo	Fusion welded pipe	
A/SA-675	45		45 (310)	1	1	101	100	11.1	С	Bar	
A/SA-675	50		50 (345)	1	1	101	100	11.1	С	Bar	А
A/SA-675	55		55 (380)	1	1	101	100	11.1	С	Bar	MS
A/SA-675	60		60 (415)	1	1	101	100	11.1	С	Bar	E
A/SA-675	65		65 (450)	1	1	101	100	11.1	С	Bar	ВР
A/SA-675	70		70 (485)	1	2	101	100	11.1	С	Bar	ASME BPVC.IX-2019
A/SA-688	XM-29	S24000	100 (690)	8	3	102	130	8.3	18Cr-3Ni-12Mn	Welded tube	X-2
A/SA-688	TP304	S30400	75 (515)	8	1	102	130	8.1	18Cr-8Ni	Welded tube	01
A/SA-688	TP304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Welded tube	9
A/SA-688	TP304N	S30451	80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Welded tube	
A/SA-688	TP304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr-8Ni-N	Welded tube	
A/SA-688	TP316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded tube	
A/SA-688	TP316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded tube	
A/SA-688	TP316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Welded tube	
A/SA-688	TP316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Welded tube	
A/SA-691	CMS-75	K02803	75 (515)	1	2	101	100	11.1	C-Mn-Si	Fusion welded pipe	
A/SA-691	1CR, Cl. 1	K11757	55 (380)	4	1	102	110	5.1	1Cr-0.5Mo	Fusion welded pipe	
A/SA-691	1CR, Cl. 2	K11757	65 (450)	4	1	102	110	5.1	1Cr-0.5Mo	Fusion welded pipe	
A/SA-691	1.25CR, Cl. 1	K11789	60 (415)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Fusion welded pipe	
A/SA-691	1.25CR, Cl. 2	K11789	75 (515)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Fusion welded pipe	
A/SA-691	CM-65	K11820	65 (450)	3	1	101	100	1.1	C-0.5Mo	Fusion welded pipe	
A/SA-691	CM-70	K12020	70 (485)	3	2	101	100	1.2	C-0.5Mo	Fusion welded pipe	
A/SA-691	0.5CR, Cl. 1	K12143	55 (380)	3	1	101	100	4.2	0.5Cr-0.5Mo	Fusion welded pipe	
A/SA-691	0.5CR, Cl. 2	K12143	70 (485)	3	2	101	100	4.2	0.5Cr-0.5Mo	Fusion welded pipe	
A/SA-691	CM-75	K12320	75 (515)	3	2	101	100	1.2	C-0.5Mo	Fusion welded pipe	
A/SA-691	CMSH-70	K12437	65 (450)	1	2	101	100	1.2	C-Mn-Si	Fusion welded pipe > $2\frac{1}{2}$ in4 in. (64 mm-102 mm)	
A/SA-691	CMSH-70	K12437	70 (485)	1	2	101	100	1.2	C-Mn-Si		ه سه ص

123sanat.com

			Minimum Specified	We	lding	Bra	azing			
	Designation, Type,		Tensile, ksi		Group		AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form
							rous (Con			1
A/SA-691	CMSH-80	K12437	75 (515)	1	3	101	100	1.2	C-Mn-Si	Fusion welded pipe > 2½ in.–4 in. (64 mm–102 mm)
A/SA-691	CMSH-80	K12437	80 (550)	1	3	101	100	1.2	C-Mn-Si	Fusion welded pipe $\leq 2\frac{1}{2}$ in. (64 mm)
A/SA-691	2.25CR, Cl. 1	K21590	60 (415)	5A	1	102	110	5.2	2.25Cr-1Mo	Fusion welded pipe
A/SA-691	2.25CR, Cl. 2	K21590	75 (515)	5A	1	102	110	5.2	2.25Cr-1Mo	Fusion welded pipe
A/SA-691	3CR, Cl. 1	K31545	60 (415)	5A	1	102	110	5.2	3Cr-1Mo	Fusion welded pipe
A/SA-691	3CR, Cl. 2	K31545	75 (515)	5A	1	102	110	5.2	3Cr-1Mo	Fusion welded pipe
A/SA-691	5CR, Cl. 1	K41545	60 (415)	5B	1	102	110	5.3	5Cr-0.5Mo	Fusion welded pipe
A/SA-691	5CR, Cl. 2	K41545	75 (515)	5B	1	102	110	5.3	5Cr-0.5Mo	Fusion welded pipe
A/SA-691	91	K91560	85 (585)	15E	1	102	110	6.4	9Cr-1Mo-V	Fusion welded pipe
A694	F42	K03014	60 (415)	1	1	101	100	11.1	C-Mn	Forgings
A694	F46	K03014	60 (415)	1	1	101	100	11.1	C-Mn	Forgings
A694	F48	K03014	62 (425)	1	1	101	100	11.1	C-Mn	Forgings
A694	F50	K03014	64 (440)	1	1	101	100	11.1	C-Mn	Forgings
A694	F52	K03014	66 (455)	1	1	101	100	11.1	C-Mn	Forgings
A694	F56	K03014	68 (470)	1	2	101	100	11.1	C-Mn	Forgings
A694	F60	K03014	75 (515)	1	2	101	100	11.1	C-Mn	Forgings
A694	F65	K03014	77 (530)	1	2	101	100	11.1	C-Mn	Forgings
A694	F70	K03014	82 (565)	1	3	101	100	11.1	C-Mn	Forgings
A/SA-696	В	K03200	60 (415)	1	1	101	100	11.1	C-Mn-Si	Bar
A/SA-696	С	K03200	70 (485)	1	2	101	100	11.1	C-Mn-Si	Bar
A707	L1, Cl. 1	K02302		1	1	101	100	1.2	C-Mn	Forgings
A707	L1, Cl. 2	K02302		1	1	101	100	1.2	C-Mn	Forgings
A707	L2, Cl. 1	K03301		1	1	101	100	11.1	C–Mn	Forgings
A707	L2, Cl. 2	K03301		1	1	101	100	11.1	C–Mn	Forgings
A707	L2, Cl. 3	K03301		1	2	101	100	11.1	C–Mn	Forgings
A707	L3, Cl. 1	K12510		1	1	101	100	1.2	C-Mn-V-N	Forgings
A707	L3, Cl. 2	K12510		1	1	101	100	1.2	C-Mn-V-N	Forgings
A707	L3, Cl. 3	K12510		1	2	101	100	1.3	C-Mn-V-N	Forgings
A714	V	K22035	65 (450)	9A	1	102	100	9.1	2Ni-1Cu	Smls. & welded pipe
A714	V, E	K22035	65 (450)	9A	1	102	100	9.1	2Ni-1Cu	Smls. & welded pipe
A/SA-724	А	K11831	90 (620)	1	4	101	100	3.1	C-Mn-Si	Plate
A/SA-724	В	K12031	95 (655)	1	4	101	100	3.1	C-Mn-Si	Plate
A/SA-724	С	K12037	90 (620)	1	4	101	100	1.1	C-Mn-Si	Plate

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

			Minimum	We	ding	Bra	azing				
	Designation, Type,		Specified Tensile, ksi		Group		AWS	ISO 15608			
pec. No.	or Grade	UNS No.	(MPa)	P-No.	- 1	P-No.	AWS B2.2 BM	Group	Nominal Composition	Typical Product Form	
						Feri	rous (Con	t'd)			
/SA-727		K02506	60 (415)	1	1	101	100	11.1	C–Mn–Si	Forgings	
	S41500									0.0	
/SA-731 /SA-731	TP439	S41500	115 (795)	6 7	4	102 102	150 150	7.2 7.1	13Cr–4.5Ni–Mo 18Cr–Ti	Smls. & welded pipe	
/SA-731 /SA-731	18Cr-2Mo	S43035 S44400	60 (415)	7	2 2	102	150 150	7.1 7.1	18Cr-2Mo	Smls. & welded pipe Smls. & welded pipe	
			60 (415)								
/SA-731	TPXM-33	S44626	65 (450)	10I	1	102	150	7.1	27Cr-1Mo-Ti	Smls. & welded pipe	
/SA-731	TPXM-27	S44627	65 (450)	10I	1	102	150	7.1	27Cr-1Mo	Smls. & welded pipe	
/SA-731	S44660	S44660	85 (585)	10K	1	102	150	7.1	26Cr-3Ni-3Mo	Smls. & welded pipe	
/SA-731	S44700	S44700	80 (550)	10J	1	102	150	7.1	29Cr-4Mo	Smls. & welded pipe	P
/SA-731	S44800	S44800	80 (550)	10K	1	102	150	7.1	29Cr-4Mo-2Ni	Smls. & welded pipe	ASM
/SA-737	В	K12001	70 (485)	1	2	101	100	11.1	C–Mn–Si–Cb	Plate	
/SA-737	С	K12202	80 (550)	1	3	101	100	4.1	C-Mn-Si-V	Plate	BPV
/SA-738	С	K02008	70 (485)	1	3	101	100	11.1	C-Mn-Si	Plate > 4 in6 in. (102 mm- 152 mm), incl.	ASME BPVC.IX-2019
/SA-738	C	K02008	75 (515)	1	3	101	100	11.1	C-Mn-Si	Plate > $2\frac{1}{2}$ in4 in. (64 mm- 102 mm), incl.	019
/SA-738	С	K02008	80 (550)	1	3	101	100	11.1	C-Mn-Si	Plate, $2\frac{1}{2}$ in. (64 mm) & under	
/SA-738	В	K12007	85 (585)	1	3	101	100	11.1	C–Mn–Si–Cb	Plate	
/SA-738	А	K12447	75 (515)	1	2	101	100	11.1	C-Mn-Si	Plate	
/SA-739	B11	K11797	70 (485)	4	1	102	110	5.1	1.25Cr-0.5Mo	Bar	
, /SA-739	B22	K21390	75 (515)	5A	1	102	110	5.2	2.25Cr-1Mo	Bar	
/SA-765	IV	K02009	80 (550)	1	3	101	100	1.1	C-Mn-Si	Forgings	
, /SA-765	Ι	K03046	60 (415)	1	1	101	100	11.1	C-Mn-Si	Forgings	
/SA-765	II	K03047	70 (485)	1	2	101	100	11.1	C-Mn-Si	Forgings	
, /SA-765	III	K32026	70 (485)	9B	1	101	100	9.2	3.5Ni	Forgings	
/SA-789	S31200	S31200	100 (690)	10H	1	102	145	10.2	25Cr-6Ni-Mo-N	Smls. & welded tube	
/ /SA-789	S31260	S31260	100 (690)	10H	1	102	145	10.2	25Cr-6.5Ni-3Mo-N	Smls. & welded tube	
/SA-789	S31500	S31500	92 (635)	10H	1	102	145	10.1	18Cr-5Ni-3Mo-N	Smls. & welded tube	
/SA-789	S31803	S31803	90 (620)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Smls. & welded tube	
/SA-789		S32003	100 (690)	10H	1	102	145	10.1	21Cr-3.5Ni-Mo-N	Smls. & welded tube	
/SA-789		S32101	94 (650)	10H	1	102	145	10.1	21Cr-5Mn-1.5Ni-Cu-N	Smls. & welded tube > 0.187 in. (5 mm)	
/SA-789		S32101	101 (700)	10H	1	102	145	10.1	21Cr-5Mn-1.5Ni-Cu-N	Smls. & welded tube ≤ 0.187 in. (5 mm)	
/SA-789		S32202	94 (650)	10H	1	102	145	10.1	22Cr-2Ni-Mo-N	Smls. & welded tube	
/SA-789		S32202	95 (655)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Smls. & welded tube	دو سه صنعت

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

			Grou		rous a	and No		us P-Num	bers ion (Cont'd)	
	Designation, Type,		Minimum Specified Tensile, ksi		lding Group		azing AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form
						Fer	rous (Con	t'd)		
A/SA-789	S32304	S32304	87 (600)	10H	1	102	145	10.1	23Cr-4Ni-Mo-Cu-N	Smls. & welded tube > 1 in. (25 mm)
A/SA-789	S32304	S32304	100 (690)	10H	1	102	145	10.1	23Cr-4Ni-Mo-Cu-N	Smls. & welded tube ≤ 1 in. (25 mm)
A/SA-789	S32550	S32550	110 (760)	10H	1	102	145	10.2	25Cr-5Ni-3Mo-2Cu	Smls. & welded tube
A/SA-789	S32750	S32750	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-4Mo-N	Smls. & welded tube
A/SA-789	S32760	S32760	109 (750)	10H	1	102	145	10.2	25Cr-8Ni-3Mo-W-Cu-N	Smls. & welded tube
A/SA-789	S32900	S32900	90 (620)	10H	1	102	145	10.2	26Cr-4Ni-Mo	Smls. & welded tube
A/SA-789	S32906	S32906	109 (750)	10H	1	102	145	10.2	29Cr-6.5Ni-2Mo-N	Smls. & welded tube \geq 0.40 in. (10 mm
A/SA-789	S32906	S32906	116 (800)	10H	1	102	145	10.2	29Cr-6.5Ni-2Mo-N	Smls. & welded tube < 0.40 in. (10 mm
A/SA-789	S32950	S32950	100 (690)	10H	1	102	145	10.2	26Cr-4Ni-Mo-N	Smls. & welded tube
A/SA-789	S39274	S39274	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-3Mo-2W-Cu-N	Smls. & welded tube
A/SA-789		S82441	99 (680)	10H	1	102	145	10.1	24Cr-4Ni-3Mn-1.5Mo-N	Smls. & welded tube \geq 0.40 in. (10 mm
A/SA-789		S82441	107 (740)	10H	1	102	145	10.1	24Cr-4Ni-3Mn-1.5Mo-N	Smls. & welded tube < 0.40 in. (10 mm
A/SA-790	S31200	S31200	100 (690)	10H	1	102	145	10.2	25Cr-6Ni-Mo-N	Smls. & welded pipe
A/SA-790	S31260	S31260	100 (690)	10H	1	102	145	10.2	25Cr-6.5Ni-3Mo-N	Smls. & welded pipe
A/SA-790	S31500	S31500	92 (635)	10H	1	102	145	10.1	18Cr-5Ni-3Mo-N	Smls. & welded pipe
A/SA-790	S31803	S31803	90 (620)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Smls. & welded pipe
A/SA-790		S32003	90 (620)	10H	1	102	145	10.1	21Cr-3.5Ni-Mo-N	Smls. & welded pipe
A/SA-790		S32101	94 (650)	10H	1	102	145	10.1	21Cr-5Mn-1.5Ni-Cu-N	Smls. & welded pipe > 0.187 in. (5 mm
A/SA-790		S32101	101 (700)	10H	1	102	145	10.1	21Cr-5Mn-1.5Ni-Cu-N	Smls. & welded pipe ≤ 0.187 in. (5 mm
A/SA-790		S32202	94 (650)	10H	1	102	145	10.1	22Cr-2Ni-Mo-N	Smls. & welded pipe
A/SA-790	2205	S32205	95 (655)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Smls. & welded pipe
A/SA-790	S32304	S32304	87 (600)	10H	1	102	145	10.1	23Cr-4Ni-Mo-Cu-N	Smls. & welded pipe
A/SA-790	S32550	S32550	110 (760)	10H	1	102	145	10.2	25Cr-5Ni-3Mo-2Cu	Smls. & welded pipe
A/SA-790	S32750	S32750	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-4Mo-N	Smls. & welded pipe
, A/SA-790	S32760	S32760	109 (750)	10H	1	102	145	10.2	25Cr-8Ni-3Mo-W-Cu-N	Smls. & welded pipe
, A/SA-790	S32900	S32900	90 (620)	10H	1	102	145	10.2	26Cr-4Ni-Mo	Smls. & welded pipe
A/SA-790	S32906	S32906	109 (750)	10H	1	102	145	10.2	29Cr-6.5Ni-2Mo-N	Smls. & welded pipe ≥ 0.40 in. (10 mm
A/SA-790	S32906	S32906	116 (800)	10H	1	102	145	10.2	29Cr-6.5Ni-2Mo-N	Smls. & welded pipe < 0.40 in. (10 mm
A/SA-790	S32950	S32950	100 (690)	10H	1	102	145	10.2	26Cr-4Ni-Mo-N	Smls. & welded pipe
A/SA-790	S39274	S39274	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-3Mo-2W-Cu-N	Smls. & welded pipe
A/SA-790		S82441	99 (680)	10H	1	102	145	10.2	24Cr-4Ni-3Mn-1.5Mo-N	Smls. & welded pipe ≥ 0.40 in. (10 mm
A/SA-790		S82441	107 (740)	10H	1	102	145	10.1	24Cr-4Ni-3Mn-1.5Mo-N	Smls. & welded pipe < 0.40 in. (10 mm
A/SA-803	TP439	S43035	60 (415)	7	2	102	150	7.1	18Cr-Ti	Welded tube
A/SA-803	26-3-3	S44660	85 (585)	10K	1	102	150	7.1	26Cr-3Ni-3Mo	Welded tube
A/SA-813	N08367	N08367	95 (655)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Welded pipe > 0.1875 in. (5 mm)

یک دو سه صنعت 123sanat.com

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

			Grou		rous a	and N		us P-Num	bers ion (Cont'd)		
	Designation, Type,		Minimum Specified Tensile, ksi	Wel	ding Group		azing AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form	_
						Fer	rous (Cont	t'd)			_
/SA-813	N08367	N08367	100 (690)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Welded pipe ≤ 0.1875 in. (5 mm)	
A/SA-813	TPXM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Welded pipe	
A/SA-813	TPXM-11	S21904	90 (620)	8	3	102	130	8.3	21Cr-6Ni-9Mn	Welded pipe	
A/SA-813	TPXM-29	S24000	100 (690)	8	3	102	130	8.3	18Cr-3Ni-12Mn	Welded pipe	
A/SA-813	TP304	S30400	75 (515)	8	1	102	130	8.1	18Cr-8Ni	Welded pipe	
A/SA-813	TP304L	S30403	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Welded pipe	
A/SA-813	TP304H	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Welded pipe	
A/SA-813	TP304N	S30451	80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Welded pipe	
A/SA-813	TP304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr-8Ni-N	Welded pipe	
A/SA-813	S30815	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Welded pipe	AS
A/SA-813	TP309S	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Welded pipe	ASME BPVC.IX-2019
/SA-813	TP309Cb	S30940	75 (515)	8	2	102	130	8.2	23Cr–12Ni–Cb	Welded pipe	B
/SA-813	TP310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Welded pipe	PV
A/SA-813	TP310Cb	S31040	75 (515)	8	2	102	130	8.2	25Cr-20Ni-Cb	Welded pipe	l E
A/SA-813	S31254	S31254	94 (650)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Welded pipe	X-2
/SA-813	TP316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded pipe	01
, A/SA-813	TP316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded pipe	9
, A/SA-813	TP316H	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Welded pipe	
, A/SA-813	TP316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Welded pipe	
, A/SA-813	TP316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Welded pipe	
A/SA-813	TP317	S31700	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Welded pipe	
A/SA-813	TP317L	S31703	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Welded pipe	
A/SA-813		S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Welded pipe	
A/SA-813	TP321	S32100	75 (515)	8	1	102	140	8.1	18Cr-10Ni-Ti	Welded pipe	
A/SA-813	TP321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Welded pipe	
A/SA-813	TP347	S34700	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Welded pipe	
A/SA-813	ТРЗ47Н	S34709	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Welded pipe	
A/SA-813	TP348	S34800	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Welded pipe	
A/SA-813	TP348H	S34809	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Welded pipe	
A/SA-813	TPXM-15	S34007	75 (515)	8	1	102	130	8.1	18Cr-18Ni-2Si	Welded pipe	
y 5n=015	11 ///1-13	330100	/3 (313)	U	Т	102	150	0.1	1001 1010-251	wented pipe	
A/SA-814	N08367	N08367	95 (655)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Cold worked welded pipe > 0.1875 in. (5 mm)	
A/SA-814	N08367	N08367	100 (690)	45		111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Cold worked welded pipe ≤ 0.1875 in. (5 mm)	
/SA-814	TPXM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Cold worked welded pipe	
, A/SA-814	TPXM-11	S21904	90 (620)	8	3	102	130	8.3	21Cr-6Ni-9Mn	Cold worked welded pipe	دو سه صنعت

123sanat.com

			Minimum	Wel	ding	Bra	azing			
Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
•					-	-	rous (Con	t'd)	_	
A/SA-814	TPXM-29	S24000	100 (690)	8	3	102	130	8.3	18Cr-3Ni-12Mn	Cold worked welded pipe
A/SA-814	TP304	S30400	75 (515)	8	1	102	130	8.1	18Cr-8Ni	Cold worked welded pipe
A/SA-814	TP304L	S30403	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Cold worked welded pipe
A/SA-814	ТР304Н	S30409	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Cold worked welded pipe
A/SA-814	TP304N	S30451	80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Cold worked welded pipe
A/SA-814	TP304LN	S30453	75 (515)	8	1	102	130	8.1	18Cr–8Ni–N	Cold worked welded pipe
A/SA-814	S30815	S30815	87 (600)	8	2	102	130	8.2	21Cr-11Ni-N	Cold worked welded pipe
A/SA-814	TP309S	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Cold worked welded pipe
A/SA-814	TP309Cb	S30940	75 (515)	8	2	102	130	8.2	23Cr-12Ni-Cb	Cold worked welded pipe
A/SA-814	TP310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Cold worked welded pipe
, A/SA-814	TP310Cb	S31040	75 (515)	8	2	102	130	8.2	25Cr–20Ni–Cb	Cold worked welded pipe
A/SA-814	S31254	S31254	94 (650)	8	4	102	130	8.2	20Cr-18Ni-6Mo	Cold worked welded pipe
A/SA-814	TP316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Cold worked welded pipe
A/SA-814	TP316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Cold worked welded pipe
A/SA-814	ТР316Н	S31609	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Cold worked welded pipe
A/SA-814	TP316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Cold worked welded pipe
A/SA-814	TP316LN	S31653	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Cold worked welded pipe
A/SA-814	TP317	S31700	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Cold worked welded pipe
A/SA-814	TP317L	S31703	75 (515)	8	1	102	130	8.1	18Cr-13Ni-3Mo	Cold worked welded pipe
A/SA-814		S32053	93 (640)	8	4	102	130	8.2	23Cr-25Ni-5.5Mo-N	Cold worked welded pipe
A/SA-814	TP321	S32100	75 (515)	8	1	102	140	8.1	18Cr-10Ni-Ti	Cold worked welded pipe
A/SA-814	TP321H	S32109	75 (515)	8	1	102	140	8.1	18Cr–10Ni–Ti	Cold worked welded pipe
A/SA-814	TP347	S34700	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Cold worked welded pipe
A/SA-814	TP347H	S34709	75 (515)	8	1	102	130	8.1	18Cr–10Ni–Cb	Cold worked welded pipe
A/SA-814	TP348	S34800	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Cold worked welded pipe
A/SA-814	TP348H	S34809	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Cold worked welded pipe
A/SA-814	TPXM-15	S38100	75 (515)	8	1	102	130	8.1	18Cr-18Ni-2Si	Cold worked welded pipe
A/SA-815	S31803	S31803	90 (620)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Fittings
A/SA-815		S32101	94 (650)	10H	1	102	145	10.1	21Cr-5Mn-1.5Ni-Cu-N	Fittings
A/SA-815		S32202	94 (650)	10H	1	102	145	10.1	22Cr-2Ni-Mo-N	Fittings
A/SA-815	S32205	S32205	95 (655)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Fittings
A815	2507	S32750	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-4Mo-N	Fittings
A/SA-815	S32760	S32760	109 (750)	10H	1	102	145	10.2	25Cr-8Ni-3Mo-W-Cu-N	Fittings
A/SA-815	S41500	S41500	110 (760)	6	4	102	150	7.2	13Cr–4.5Ni–Mo	Fittings

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

135

			Minimum Specified	We	lding	Bra	azing				
	Designation, Type,		Tensile, ksi		Group		AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form	_
						Fer	rous (Con	t'd)			_
A/SA-832	23V		85 (585)	5C	1	102	110	6.2	3Cr-1Mo-0.25V-Cb-Ca	Plate	
A/SA-832	21V	K31830	85 (585)	5C	1	102	120	6.2	3Cr-1Mo-V-Ti-B	Plate	
A/SA-832	22V	K31835	85 (585)	5C	1	102	110	6.2	2.25Cr-1Mo-V	Plate	
A/SA-836			55 (380)	1	1	101	120	1.1	C–Si–Ti	Forgings	
A/SA-841	A, Cl. 1		65 (450)	1	2	101	100	1.2	C-Mn-Si	Plate > 2.5 in. (65 mm)	
A/SA-841	A, Cl. 1		70 (485)	1	2	101	100	1.2	C–Mn–Si	Plate ≤ 2.5 in. (65 mm)	
A/SA-841	B, Cl. 2		75 (515)	1	3	101	100	1.3	C-Mn-Si	Plate > 2.5 in. (65 mm)	
A/SA-841	B, Cl. 2		80 (550)	1	3	101	100	1.3	C-Mn-Si	Plate ≤ 2.5 in. (65 mm)	
A/SA-841	F, Cl. 6		82 (565)	3	3	101	100	2.2	Mn-0.85Ni-0.30Cr-0.50Mo	Plate	SM
A/SA-841	F, Cl. 7		86 (595)	3	3	101	100	2.2	Mn-0.85Ni-0.30Cr-0.50Mo	Plate	IE E
, A859	A, Cl. 1	K20747	65 (450)	11C	1	101	100	3.3	1Ni-1Cu-0.75Cr-Mo-Nb	Forgings	ASME BPVC.IX-2019
A859	A, Cl. 2	K20747 K20747	75 (515)	110	1	101	100	3.3	1Ni-1Cu-0.75Cr-Mo-Nb	Forgings	
A860	WPHY 42		60 (415)	1	1	101	120	1.2	C–Mn	Smls. & welded fittings	(-20
	WPHY 42 WPHY 46		. ,		1	101	120	1.2	C-Mn	8	19
A860 A860	WPHY 46 WPHY 52		63 (435)	1	1		120	1.2	C-Mn	Smls. & welded fittings Smls. & welded fittings	
A860 A860	WPHY 52 WPHY 60		66 (455) 75 (515)	1	1	101	120	1.2	C-Mn C-Mn	Smis. & welded fittings	
			75 (515)	1		101			C-Mn		
A860 A860	WPHY 65 WPHY 70		77 (530)	1	2 3	101	120	1.3		Smls. & welded fittings	
A860	WPHY /0		80 (550)	1	3	101	120	1.3	C-Mn	Smls. & welded fittings	
A890	4A	J92205	90 (620)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Castings	
A890	6A	J93380	100 (690)	10H	1	102	145	10.2	25Cr-8Ni-3Mo-W-Cu-N	Castings	
A928	S31803	S31803	90 (620)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Welded pipe	
A928	S32003	S32003	95 (655)	10H	1	102	145	10.1	21Cr-3.5Ni-Mo-N	Welded pipe > 0.1875 in. (5 mm)	
A928	S32003	S32003	100 (690)	10H	1	102	145	10.1	21Cr-3.5Ni-Mo-N	Welded pipe ≤ 0.1875 in. (5 mm)	
A928	2205	S32205	95 (655)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Welded pipe	
A928	2304	S32304	87 (600)	10H	1	102	145	10.1	23Cr-4Ni-Mo-Cu-N	Welded pipe	
A928	2507	S32750	116 (800)	10H	1	102	145	10.2	25Cr-7Ni-4Mo-N	Welded pipe	
A928		S32760	108 (745)	10H	1	102	145	10.2	25Cr-8Ni-3Mo-W-Cu-N	Welded pipe	
A/SA-965	FXM-19	S20910	100 (690)	8	3	102	130	8.3	22Cr-13Ni-5Mn	Forgings	
, A/SA-965	FXM-11	S21904	90 (620)	8	3	102	130	8.3	21Cr-6Ni-9Mn	Forgings	
A/SA-965	F304	S30400	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Forgings	
A/SA-965	F304L	S30403	65 (450)	8	1	102	130	8.1	18Cr–8Ni	Forgings	
A/SA-965	F304H	S30409	70 (485)	8	1	102	130	8.1	18Cr-8Ni	Forgings	دو سه صنعت

			Grou	iping o	DT Bas	e met	als for	Qualificat	ion (Cont'd)	
			Minimum Specified	Wel	ding	Bra	azing			
	Designation, Type,		Tensile, ksi		Group		AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product 1
						Fer	rous (Con	t'd)		
A/SA-965	F304N	S30451	80 (550)	8	1	102	130	8.1	18Cr–8Ni–N	Forgings
A/SA-965	F304LN	S30453	70 (485)	8	1	102	130	8.1	18Cr–8Ni–N	Forgings
A/SA-965	F46	S30600	78 (540)	8	1	102	130	8.1	18Cr–15Ni–4Si	Forgings
A/SA-965	F310	S31000	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Forgings
A/SA-965	F316	S31600	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Forgings
A/SA-965	F316L	S31603	65 (450)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Forgings
A/SA-965	F316H	S31609	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Forgings
A/SA-965	F316N	S31651	80 (550)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Forgings
A/SA-965	F316LN	S31653	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Forgings
A/SA-965	F321	S32100	70 (485)	8	1	102	140	8.1	18Cr–10Ni–Ti	Forgings
A/SA-965	F321H	S32109	70 (485)	8	1	102	140	8.1	18Cr–10Ni–Ti	Forgings
A/SA-965	F347	S34700	70 (485)	8	1	102	130	8.1	18Cr–10Ni–Cb	Forgings
A/SA-965	F347H	S34709	70 (485)	8	1	102	130	8.1	18Cr–10Ni–Cb	Forgings
A/SA-965	F348	S34800	70 (485)	8	1	102	130	8.1	18Cr–10Ni–Cb	Forgings
A/SA-965	F348H	S34809	70 (485)	8	1	102	130	8.1	18Cr-10Ni-Cb	Forgings
A992			65 (450)	1	1	101	100	1.2	C-Mn-Si	Shapes
A/SA-995	4A	J92205	90 (620)	10H	1	102	145	10.1	22Cr-5Ni-3Mo-N	Castings
A/SA-995	2A	J93345	95 (655)	10H	1	102	145	10.2	24Cr-10Ni-4Mo-N	Castings
A/SA-995	1B	J93372	100 (690)	10H	1	102	145	10.2	25Cr-5Ni-3Mo-2Cu	Castings
A/SA-995	6A	J93380	100 (690)	10H	1	102	145	10.2	25Cr-8Ni-3Mo-W-Cu-N	Castings
A/SA-995	5A	J93404	100 (690)	10H	1	102	145	10.2	25Cr-7Ni-4Mo-N	Castings
A/SA-1008	CS A		40 (275)	1	1	101	100	1.1	С	Sheet
A/SA-1008	CS B		40 (275)	1	1	101	100	1.1	С	Sheet
A/SA-1008	DS B		40 (275)	1	1	101	100	1.1	С	Sheet
A/SA-1010	40	S41003	66 (455)	7	1	102	150	7.2	12Cr-1Ni	Plate, sheet & str
A/SA-1010	50	S41003	70 (485)	7	1	102	150	7.2	12Cr-1Ni	Plate, sheet & stri
A/SA-1011	CS B		40 (275)	1	1	101	100	1.1	С	Sheet & strip
A/SA-1011	DS B		40 (275)	1	1	101	100	1.1	С	Sheet & strip
A/SA-1011	HSLAS 45 Cl. 1		60 (415)	1	1	101	120	1.2	С	Sheet & strip
A/SA-1011	HSLAS 45 Cl. 2		55 (380)	1	1	101	120	1.2	С	Sheet & strip
A/SA-1011	HSLAS 50 Cl. 1		65 (450)	1	1	101	120	1.2	С	Sheet & strip
A/SA-1011	HSLAS 50 Cl. 2		60 (415)	1	1	101	120	1.2	С	Sheet & strip
A/SA-1011	HSLAS 55 Cl. 1		70 (485)	1	2	101	120	1.3	С	Sheet & strip
A/SA-1011	HSLAS 55 Cl. 2		65 (450)	1	1	101	120	1.3	С	Sheet & strip

Table QW/QB-422 Ferrous and Nonferrous P-Numbers

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

Spec. No.	Designation, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	Wel	ding Group No.		AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form	
Speel No.	of draue	010 110.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 110.	110.		rous (Con		Nommar Composition	Typical Product Form	
A/SA-1011	HSLAS 60 Cl. 1		75 (515)	1	2	101	120	1.3	С	Sheet & strip	
A/SA-1011	HSLAS 60 Cl. 2		70 (485)	1	2	101	120	1.3	С	Sheet & strip	
A/SA-1011	SS 33		52 (360)	1	1	101	100	1.1	С	Sheet & strip	
A/SA-1011	SS 36 2		58 (400)	1	1	101	100	1.1	С	Sheet & strip	
A/SA-1011	SS 40		55 (380)	1	1	101	100	1.2	С	Sheet & strip	
, A/SA–1011	SS 45		60 (415)	1	1	101	120	1.2	С	Sheet & strip	
, A/SA-1011	SS 50		65 (450)	1	1	101	100	1.2	С	Sheet & strip	
A/SA-1011	SS 55		70 (485)	1	2	101	100	1.3	C	Sheet & strip	
A/SA-1011	SS 60		75 (515)	1	2	101	100	1.3	c	Sheet & strip	
A/SA-1017	92	K92460	90 (620)	15E	1	102	110	6.4	9Cr-2W	Plate	ASME BPVC.IX-2019
A1066	50		65 (450)	3	1	101	100	1.2	Mn-Ni-Cr-Mo	Plate	BI
A1066	60		75 (515)	3	2	101	100	2.1	Mn-Ni-Cr-Mo	Plate	V
A1066	65		80 (550)	3	3	101	100	2.1	Mn-Ni-Cr-Mo	Plate	
A1066	70		85 (585)	3	3	101	100	2.2	Mn-Ni-Cr-Mo	Plate	(-2
A1066	80		90 (620)	3	3	101	100	2.2	Mn-Ni-Cr-Mo	Plate	019
A1091	C91	J84090	85 (585)	15E	1	102	110	6.4	9Cr-1Mo-V	Castings	
API 5L	А		49 (340)	1	1	101	100	1.1	C-Mn	Smls. & welded pipe	
API 5L	A25		45 (310)	1	1	101	100	1.1	C-Mn	Smls. & welded pipe	
API 5L	A25P		45 (310)	1	1	101	100	1.1	C–Mn	Smls. & welded pipe	
API 5L	В		60 (415)	1	1	101	120	11.1	C-Mn	Smls. & welded pipe	
API 5L	BM		60 (415)	1	1	101	120	1.1	C-Mn	Welded pipe	
API 5L	BMO		60 (415)	1	1	101	120	1.1	C-Mn	Welded pipe	
API 5L	BMS		60 (415)	1	1	101	120	1.1	C–Mn	Welded pipe	
API 5L	BN		60 (415)	1	1	101	120	1.1	C–Mn	Smls. & welded pipe	
API 5L	BNO		60 (415)	1	1	101	120	1.1	C–Mn	Smls. & welded pipe	
API 5L	BNS		60 (415)	1	1	101	120	1.1	C–Mn	Smls. & welded pipe	
API 5L	BQ		60 (415)	1	1	101	120	1.1	C–Mn	Smls. & welded pipe	
API 5L	BQO		60 (415)	1	1	101	120	1.1	C–Mn	Smls. & welded pipe	
API 5L	BQS		60 (415)	1	1	101	120	1.1	C–Mn	Smls. & welded pipe	
API 5L	BR		60 (415)	1	1	101	120	1.1	C–Mn	Smls. & welded pipe	
API 5L	X42		60 (415)	1	1	101	120	11.1	C–Mn	Smls. & welded pipe	
API 5L	X42M		60 (415)	1	1	101	120	1.2	C–Mn	Welded pipe	
API 5L	X42M0		60 (415)	1	1	101	120	1.2	C–Mn	Welded pipe	
API 5L	X42MS		60 (415)	1	1	101	120	1.2	C–Mn	Welded pipe	دو سه صنعت

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

	Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)													
			Minimum	Wel	ding	Bra	azing							
Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form				
	of draue	0115 110.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 110.	110.		rous (Con		Nominal Composition	Typical Product Form				
API 5L	X42N		60 (415)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X42N0		60 (415)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X42NS		60 (415)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X42Q		60 (415)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X42Q0		60 (415)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X42QS		60 (415)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X42Q3 X42R		60 (415)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X46		63 (435)	1	1	101	120	11.1	C-Mn	Smls. & welded pipe				
API 5L	X46M		63 (435)	1	1	101	120	1.2	C-Mn	Welded pipe				
API 5L	X46M0		63 (435)	1	1	101	120	1.2	C-Mn	Welded pipe				
API 5L	X46MS		63 (435)	1	1	101	120	1.2	C-Mn	Welded pipe				
API 5L	X46N		63 (435)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X46N0		63 (435)	1	1	101	120	1.2	C–Mn	Smls. & welded pipe				
API 5L	X46NS		63 (435)	1	1	101	120	1.2	C–Mn	Smls. & welded pipe				
API 5L	X46Q		63 (435)	1	1	101	120	1.2	C–Mn	Smls. & welded pipe				
API 5L	X46Q0		63 (435)	1	1	101	120	1.2	C–Mn	Smls. & welded pipe				
API 5L	X46QS		63 (435)	1	1	101	120	1.2	C–Mn	Smls. & welded pipe				
API 5L	X52		67 (460)	1	1	101	120	11.1	C–Mn	Smls. & welded pipe				
API 5L	X52M		67 (460)	1	1	101	120	1.2	C–Mn	Welded pipe				
API 5L	X52M0		67 (460)	1	1	101	120	1.2	C–Mn	Welded pipe				
API 5L	X52MS		67 (460)	1	1	101	120	1.2	C–Mn	Welded pipe				
API 5L	X52N		67 (460)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X52N0		67 (460)	1	1	101	120	1.2	C–Mn	Smls. & welded pipe				
API 5L	X52NS		67 (460)	1	1	101	120	1.2	C-Mn	Smls. & welded pipe				
API 5L	X52Q		67 (460)	1	1	101	120	1.2	C–Mn	Smls. & welded pipe				
API 5L	X52Q0		67 (460)	1	1	101	120	1.2	C–Mn	Smls. & welded pipe				
API 5L	X52QS		67 (460)	1	1	101	120	1.2	C–Mn	Smls. & welded pipe				
API 5L	X56		71 (490)	1	2	101	120	11.1	C–Mn	Smls. & welded pipe				
API 5L	X56M		71 (490)	1	2	101	120	2.1	C–Mn	Welded pipe				
API 5L	X56M0		71 (490)	1	2	101	120	2.1	C–Mn	Welded pipe				
API 5L	X56MS		71 (490)	1	2	101	120	2.1	C–Mn	Welded pipe				
API 5L	X56N		71 (490)	1	2	101	120	1.3	C–Mn	Smls. & welded pipe				
API 5L	X56Q		71 (490)	1	2	101	120	3.1	C–Mn	Smls. & welded pipe				
API 5L	X56Q0		71 (490)	1	2	101	120	3.1	C–Mn	Smls. & welded pipe				
API 5L	X56QS		71 (490)	1	2	101	120	3.1	C–Mn	Smls. & welded pipe				
API 5L	X60		75 (515)	1	2	101	120	11.1	C–Mn	Smls. & welded pipe				
API 5L	X60M		75 (515)	1	2	101	120	2.1	C–Mn	Welded pipe				

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

			Minimum Specified	Weld	ling	Bra	zing			
с N	Designation, Type,		Tensile, ksi	D N	Group	D N	AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form
							ous (Con	,		
API 5L	X60MO		75 (515)	1	2	101	120	2.1	C-Mn	Welded pipe
API 5L	X60MS		75 (515)	1	2	101	120	2.1	C-Mn	Welded pipe
API 5L	X60N		75 (515)	1	2	101	120	1.3	C-Mn	Smls. & welded pipe
API 5L	X60Q		75 (515)	1	2	101	120	3.1	C-Mn	Smls. & welded pipe
API 5L	X60Q0		75 (515)	1	2	101	120	3.1	C-Mn	Smls. & welded pipe
API 5L	X60QS		75 (515)	1	2	101	120	3.1	C-Mn	Smls. & welded pipe
API 5L	X65		78 (540)	1	2	101	120	11.1	C-Mn	Smls. & welded pipe
API 5L	X65M		78 (540)	1	2	101	120	2.1	C-Mn	Welded pipe
API 5L	X65MO		78 (540)	1	2	101	120	2.1	C–Mn	Welded pipe
API 5L	X65MS		78 (540)	1	2	101	120	2.1	C–Mn	Welded pipe
API 5L	X65Q		78 (540)	1	2	101	120	3.1	C-Mn	Smls. & welded pipe
API 5L	X65QO		78 (540)	1	2	101	120	3.1	C-Mn	Smls. & welded pipe
API 5L	X65QS		78 (540)	1	2	101	120	3.1	C–Mn	Smls. & welded pipe
API 5L	X70		83 (565)	1	3	101	120	11.1	C–Mn	Smls. & welded pipe
API 5L	X70M		83 (565)	1	3	101	120	2.2	C–Mn	Welded pipe
API 5L	X70MO		83 (565)	1	3	101	120	2.2	C-Mn	Welded pipe
API 5L	X70MS		83 (565)	1	3	101	120	2.2	C-Mn	Welded pipe
API 5L	X70Q		83 (565)	1	3	101	120	3.1	C-Mn	Smls. & welded pipe
API 5L	X70Q0		83 (565)	1	3	101	120	3.1	C-Mn	Smls. & welded pipe
API 5L	X70QS		83 (565)	1	3	101	120	3.1	C-Mn	Smls. & welded pipe
API 5L	X80M		91 (625)	1	4	101	120	2.2	C-Mn	Welded pipe
API 5L	X80M0		91 (625)	1	4	101	120	2.2	C-Mn	Welded pipe
API 5L	X80Q		91 (625)	1	4	101	120	3.1	C-Mn	Smls. & welded pipe
API 5L	X80Q0		91 (625)	1	4	101	120	3.1	C-Mn	Smls. & welded pipe
AS 1448	K3		59.5 (410)	1	1	101	100	1.1	C-Si	Forgings
AS 1448	K4		72.5 (500)	1	2	101	100	11.2	C–Si	Forgings
AS 1448	К5		78 (540)	1	2	101	100	11.2	C-Mn-Si	Forgings
AS 1448	K6		87 (600)	1	3	101	100	11.2	C–Mn–Si	Forgings
AS 1448	К8		69.5 (480)	1	1	101	100	1.2	C–Mn–Si	Forgings
AS 1448	К9		78 (540)	1	2	101	100	1.2	C–Mn–Si	Forgings
AS 1448	K10		84 (580)	1	3	101	100	11.1	C–Mn–Si	Forgings
AS 1448	S1		58 (400)	1	1	101	100	1.1	C–Si	Forgings
AS 1448	S3		59.5 (410)	1	1	101	100	1.1	C–Si	Forgings
AS 1448	S3 S4		72.5 (500)	1	2	101	100	11.2	C-Si	Forgings
AS 1448	S5		78 (540)	1	2	101	100	11.2	C-Mn	Forgings
AS 1448	55 S6		87 (600)	1	3	101	100	11.2	C-Mn	Forgings

یک دو سه صنعت 123sanat.com

Licensee=Khalda Petroleum/5986215001, User Not for Resale, 07/02/2019 13:22:09 MDT

Amer

, Moł

mec

	Designation, Ty or Grade
	200 L0 240 L0 290 L0
.1 .1	241 290

			Minimum	wei	aing	Bra	azıng			
	Design attention		Specified		C					
Course No.	Designation, Type,	UNC N-	Tensile, ksi	D N-	Group	D N-	AWS	ISO 15608	Naminal Carne aiti an	Transford Data data to Data
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.		B2.2 BM	Group	Nominal Composition	Typical Product Form
						Fer	rous (Con	ťd)		
AS 4728	200 L0		46.5 (320)	1	1	101	120	1.1	C-Mn	E.R.W. pipe
AS 4728	240 L0		55 (380)	1	1	101	120	1.1	C-Mn	E.R.W. pipe
AS 4728	290 L0		60 (415)	1	1	101	120	1.2	C–Mn	E.R.W. pipe
CSA Z245.1	241		60 (415)	1	1	101	120	11.1	C-Mn	Smls. & welded pipe
CSA Z245.1	290		60 (415)	1	1	101	120	11.1	C-Mn	Smls. & welded pipe
CSA Z245.1	359		66 (455)	1	1	101	120	11.1	C-Mn	Smls. & welded pipe
CSA Z245.1	386		71 (490)	1	2	101	120	11.1	C-Mn	Smls. & welded pipe
CSA Z245.1	414		75 (515)	1	2	101	120	11.1	C–Mn	Smls. & welded pipe
CSA Z245.1	448		77 (530)	1	2	101	120	11.1	C-Mn	Smls. & welded pipe
CSA Z245.1	483		82 (565)	1	3	101	120	11.1	C-Mn	Smls. & welded pipe
CSA Z245.1	550		90 (620)	1	4	101	120	11.1	C–Mn	Smls. & welded pipe
CSA Z245.1	620		100 (690)	1	4	101	120	11.1	C-Mn	Smls. & welded pipe
CSA Z245.11	207		48 (331)	1	1	101	100	11.1	C-Mn	Fittings
CSA Z245.11	241		60 (414)	1	1	101	100	11.1	C–Mn	Fittings
CSA Z245.11	290		60 (414)	1	1	101	100	11.1	C-Mn	Fittings
CSA Z245.11	317		63 (434)	1	1	101	100	11.1	C–Mn	Fittings
CSA Z245.11	359		66 (455)	1	1	101	100	11.1	C–Mn	Fittings
CSA Z245.11	386		71 (490)	1	2	101	100	11.1	C-Mn	Fittings
CSA Z245.11	414		75 (517)	1	2	101	100	11.1	C-Mn	Fittings
CSA Z245.11	448		77 (531)	1	2	101	100	11.1	C-Mn	Fittings
CSA Z245.11	483		82 (565)	1	3	101	100	11.1	C-Mn	Fittings
CSA Z245.11	550		90 (620)	1	4	101	100	11.1	C-Mn	Fittings
CSA Z245.11	620		100 (690)	1	4	101	100	11.1	C-Mn	Fittings
CSA Z245.12	248		60 (414)	1	1	101	100	11.1	C-Mn	Flanges
CSA Z245.12	290		60 (414)	1	1	101	100	11.1	C-Mn	Flanges
CSA Z245.12	317		63 (434)	1	1	101	100	11.1	C-Mn	Flanges
CSA Z245.12	359		66 (455)	1	1	101	100	11.1	C-Mn	Flanges
CSA Z245.12	386		71 (490)	1	2	101	100	11.1	C-Mn	Flanges
CSA Z245.12	414		75 (517)	1	2	101	100	11.1	C-Mn	Flanges
CSA Z245.12	448		77 (531)	1	2	101	100	11.1	C-Mn	Flanges
CSA Z245.12	483		82 (565)	1	3	101	100	11.1	C-Mn	Flanges
CSA Z245.12	550		90 (620)	1	4	101	100	11.1	C–Mn	Flanges
CSA Z245.12	620		100 (690)	1	4	101	100	11.1	C-Mn	Flanges

Table QW/QB-422 **Ferrous and Nonferrous P-Numbers** Grouping of Base Metals for Qualification (Cont'd)

Brazing

Minimum

Welding

			Minimum	We	lding	Br	azing				
Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.		AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form	
							rous (Con	1	FF		
EN or SA/EN 10025–2	S235JR		52 (360)	1	1		100	1.1	C	Plate	
EN or SA/EN 10028–2	10CrMo9-10		65.5 (450)	5A	1	102	110	5.2	2.25Cr-1Mo	Plate > 6 in. (150 mm) ≤ 10 in. (250 mm)	
EN or SA/EN 10028-2	10CrMo9-10		66.5 (460)	5A	1	102	110	5.2	2.25Cr-1Mo	Plate > 4 in. (100 mm) ≤ 6 in. (150 mm)	
EN or SA/EN 10028–2	10CrMo9-10		68 (470)	5A	1	102	110	5.2	2.25Cr-1Mo	Plate > 2.4 in. (60 mm) ≤ 4 in. (100 mm)	
EN or SA/EN 10028–2	10CrMo9-10		69.5 (480)	5A	1	102	110	5.2	2.25Cr-1Mo	Plate ≤ 2.4 in. (60 mm)	ASM
EN or SA/EN 10028–2	13CrMo4-5		61 (420)	4	1	102	110	5.1	1Cr-0.5Mo	Plate > 6 in. (150 mm) ≤ 10 in. (250 mm)	E BPV
EN or SA/EN 10028–2	13CrMo4-5		62.5 (430)	4	1	102	110	5.1	1Cr-0.5Mo	Plate > 4 in. (100 mm) ≤ 6 in. (150 mm)	ASME BPVC.IX-2019
EN or SA/EN 10028-2	13CrMo4-5		64 (440)	4	1	102	110	5.1	1Cr-0.5Mo	Plate > 2.4 in. (60 mm) \leq 4 in. (100 mm)	2019
EN or SA/EN 10028-2	13CrMo4-5		65.5 (450)	4	1	102	110	5.1	1Cr-0.5Mo	Plate ≤ 2.4 in. (60 mm)	
EN or SA/EN 10028-2	13CrMoSi5-5+QT		71 (490)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Plate > 4 in10 in. (100 mm- 250 mm), incl.	
EN or SA/EN 10028-2	13CrMoSi5-5+QT		72.5 (500)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Plate > 2.4 in4 in. (60 mm- 100 mm), incl.	
EN or SA/EN 10028-2	13CrMoSi5-5+QT		74 (510)	4	1	102	110	5.1	1.25Cr-0.5Mo-Si	Plate ≤ 2.4 in. (60 mm)	
EN or SA/EN 10028-2	P235GH		52 (360)	1	1	101	100	1.1	C-Mn	Plate ≤ 2.4 in. (60 mm)	
EN or SA/EN 10028-2	P265GH		59.5 (410)	1	1	101	100	1.1	C-Mn	Plate ≤ 2.4 in. (60 mm)	
EN or SA/EN 10028-2	P295GH		62.5 (430)	1	1	101	100	1.2	C-Mn-Si	Plate > 6 in. (150 mm) ≤ 10 in. (250 mm)	
EN or SA/EN 10028-2	P295GH		64 (440)	1	1	101	100	1.2	C-Mn-Si	Plate > 4 in. (100 mm) ≤ 6 in. (150 mm)	
EN or SA/EN 10028-2	P295GH		66.5 (460)	1	1	101	100	1.2	C-Mn-Si	Plate ≤ 4 in. (100 mm)	
EN or SA/EN 10028-2	P355GH		68 (470)	1	2	101	100	1.2	C-Mn-Si	Plate > 6 in. (150 mm) ≤ 10 in. (250 mm)	دو سه صنعت

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

			Minimum Specified	Wel			azing			
Spec. No.	Designation, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.		AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
<u>spec. No.</u>	of draue	UNS NO.	(Mr a)	r-nu.	NU.		rous (Con	•	Nominal Composition	Typical Floudet Form
EN or SA/EN 10028-2	P355GH		69.5 (480)	1	2	101	100	1.2	C-Mn-Si	Plate > 4 in. (100 mm) ≤ 6 in. (150 mm)
EN or SA/EN 10028–2	P355GH		71 (490)	1	2	101	100	1.2	C-Mn-Si	Plate > 2.4 in. (60 mm) \leq 4 in. (100 mm)
EN or SA/EN 10028–2	P355GH		74 (510)	1	2	101	100	1.2	C-Mn-Si	Plate ≤ 2.4 in. (60 mm)
EN or SA/EN 10028-3	P275NH		51 (350)	1	1	101	100	1.1	С	Plate > 6 in. (150 mm) ≤ 10 in. (250 mm)
EN or SA/EN 10028-3	P275NH		52 (360)	1	1	101	100	1.1	С	Plate > 4 in. $(100 \text{ mm}) \le 6 \text{ in.} (150 \text{ mm})$
EN or SA/EN 10028-3	P275NH		53.5 (370)	1	1	101	100	1.1	С	Plate > 2 in. (50 mm) ≤ 4 in. (100 mm)
EN or SA/EN 10028-3	P275NH		56.5 (390)	1	1	101	100	1.1	С	Plate ≤ 2 in. (50 mm)
EN or SA/EN 10028-3	P355NH		65.5 (450)	1	2	101	120	1.2	C-Mn-Si	Plate > 6 in. (150 mm) ≤ 10 in. (250 mm)
EN or SA/EN 10028-3	P355NH		66.5 (460)	1	2	101	120	1.2	C-Mn-Si	Plate > 4 in. (100 mm) ≤ 6 in. (150 mm)
EN or SA/EN 10028-3	P355NH		68 (470)	1	2	101	120	1.2	C-Mn-Si	Plate > 2.4 in. (60 mm) ≤ 4 in. (100 mm)
EN or SA/EN 10028-3	P355NH		71 (490)	1	2	101	120	1.2	C-Mn-Si	Plate ≤ 2.4 in. (60 mm)
EN or SA/EN 10028-3	P355NL2		65 (450)	1	2	101	120	1.2	C-Mn	Plate > 6 in. (150 mm) ≤ 10 in. (250 mm)
EN or SA/EN 10028-3	P355NL2		67 (460)	1	2	101	120	1.2	C-Mn	Plate > 4 in. (100 mm) ≤ 6 in. (150 mm)
EN or SA/EN 10028-3	P355NL2		68 (470)	1	2	101	120	1.2	C-Mn	Plate > 2.4 in. (60 mm) \leq 4 in. (100 mm)
EN or SA/EN 10028-3	P355NL2		71 (490)	1	2	101	120	1.2	C-Mn	Plate ≤ 2.4 in. (60 mm)
EN or SA/EN 10028–4	X7Ni9		98.5 (680)	11A	1		100	9.3	9Ni	Plate
EN or SA/EN 10028–4	X8Ni9		93 (640)	11A	1		100	9.3	9Ni	Plate

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

			Minimum	We	lding	Bra	azing				
	Designation, Type,		Specified Tensile, ksi		Group		AWS	ISO 15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form	
						Fer	rous (Con	t'd)			_
EN or SA/EN 10028-7	X2CrNi18-9		72.5 (500)	8	1	102	130	8.1	18Cr-8Ni	Plate	
EN or SA/EN 10028-7	X2CrNiMo17-12-2		75.5 (520)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Plate	
EN or SA/EN 10028-7	X2CrNiMoN17-11-2		84 (580)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Plate	
EN or SA/EN 10028-7	X2CrNiMoN17-13-3		84 (580)	8	1	102	130	8.1	16Cr-12Ni-2Mo-N	Plate	
EN or SA/EN 10028-7	X2CrNiN18-10		80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Plate	ASM
EN or SA/EN 10028-7	X5CrNi18-10		75.5 (520)	8	1	102	130	8.1	18Cr-8Ni	Plate	E BP
EN or SA/EN 10028-7	X5CrNiMo17-12-2		75.5 (520)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Plate	VC.IX-
EN or SA/EN 10028-7	X5CrNiN19-9		80 (550)	8	1	102	130	8.1	18Cr-8Ni-N	Plate	ASME BPVC.IX-2019
EN or SA/EN 10028-7	X6CrNiTi18-10		72.5 (500)	8	1	102	130	8.1	18Cr–10Ni–Ti	Plate	
EN or SA/EN 10088-2	X6CrNiMoTi17-12-2		78.5 (540)	8	1		130	8.1	16Cr-12Ni-2Mo-Ti	Plate, sheet & strip	
EN or SA/EN 10216-2	10CrMo9-10		69.5 (480)	5A	1		110	5.2	2.25Cr-1Mo	Smls. tube	
EN or SA/EN 10216-2	13CrMo4-5		64 (440)	4	1		110	5.1	1Cr-0.5Mo	Smls. tube	
EN or SA/EN 10216-2	16Mo3		65.5 (450)	3	1		100	1.1	C-0.5Mo	Smls. tube	
EN or SA/EN 10216-2	P235GH		52 (360)	1	1		100	1.1	С	Smls. tube	
EN or SA/EN 10216-2	P265GH		59.5 (410)	1	1		100	1.1	С	Smls. tube	
EN or SA/EN 10216-2	X10CrMoVNb9-1		91.5 (630)	15E	1		110	6.4	9Cr-1Mo-V	Smls. tube	
EN or SA/EN 10217–1	P235TR2		52 (360)	1	1		100	1.1	С	E.R.W. tube	یک دو سه صنعت

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

	Design stien To		Minimum Specified	Wel	ding	Br	azing	100 15(00		
Spec. No.	Designation, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	P-No.	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
							rous (Con	•	I	
EN or SA/EN 10222-2	11CrMo9-10		65.5 (450)	5A	1	102	110	5.2	2.25Cr-1Mo	Forgings > 8 in. (200 mm) ≤ 20 in. (500 mm)
EN or SA/EN 10222-2	11CrMo9-10		75.5 (520)	5A	1	102	110	5.2	2.25Cr-1Mo	Forgings ≤ 8 in. (200 mm)
EN or SA/EN 10222-2	13CrMo4-5		61 (420)	4	1	102	110	5.1	1Cr-0.5Mo	Forgings > 10 in. (250 mm) ≤ 20 in. (500 mm)
EN or SA/EN 10222-2	13CrMo4-5		64 (440)	4	1	102	110	5.1	1Cr-0.5Mo	Forgings ≤ 10 in. (250 mm)
EN or SA/EN 10222-2	P280GH		66.5 (460)	1	1	101	100	1.2	C-Mn-Si	Forgings
EN or SA/EN 10222-2	P305GH		71 (490)	1	2	101	100	1.2	C-Mn-Si	Forgings
EN or SA/EN 10222-2	X10CrMoVNb9-1		91.5 (630)	15E	1	102	110	6.4	9Cr-1Mo-V	Forgings
MSS SP-75	WPHY-42		60 (415)	1	1	101	120	11.1	C-Mn	Smls. & welded fittings
MSS SP-75	WPHY-46		63 (435)	1	1	101	120	11.1	C-Mn	Smls. & welded fittings
MSS SP-75	WPHY-52		66 (455)	1	1	101	120	11.1	C-Mn	Smls. & welded fittings
MSS SP-75	WPHY-56		71 (490)	1	2	101	120	11.1	C-Mn	Smls. & welded fittings
MSS SP-75	WPHY-60		75 (515)	1	2	101	120	11.1	C-Mn	Smls. & welded fittings
MSS SP-75	WPHY-65		77 (530)	1	2	101	120	11.1	C-Mn	Smls. & welded fittings
MSS SP-75	WPHY-70		82 (565)	1	3	101	120		C-Mn	Smls. & welded fittings
SA/AS 1548	PT430		62.5 (430)	1	1	101	100	1.1	С	Plate
SA/AS 1548	PT460		66.5 (460)	1	1	101	100	1.1	С	Plate
SA/AS 1548	PT490		71 (490)	1	2	101	100	1.2	С	Plate
SA/CSA-G40.21	38W		60 (415)	1	1	101	100	1.1	C–Mn–Si	Plate, bar & shapes
SA/CSA-G40.21	44W		65 (450)	1	1	101	100	1.2	C–Mn–Si	Plate, bar & shapes
SA/CSA-G40.21	50W		65 (450)	1	1	101	100	1.2	C–Mn–Si	Plate, bar & shapes
SA/GB 713	15CrMoR		64 (440)	4	1	101	110	5.1	1Cr-0.5Mo	Plate > 4 in. (100 mm) ≤ 6 in. (150 mm
SA/GB 713	15CrMoR		65 (450)	4	1	101	110	5.1	1Cr-0.5Mo	Plate > 0.25 in. (6 mm) \leq 4 in. (100 mm)
SA/GB 713	Q345R		68 (470)	1	1	101	100	1.1	C-Mn	Plate > 6 in. (150 mm) \leq 10 in. (250 mm)
SA/GB 713	Q345R		69.5 (480)	1	1	101	100	1.2	C–Mn	$Plate > 4$ in. (100 mm) ≤ 6 in. (150 mm)

			Minimum	We	lding	Bra	azing			
Spec. No.	Designation, Type, or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
						Fer	rous (Con	ťd)		
SA/GB 713	Q345R		71 (490)	1	2	101	100	1.2	C-Mn	Plate > 1.5 in. (36 mm) ≤ 4 in. (100 mm)
SA/GB 713	Q345R		72.5 (500)	1	2	101	100	1.2	C-Mn	Plate > 0.65 in. (16 mm) ≤ 1.5 in. (36 mm)
SA/GB 713	Q345R		74 (510)	1	2	101	100	1.2	C-Mn	Plate > 0.125 in. (3 mm) ≤ 0.65 in (16 mm)
SA/GB 713	Q370R		75.5 (520)	1	2	101	100	1.2	С	Plate > 1.4 in. (36 mm) ≤ 2.4 in. (60 mm)
SA/GB 713	Q370R		77 (530)	1	2	101	100	1.2	С	Plate > 0.65 in. (16 mm) ≤ 1.4 in. (36 mm)
SA/GB 713	Q370R		77 (530)	1	2	101	100	1.3	C	Plate > 0.375 in. (10 mm) ≤ 0.65 i (16 mm)
SA/IS 2062	E250 A		59.5 (410)	1	1	101	100	1.1	C-Mn-Si	Plate, bars & shapes
SA/IS 2062	E250 B		59.5 (410)	1	1	101	100	1.1	C–Mn–Si	Plate, bars & shapes
SA/IS 2062	E250 C		59.5 (410)	1	1	101	100	1.1	C-Mn-Si	Plate, bars & shapes
SA/JIS G3118	SGV480		70 (485)	1	2	101	100	1.2	C-Mn-Si	Plate
SA/JIS G4303	SUS 302	S30200	75 (515)	8	1	102	130	8.1	18Cr-8Ni	Bars & shapes
SA/JIS G4303	SUS 304	S30400	75 (515)	8	1	102	130	8.1	18Cr–8Ni	Bars & shapes
SA/JIS G4303	SUS 304L	S30403	70 (485)	8	1	102	130	8.1	18Cr–8Ni	Bars & shapes
SA/JIS G4303	SUS 309S	S30908	75 (515)	8	2	102	130	8.2	23Cr-12Ni	Bars & shapes
SA/JIS G4303	SUS 310S	S31008	75 (515)	8	2	102	130	8.2	25Cr-20Ni	Bars & shapes
SA/JIS G4303	SUS 316	S31600	75 (515)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Bars & shapes
SA/JIS G4303	SUS 316L	S31603	70 (485)	8	1	102	130	8.1	16Cr-12Ni-2Mo	Bars & shapes
SA/JIS G4303	SUS 321	S32100	75 (515)	8	1	102	140	8.1	18Cr-10Ni-Ti	Bars & shapes
SA/JIS G4303	SUS 347	S34700	75 (515)	8	1	102	130	8.1	18Cr-10Ni-Cb	Bars & shapes
SA/JIS G4303	SUS 405	S40500	60 (415)	7	1	102	160	7.1	12Cr–Al	Bars & shapes
SA/NF A 36–215	P440 NJ4		91.5 (630)	10A	1	101	100	4.1	Mn-0.5Ni-V	Plate

Table QW/QB-422

ASME BPVC.IX-2019

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

			Group		ous an		errous F	2 P-Numbers Ilification (Cont'd)	
	Alloy, Type,		Minimum Specified Tensile, ksi	Weld- ing		azing AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form
A/SA-182	F58	S31266	109 (750)	45	102	Nonfe 420	8.2	24Cr-22Ni-6Mo-3Mn-Cu-W-N	Forgings
	150								0.0
A/SA-240		S31266	109 (750)	45	102	420	8.2	24Cr-22Ni-6Mo-3Mn-Cu-W-N	Plate, sheet & strip
A/SA-240		S31277	112 (770)	45	111	420	8.2	27Ni-22Cr-7Mo-Mn-Cu	Plate, sheet & strip
A/SA-351	CN3MN	J94651	80 (550)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Castings
A/SA-351	CN7M	N08007	62 (425)	45	111	420	8.2	28Ni-19Cr-Cu-Mo	Castings
, A/SA-351	CT15C	N08151	63 (435)	45	111	420	45	32Ni-45Fe-20Cr-Cb	Castings
A/SA-351	HT30	N08603	65 (450)	45	111	420	45	35Ni-15Cr-0.5Mo	Castings
A/SA-358		S31266	109 (750)	45	102	420	8.2	24Cr-22Ni-6Mo-3Mn-Cu-W-N	Fusion welded pipe
A/SA-494	M35-2	N04020	65 (450)	42	110	400	42	67Ni-30Cu-Fe-Si	Castings
A/SA-494	CY40	N06040	70 (485)	43	111	420	43	72Ni-15Cr-8Fe-Si	Castings
A/SA-494	CU5MCuC	N08826	75 (515)	45	111	420	45	42Ni-21.5Cr-3Mo-2.3Cu	Castings
A/SA-494	M30C	N24130	65 (450)	42	110	400	42	67Ni-30Cu-2Fe-Cb	Castings
A/SA-494	M35-1	N24135	65 (450)	42	110	400	42	67Ni-30Cu-2Fe-Cb	Castings
A/SA-494	CX2MW	N26022	80 (550)	43	111	420	44	59Ni-22Cr-14Mo-4Fe-3W	Castings
A/SA-494	CW2M	N26455	72 (495)	43	111	420	43	66Ni-16Mo-16Cr-Fe-W	Castings
, A/SA-494	CW6MC	N26625	70 (485)	43	111	420	43	60Ni-21.5Cr-9Mo-4Cb-Fe	Castings
A/SA-494	N7M	N30007	76 (525)	44	112	410	44	65Ni-31.5Mo-1.5Fe-Cr	Castings
A/SA-494	CW6M	N30107	72 (495)	44	112	420	44	56Ni-19Mo-18Cr-2Fe	Castings
B16		C36000	40 (275)		107	320	NA	65Cu-Zn-3Pb	Bar > 1 in. (25 mm)
B16		C36000	44 (305)		107	320	NA	65Cu–Zn–3Pb	Bar ≤ 1 in. (25 mm)
B16		C36000	40 (275)		107	320	NA	65Cu–Zn–3Pb	Rod > 2 in. (51 mm)
B16		C36000	44 (305)		107	320	NA	65Cu–Zn–3Pb	Rod > 1 in2 in. (25 mm-51 mm), incl.
B16		C36000	48 (330)		107	320	NA	65Cu-Zn-3Pb	$Rod \le 1$ in. (25 mm)
B16.18		C83600	30 (205)		107	320	NA	5Sn-5Zn-5Pb	Cast fittings
B16.18		C83800	30 (205)		107	320	NA	4Sn-6.5Zn-6Pb	Cast fittings
B16.18		C84400	29 (200)		107	320	NA	2.5Sn-8.5Zn-7Pb	Cast fittings
B16.22		C10200	30 (205)		107	300	NA	99.95Cu-P	Wrought piping fittings
B16.22		C12000	30 (205)		107	300	NA	99.9Cu-P	Wrought piping fittings
B16.22		C12200	30 (205)		107	300	NA	99.9Cu-P	Wrought piping fittings
B16.22		C23000	40 (275)		107	300	NA	85Cu-15Zn	Wrought piping fittings
B16.50		C10200	30 (205)		107	300	NA	99.95Cu-P	Wrought piping fittings
B16.50		C12000	30 (205)		107	300	NA	99.9Cu-P	Wrought piping fittings

یک دو سه صنعت 123sanat.com

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

6 N	Alloy, Type,		Minimum Specified Tensile, ksi	Weld- ing		zing AWS	ISO 15608	N . 10		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.		B2.2 BM	Group s (Cont'd	Nominal Composition	Typical Product Form	
B16.50		C12200	30 (205)		107	300	NA	99.9Cu-P	Wrought piping fittings	
B16.50		C23000	40 (275)		107	300	NA	85Cu-15Zn	Wrought piping fittings	
B/SB-26	Т6	A03560	30 (205)	26		210	24.2	Al-Si-Mg	Castings	
B/SB-26	T71	A03560	25 (170)	26		210	24.2	Al–Si–Mg	Castings	
B/SB-26		A24430	17 (115)	26		210	24.1	Al–Si	Castings	
B/SB-42		C10200	30 (205)	31	107	300	31	99.95Cu-P	Smls. pipe	
B/SB-42		C12000	30 (205)	31	107	300	31	99.9Cu-P	Smls. pipe	
B/SB-42		C12200	30 (205)	31	107	300	31	99.9Cu-P	Smls. pipe	Α
B/SB-43		C23000	40 (275)	32	107	300	32.1	85Cu-15Zn	Smls. pipe	SME
B/SB-61		C92200	30 (205)		107	320	NA	88Cu-Sn-Zn-Pb	Castings	BPV
B/SB-62		C83600	30 (205)		107	320	NA	85Cu-5Sn-5Zn-5Pb	Castings	ASME BPVC.IX-2019
B68		C10200	30 (205)	31	107	300	31	99.95Cu-P	Tube	-20
B68		C12000	30 (205)	31	107	300	31	99.9Cu-P	Tube	19
B68		C12200	30 (205)	31	107	300	31	99.9Cu-P	Tube	
B/SB-75		C10200	30 (205)	31	107	300	31	99.95Cu-P	Smls. tube	
B/SB-75		C12000	30 (205)	31	107	300	31	99.9Cu-P	Smls. tube	
B/SB-75		C12200	30 (205)	31	107	300	31	99.9Cu-P	Smls. tube	
B88		C10200	30 (205)	31	107	300	31	99.95Cu-P	Tube	
B88		C12000	30 (205)	31	107	300	31	99.9Cu-P	Tube	
B88		C12200	30 (205)	31	107	300	31	99.9Cu-P	Tube	
B/SB-96		C65500	50 (345)	33	107	330	37	97Cu-3Si	Plate, sheet, strip & bar	
B/SB-98		C65100	40 (275)	33	107	330	37	98.5Cu-1.5Si	Rod, bar & shapes	
B/SB-98		C65500	52 (360)	33	107	330	37	97Cu-3Si	Rod, bar & shapes	
B/SB-98		C66100	52 (360)	33	107	330	37	94Cu-3Si	Rod, bar & shapes	
B/SB-111		C10200	30 (205)	31	107	300	31	99.95Cu-P	Smls. tube	
B/SB-111		C12000	30 (205)	31	107	300	31	99.9Cu-P	Smls. tube	
B/SB-111		C12200	30 (205)	31	107	300	31	99.9Cu-P	Smls. tube	
B/SB-111		C14200	30 (205)	31	107	300	31	99.4Cu-As-P	Smls. tube	
B/SB-111		C19200	38 (260)	31	107	300	31	99.7Cu-Fe-P	Smls. tube	
B/SB-111		C23000	40 (275)	32	107	300	32.1	85Cu-15Zn	Smls. tube	ک دو سه صنعت

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

			Group		us an	d Nonfe		2 P-Numbers Ilification (Cont'd)	
	Alloy, Type,		Minimum Specified Tensile, ksi	Weld- ing	Bra	azing AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form
					1	Nonferrou	s (Cont'd)	1	
B/SB-111		C28000	50 (345)	32	107	300	32.1	60Cu-40Zn	Smls. tube
B/SB-111		C44300	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06As	Smls. tube
B/SB-111		C44400	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06Sb	Smls. tube
B/SB-111		C44500	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06P	Smls. tube
B/SB-111		C60800	50 (345)	35	108	360	35	95Cu-5Al	Smls. tube
B/SB-111		C68700	50 (345)	32	108	350	32.2	78Cu-20Zn-2Al	Smls. tube
B/SB-111		C70400	38 (260)	34	107	300	34	95Cu-5Ni	Smls. tube
B/SB-111		C70600	40 (275)	34	107	300	34	90Cu-10Ni	Smls. tube
B/SB-111		C70620	40 (275)	34	107	300	34	90Cu-10Ni	Smls. tube
B/SB-111		C71000	45 (310)	34	107	300	34	80Cu-20Ni	Smls. tube
B/SB-111		C71500	52 (360)	34	107	300	34	70Cu-30Ni	Smls. tube
B/SB-111		C71520	52 (360)	34	107	300	34	70Cu-30Ni	Smls. tube
B/SB-111		C72200	45 (310)	34	107	300	34	80Cu-16Ni-0.75Fe-0.5Cr	Smls. tube
B/SB-127		N04400	70 (485)	42	110	400	42	67Ni-30Cu	Plate, sheet & strip
B/SB-135		C23000	40 (275)	32	107	300	32.1	85Cu-15Zn	Smls. tube
B/SB-148		C95200	65 (450)	35	108	360	35	88Cu-9Al-3Fe	Castings
B/SB-148		C95300	65 (450)	35	108	360	35	89Cu-10Al-1Fe	Castings
B/SB-148		C95400	75 (515)	35	108	360	35	85Cu-11Al-4Fe	Castings
B/SB-148		C95500	90 (620)	35	108	360	35	82Cu-11Al-4Fe-3Mn	Castings
B/SB-148		C95600	60 (415)	35	108	360	35	90Cu-7Al-3Si	Castings
B/SB-148		C95800	85 (585)	35	108	360	35	81Cu-9Al-5Ni-4Fe-1Mn	Castings
B/SB-148		C95820	94 (650)	35	108	360	35	81Cu-9Al-5Ni-5Fe-1Mn	Castings
B/SB-150		C61400	70 (485)	35	108	360	35	90Cu-7Al-3Fe	Rod & bar
B/SB-150		C62300	75 (515)	35	108	360	35	88Cu-9Al-3Fe	Rod (round)
B/SB-150		C63000	85 (585)	35	108	360	35	81Cu-10Al-5Ni-3Fe	Rod & bar
B/SB-150		C64200	70 (485)	35	108	360	35	91Cu-7Al-2Si	Rod & bar
B/SB-151		C70600	38 (260)	34	107	300	34	90Cu-10Ni	Rod & bar
B/SB-151		C70620	38 (260)	34	107	300	34	90Cu-10Ni	Rod & bar
B/SB-152		C10200	30 (205)	31	107	300	31	99.95Cu-P	Plate, sheet, strip & bar
B/SB-152		C10400	30 (205)	31	107	300	31	99.95Cu + Ag	Plate, sheet, strip & bar
B/SB-152		C10500	30 (205)	31	107	300	31	99.95Cu + Ag	Plate, sheet, strip & bar
B/SB-152		C10700	30 (205)	31	107	300	31	99.95Cu + Ag	Plate, sheet, strip & bar
B/SB-152		C11000	30 (205)	31	107	300	31	99.90Cu	Plate, sheet, strip & bar

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

			Minimum Specified	Weld- ing	Bra	azing	ISO		
Spec. No.	Alloy, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	P-No.	AWS B2.2 BM	15608 Group	Nominal Composition	Typical Product Form
<u>-</u>			()			Vonferrou	-		- , , ,
B/SB-152		C12200	30 (205)	31	107	300	31	99.9Cu-P	Plate, sheet, strip & bar
B/SB-152		C12300	30 (205)	31	107	300	31	99.9Cu-P	Plate, sheet, strip & bar
B/SB-152		C14200	30 (205)	31	107	300	31	99.4Cu-As-P	Plate, sheet, strip & bar
B/SB-160		N02200	55 (380)	41	110	400	41	99.0Ni	Rod & bar
B/SB-160		N02201	50 (345)	41	110	400	41	99.0Ni-Low C	Rod & bar
B/SB-161		N02200	55 (380)	41	110	400	41	99.0Ni	Smls. pipe & tube
B/SB-161		N02201	50 (345)	41	110	400	41	99.0Ni-Low C	Smls. pipe & tube
B/SB-162		N02200	55 (380)	41	110	400	41	99.0Ni	Plate, sheet & strip
B/SB-162		N02201	50 (345)	41	110	400	41	99.0Ni-Low C	Plate, sheet & strip
B/SB-163		N02200	55 (380)	41	110	400	41	99.0Ni	Smls. tube
B/SB-163		N02201	50 (345)	41	110	400	41	99.0Ni-Low C	Smls. tube
B/SB-163		N04400	70 (485)	42	110	400	42	67Ni-30Cu	Smls. tube
B/SB-163		N06025	98 (675)	43	111	420	43	63Ni-25Cr-10Fe-2Al-Ti-Y-Zr	Smls. tube
B/SB-163		N06600	80 (550)	43	111	420	43	72Ni-15Cr-8Fe	Smls. tube
B/SB-163		N06601	80 (550)	43	111	420	43	60Ni–23Cr–12Fe–Al	Smls. tube
B/SB-163		N06690	85 (585)	43	111	420	43	58Ni-29Cr-9Fe	Smls. tube
B/SB-163		N08120	90 (620)	45	111	430	45	37Ni-33Fe-25Cr	Smls. tube
B/SB-163		N08800	75 (515)	45	111	430	45	33Ni-42Fe-21Cr	Smls. tube
B/SB-163		N08801	65 (450)	45	111	430	45	32Ni-45Fe-20.5Cr-Ti	Smls. tube
B/SB-163		N08810	65 (450)	45	111	430	45	33Ni-42Fe-21Cr	Smls. tube
B/SB-163		N08811	65 (450)	45	111	430	45	33Ni-42Fe-21Cr-Al-Ti	Smls. tube
B/SB-163		N08825	85 (585)	45	111	430	45	42Ni-21.5Cr-3Mo-2.3Cu	Smls. tube
B/SB-164		N04400	70 (485)	42	110	400	42	67Ni-30Cu	Rod, bar & wire
B/SB-164		N04405	70 (485)	42	110	400	42	67Ni-30Cu	Rod, bar & wire
B/SB-165		N04400	70 (485)	42	110	400	42	67Ni-30Cu	Smls. pipe & tube
B/SB-166		N06025	98 (675)	43	111	420	43	63Ni–25Cr–10Fe–2Al–Ti–Y–Zr	Rod, bar & wire
B/SB-166		N06045	90 (620)	46	111	420	45	46Ni-27Cr-23Fe-2.75Si	Rod, bar & wire
B/SB-166		N06600	80 (550)	43	111	420	43	72Ni–15Cr–8Fe	Rod, bar & wire
B/SB-166		N06601	80 (550)	43	111	420	43	60Ni–23Cr–12Fe–Al	Rod, bar & wire
B/SB-166		N06617	95 (655)	43	111	420	46	52Ni-22Cr-13Co-9Mo	Rod, bar & wire
B/SB-166		N06690	85 (585)	43	111	420	43	58Ni-29Cr-9Fe	Rod, bar & wire
B/SB-167		N06025	98 (675)	43	111	420	43	63Ni-25Cr-10Fe-2Al-Ti-Y-Zr	Smls. pipe & tube

			Group		ous an		errous I	2 2-Numbers Ilification (Cont'd)	
Spec. No.	Alloy, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	Weld- ing P-No.		azing AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
-						Nonferrou	s (Cont'd)		
B/SB-167 B/SB-167		N06045 N06600	90 (620) 75 (515)	46 43	111 111	420 420	45 43	46Ni–27Cr–23Fe–2.75Si 72Ni–15Cr–8Fe	Smls. pipe & tube Smls. pipe & tube
B/SB-167 B/SB-167 B/SB-167		N06601 N06617 N06690	80 (550) 95 (655) 75 (515)	43 43 43	111 111 111	420 420 420	43 46 43	60Ni-23Cr-12Fe-Al 52Ni-22Cr-13Co-9Mo 58Ni-29Cr-9Fe	Smls. pipe & tube Smls. pipe & tube Smls. pipe & tube
B/SB-168 B/SB-168		N06025 N06045	98 (675) 90 (620)	43 46	111 111	420 420	43 45	63Ni-25Cr-10Fe-2Al-Ti-Y-Zr 46Ni-27Cr-23Fe-2.75Si	Plate, sheet & strip Plate, sheet & strip
B/SB-168 B/SB-168		N06600 N06601	80 (550) 80 (550)	43 43	111 111 111	420 420	43 43	72Ni–15Cr–8Fe 60Ni–23Cr–12Fe–Al	Plate, sheet & strip Plate, sheet & strip
B/SB-168 B/SB-168		N06617 N06690	95 (655) 85 (585)	43 43	111 111	420 420	46 43	52Ni-22Cr-13Co-9Mo 58Ni-29Cr-9Fe	Plate, sheet & strip Plate, sheet & strip
B/SB-169		C61400	65 (450)	35	108	360	35	90Cu-7Al-3Fe	Plate, sheet, strip & bar > 2 in.–5 in. (51 mm– 127 mm) incl.
B/SB-169		C61400	70 (485)	35	108	360	35	90Cu-7Al-3Fe	Plate, sheet, strip & bar > $\frac{1}{2}$ in2 in. (13 mm- 51 mm) incl.
B/SB-169 B/SB-171		C61400 C36500	72 (495) 40 (275)	35 32	108 107	360 310	35 32.2	90Cu-7Al-3Fe 60Cu-39Zn-Pb	Plate, sheet, strip & bar ≤ ½ in. (13 mm) Plate & sheet
B/SB-171 B/SB-171 B/SB-171	 	C44300 C44400	45 (310) 45 (310)	32 32 32	107 107 107	300 300	32.2 32.2 32.2	71Cu-28Zn-1Sn-0.06As 71Cu-28Zn-1Sn-0.06Sb	Plate & sheet Plate & sheet
B/SB-171 B/SB-171		C44500 C46400	45 (310) 50 (345)	32 32	107 107	300 300	32.2 32.2	71Cu-28Zn-1Sn-0.06P 60Cu-39Zn-Sn	Plate & sheet Plate & sheet
B/SB-171 B/SB-171		C46500 C61400	50 (345) 65 (450)	32 35	107 108	300 360	32.2 35	60Cu-39Zn-As 90Cu-7Al-3Fe	Plate & sheet Plate & sheet > 2 in.–5 in. (51 mm–127 mm) incl.
B/SB-171 B/SB-171		C61400 C63000	70 (485) 80 (550)	35 35	108 108	360 360	35 35	90Cu-7Al-3Fe 81Cu-10Al-5Ni-3Fe	Plate & sheet ≤ 2 in. (51 mm) Plate & sheet > 3½ in5 in. (89 mm-127 mm), incl.
B/SB-171		C63000	85 (585)	35	108	360	35	81Cu-10Al-5Ni-3Fe	Plate & sheet > 2 in3.5 in. (51 mm-89 mm), incl.
B/SB-171 B/SB-171		C63000 C70600	90 (620) 40 (275)	35 34	108 107	360 300	35 34	81Cu-10Al-5Ni-3Fe 90Cu-10Ni	Plate & sheet ≤ 2 in. (51 mm) Plate & sheet
B/SB-171 B/SB-171		C70620 C71500	40 (275) 45 (310)	34 34	107 107	300 300	34 34	90Cu-10Ni 70Cu-30Ni	Plate & sheet Plate & sheet > 2.5 in.–5 in. (64 mm–127 mm), incl.
B/SB-171		C71500	50 (345)	34	107	300	34	70Cu-30Ni	Plate & sheet ≤ 2.5 in. (64 mm)

		Group		us and Nor		
		Minimum Specified	Weld- ing	Brazing	ISO	
pe, le	UNS No.	Tensile, ksi (MPa)	P-No.	AWS P-No. B2.2 B	-	Nominal Composition

			specifieu	IIIg		azing	130		
	Alloy, Type,		Tensile, ksi			AWS	15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.		B2.2 BM	Group	Nominal Composition	Typical Product Form
		054500	15 (010)			Nonferrou			
B/SB-171		C71520	45 (310)	34	107	300	34	70Cu-30Ni	Plate & sheet > 2.5 in.–5 in. (64 mm–127 mm) incl.
B/SB-171		C71520	50 (345)	34	107	300	34	70Cu-30Ni	Plate & sheet ≤ 2.5 in. (64 mm)
B/SB-187	060	C10200	28 (195)	31	107	300	31	99.95Cu-P	Rod & bar
B/SB-187	060	C11000	28 (195)	31	107	300	31	99.9Cu	Rod & bar
B/SB-209	Alclad 3003		13 (90)	21	104	200		Al-Mn-Cu	Plate & sheet > 0.05 in. (1.3 mm) < 0.5 in. (13 mm)
B/SB-209	Alclad 3003		14 (97)	21	104	200		Al-Mn-Cu	Plate & sheet \geq 0.5 in3 in. (13 mm-76 mm), incl.
B/SB-209	Alclad 3004		21 (145)	22	104	220		Al-Mn-Mg	Plate & sheet > 0.05 in. (1.3 mm) < 0.5 in. (13 mm)
B/SB-209	Alclad 3004		22 (150)	22	104	220		Al-Mn-Mg	Plate & sheet \ge 0.5 in3 in. (13 mm-76 mm), incl.
B/SB-209	Alclad 6061		24 (165)	23	105	200		Al-Mg-Si-Cu	Plate & sheet
B/SB-209	1060	A91060	8 (55)	21	104	200	21	99.60Al	Plate & sheet
B/SB-209	1100	A91100	11 (76)	21	104	200	21	99.0Al-Cu	Plate & sheet
B/SB-209	3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu	Plate & sheet
B/SB-209	3004	A93004	22 (150)	22	104	220	22.2	Al-Mn-Mg	Plate & sheet
B/SB-209	5050	A95050	18 (125)	21	105	220	22.2	Al-1.5Mg	Plate & sheet
B/SB-209	5052	A95052	25 (170)	22	105	220	22.3	Al-2.5Mg	Plate & sheet
B/SB-209	5083	A95083	36 (250)	25	105	220	22.4	Al-4.4Mg-Mn	Plate & sheet > 7 in8 in. (178 mm-203 mm), incl.
B/SB-209	5083	A95083	37 (255)	25	105	220	22.4	Al-4.4Mg-Mn	Plate & sheet > 5 in7 in. (127 mm-178 mm), incl.
B/SB-209	5083	A95083	38 (260)	25	105	220	22.4	Al-4.4Mg-Mn	Plate & sheet > 3 in.–5 in. (76 mm–127 mm), incl.
B/SB-209	5083	A95083	39 (270)	25	105	220	22.4	Al-4.4Mg-Mn	Plate & sheet > 1.5 in.–3 in. (38 mm–76 mm), incl.
B/SB-209	5083	A95083	40 (275)	25	105	220	22.4	Al-4.4Mg-Mn	Plate & sheet > 0.05 in.–1.5 in. (1.3 mm– 38 mm), incl.
B/SB-209	5086	A95086	35 (240)	25	105	220	22.4	Al-4.0Mg-Mn	Plate & sheet
B/SB-209	5154	A95154	30 (205)	22	105	220	22.4	Al-3.5Mg	Plate & sheet
B/SB-209	5254	A95254	30 (205)	22	105	220	22.4	Al-3.5Mg	Plate & sheet
B/SB-209	5454	A95454	31 (215)	22	105	220	22.3	Al-2.7Mg-Mn	Plate & sheet
B/SB-209	5456	A95456	38 (260)	25	105	220	22.4	Al-5.1Mg-Mn	Plate & sheet > 7 in.–8 in. (178 mm–203 mm), incl.

			Group	bing of	Dase	metals	IOF Qua	lification (Cont'd)	
			Minimum Specified	Weld- ing	Bra	azing	ISO		
Spec. No.	Alloy, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	P-No	AWS B2.2 BM	15608 Group	Nominal Composition	Typical Product Form
spec. No.	of draue	0113 110.	(Mra)	r-no.		Nonferrou		•	
B/SB-209	5456	A95456	39 (270)	25	105	220	22.4	Al-5.1Mg-Mn	Plate & sheet > 5 in7 in. (127 mm-178 mm incl.
B/SB-209	5456	A95456	40 (275)	25	105	220	22.4	Al-5.1Mg-Mn	Plate & sheet > 3 in5 in. (76 mm-127 mm) incl.
B/SB-209	5456	A95456	41 (285)	25	105	220	22.4	Al-5.1Mg-Mn	Plate & sheet > 1.5 in3 in. (38 mm-76 mm) incl.
B/SB-209	5456	A95456	42 (290)	25	105	220	22.4	Al-5.1Mg-Mn	Plate & sheet > 0.05 in.–1.5 in. (1.3 mm– 38 mm), incl.
B/SB-209	5652	A95652	25 (170)	22	105	220	22.3	Al-2.5Mg	Plate & sheet
B/SB-209	6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu	Plate & sheet
B/SB-210	Alclad 3003		13 (90)	21	104	200		Al-Mn-Cu	Smls. tube
B/SB-210	1060	A91060	8.5 (59)	21	104	200	21	99.60Al	Smls. tube
B/SB-210	3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu	Smls. tube
B/SB-210	5052	A95052	25 (170)	22	105	220	22.3	Al-2.5Mg	Smls. tube
B/SB-210	5083	A95083	39 (270)	25	105	220	22.4	Al-4.4Mg-Mn	Smls. tube
B/SB-210	5086	A95086	35 (240)	25	105	220	22.4	Al-4.0Mg-Mn	Smls. tube
B/SB-210	5154	A95154	30 (205)	22	105	220	22.4	Al-3.5Mg	Smls. tube
B/SB-210	5456	A95456	41 (285)	25	105	220	22.4	Al-5.1Mg-Mn	Smls. tube
B/SB-210	6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu	Smls. tube
B/SB-210	6063	A96063	17 (115)	23	105	210	23.1	Al-Mg-Si	Smls. tube
B/SB-211	6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu	Bar, rod & wire
B/SB-221	1060	A91060	8.5 (59)	21	104	200	21	99.60Al	Bar, rod & shapes
B/SB-221	1100	A91100	11 (76)	21	104	200	21	99.0Al-Cu	Bar, rod & shapes
B/SB-221	3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu	Bar, rod & shapes
B/SB-221	5083	A95083	39 (270)	25	105	220	22.4	Al-4.4Mg-Mn	Bar, rod & shapes
B/SB-221	5154	A95154	30 (205)	22	105	220	22.4	Al-3.5Mg	Bar, rod & shapes
B/SB-221	5454	A95454	31 (215)	22	105	220	22.3	Al-2.7Mg-Mn	Bar, rod & shapes
B/SB-221	5456	A95456	41 (285)	25	105	220	22.4	Al–5.1Mg–Mn	Bar, rod & shapes
B/SB-221	6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu	Bar, rod & shapes
B/SB-221	6063	A96063	17 (115)	23	105	210	23.1	Al-Mg-Si	Bar, rod & shapes
B/SB-234	Alclad 3003		13 (90)	21	104	200		Al-Mn-Cu	Smls. tube
B/SB-234	1060	A91060	8.5 (59)	21	104	200	21	99.60Al	Smls. tube

Table QW/QB-422 Ferrous and Nonferrous P-Numbers

Create No.	Alloy, Type,	UNC N-	Minimum Specified Tensile, ksi	Weld- ing		zing AWS	ISO 15608	Naminal Canadation	Turi el Duchest Dour
Spec. No.	or Grade	UNS No.	(MPa)	P-No.		B2.2 BM	Group s (Cont'd)	Nominal Composition	Typical Product Form
B/SB-234	3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu	Smls. tube
B/SB-234 B/SB-234	5052	A95052	25 (170)	21	104	200	22.1	Al-2.5Mg	Smls. tube
B/SB-234 B/SB-234	5454	A95052 A95454	31 (215)	22	105	220	22.3	Al-2.7Mg-Mn	Smls. tube
B/SB-234 B/SB-234	6061	A96061	24 (165)	22	105	220	22.3	Al-Mg-Si-Cu	Smls. tube
								C	
B/SB-241	Alclad 3003		13 (90)	21	104	200		Al-Mn-Cu	Smls. pipe & tube
B/SB-241	1060	A91060	8.5 (59)	21	104	200	21	99.60Al	Smls. pipe & tube
B/SB-241	1100	A91100	11 (76)	21	104	200	21	99.0Al-Cu	Smls. pipe & tube
B/SB-241	3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu	Smls. pipe & tube
B/SB-241	5052	A95052	25 (170)	22	105	220	22.3	Al-2.5Mg	Smls. pipe & tube
B/SB-241	5083	A95083	39 (270)	25	105	220	22.4	Al-4.4Mg-Mn	Smls. pipe & tube
B/SB-241	5086	A95086	35 (240)	25	105	220	22.4	Al-4.0Mg-Mn	Smls. pipe & tube
B/SB-241	5454	A95454	31 (215)	22	105	220	22.3	Al-2.7Mg-Mn	Smls. pipe & tube
B/SB-241	5456	A95456	41 (285)	25	105	220	22.4	Al–5.1Mg–Mn	Smls. pipe & tube
B/SB-241	6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu	Smls. pipe & tube
B/SB-241	6063	A96063	17 (115)	23	105	210	23.1	Al-Mg-Si	Smls. pipe & tube
B/SB-247	3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu	Forgings
B/SB-247	5083	A95083	38 (260)	25	105	220	22.4	Al-4.4Mg-Mn	Forgings
B/SB-247	6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu	Forgings
B/SB-265	1	R50250	35 (240)	51	115	500	51.1	Ti	Plate, sheet & strip
B/SB-265	2	R50400	50 (345)	51	115	500	51.2	Ti	Plate, sheet & strip
B/SB-265	2H	R50400	58 (400)	51	115	500	51.2	Ti	Plate, sheet & strip
B/SB-265	3	R50550	65 (450)	52	115	500	51.3	Ti	Plate, sheet & strip
B/SB-265	11	R52250	35 (240)	51	115	500	52	Ti–Pd	Plate, sheet & strip
, B/SB-265	17	R52252	35 (240)	51		500	51.1	Ti–Pd	Plate, sheet & strip
B/SB-265	27	R52254	35 (240)	51	115	500	51.1	Ti–Ru	Plate, sheet & strip
B/SB-265	7	R52400	50 (345)	51	115	500	52	Ti–Pd	Plate, sheet & strip
B/SB-265	7H	R52400	58 (400)	51	115	500	52	Ti–Pd	Plate, sheet & strip
B/SB-265	16	R52402	50 (345)	51	115	500	51.2	Ti–Pd	Plate, sheet & strip
B/SB-265	16H	R52402	58 (400)	51	115	500	51.2	Ti–Pd	Plate, sheet & strip
B/SB-265	26	R52404	50 (345)	51	115	500	51.2	Ti–Ru	Plate, sheet & strip
B/SB-265	26H	R52404	58 (400)	51	115	500	51.2	Ti–Ru	Plate, sheet & strip
B/SB-265	12	R53400	70 (485)	52	115	500	52	Ti-0.3Mo-0.8Ni	Plate, sheet & strip
B/SB-265	38	R54250	130 (895)	54	115	500	53	Ti-4Al-2.5V-1.5Fe	Plate, sheet & strip
B/SB-265	9	R56320	90 (620)	53	115	500	53	Ti-3Al-2.5V	Plate, sheet & strip
B/SB-265	28	R56323	90 (620)	53	115	500	53	Ti-3Al-2.5V-0.1Ru	Plate, sheet & strip

			Group					P-Numbers Alification (Cont'd)	
Spec. No.	Alloy, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	Weld- ing P-No.		AZING AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form
_				1		Nonferrou	•	•	
B/SB-271		C95200	65 (450)	35	108	360	35	88Cu–9Al–3Fe	Castings
B/SB-271		C95400	75 (515)	35	108	360	35	85Cu–11Al–4Fe	Castings
B280	102	C10200	30 (205)	31	107	300	31	99.95Cu-P	Smls. tube
B280	120	C12000	30 (205)	31	107	300	31	99.9Cu-P	Smls. tube
B280	122	C12200	30 (205)	31	107	300	31	99.9Cu-P	Smls. tube
B/SB-283	Cu	C11000	33 (230)	31	107	300	31	99.9Cu	Forgings
B/SB-283	Forging Brass	C37700	46 (315)		107	320	NA	60Cu-38Zn-2Pb	Forgings > 1.5 in. (38 mm)
B/SB-283	Forging Brass	C37700	50 (345)		107	320	NA	60Cu-38Zn-2Pb	Forgings ≤ 1.5 in. (38 mm)
B/SB-283	Naval Brass	C46400	64 (440)	32	107	300	32.2	60Cu-39Zn-Sn	Forgings
B/SB-283	High Si Bronze	C65500	52 (360)	33	107	330	31	97Cu-3Si	Forgings
B/SB-283	Mn Bronze	C67500	72 (495)	32	107	300	32.2	59Cu-39Zn-Fe-Sn	Forgings
B/SB-283		C70620	40 (275)	34	107	300	34	90Cu-10Ni	Forgings > 6 in. (150 mm)
B/SB-283		C70620	45 (310)	34	107	300	34	90Cu-10Ni	Forgings ≤ 6 in. (150 mm)
B/SB-283		C71520	45 (310)	34	107	300	34	70Cu-30Ni	Forgings > 6 in. (150 mm)
B/SB-283		C71520	50 (345)	34	107	300	34	70Cu-30Ni	Forgings ≤ 6 in. (150 mm)
B302		C12000	30 (205)	31	107	300	31	99.9Cu-P	Pipe
B302		C12200	30 (205)	31	107	300	31	99.9Cu-P	Pipe
B/SB-308	6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu	Shapes
B/SB-315		C65500	50 (345)	33	107	330	33	97Cu-3Si	Smls. pipe & tube
B/SB-333		N10001	100 (690)	44	112	410	44	62Ni-28Mo-5Fe	Plate, sheet & strip ≥ 0.1875 in.–2.5 in. (5 –64 mm), incl.
B/SB-333		N10001	115 (795)	44	112	410	44	62Ni-28Mo-5Fe	Plate, sheet & strip < 0.1875 in. (5 mm)
B/SB-333		N10629	110 (760)	44	112	410	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Plate, sheet & strip
B/SB-333		N10665	110 (760)	44	112	410	44	65Ni-28Mo-2Fe	Plate, sheet & strip
B/SB-333		N10675	110 (760)	44	112	410	44	65Ni-29.5Mo-2Fe-2Cr	Plate, sheet & strip
B/SB-335		N10001	100 (690)	44	112	410	44	62Ni-28Mo-5Fe	Rod > 1.5 in3.5 in. (38 mm-89 mm), inc
B/SB-335		N10001	115 (795)	44	112	410	44	62Ni-28Mo-5Fe	Rod \ge 0.3125 in.–1.5 in. (8 mm–38 mm),
B/SB-335		N10629	110 (760)	44	112	410	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Rod
B/SB-335		N10665	110 (760)	44	112	410	44	65Ni-28Mo-2Fe	Rod
B/SB-335		N10675	110 (760)	44	112	410	44	65Ni-29.5Mo-2Fe-2Cr	Rod
B/SB-338	1	R50250	35 (240)	51	115	500	51.1	Ti	Smls. & welded tube

Table QW/QB-422

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

Spec. No.	Alloy, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	Weld- ing P-No.		AZING AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form	
spec. No.	or Grade	UNS NO.	(MPa)	P-NO.		Nonferrou	•	•		
B/SB-338	2	R50400	50 (345)	51	115	500	51.2	Ti	Smls. & welded tube	
B/SB-338	2H	R50400	58 (400)	51	115	500	51.2	Ti	Smls. & welded tube	
B/SB-338	3	R50550	65 (450)	52	115	500	51.3	Ti	Smls. & welded tube	
B/SB-338	7	R52400	50 (345)	51	115	500	52	Ti–Pd	Smls. & welded tube	
B/SB-338	7H	R52400	58 (400)	51	115	500	52	Ti–Pd	Smls. & welded tube	
B/SB-338	16	R52402	50 (345)	51	115	500	51.2	Ti–Pd	Smls. & welded tube	
B/SB-338	16H	R52402	58 (400)	51	115	500	51.2	Ti–Pd	Smls. & welded tube	
B/SB-338	26	R52404	50 (345)	51	115	500	51.2	Ti–Ru	Smls. & welded tube	
B/SB-338	26H	R52404	58 (400)	51	115	500	51.2	Ti–Ru	Smls. & welded tube	
B/SB-338	12	R53400	70 (485)	52	115	500	52	Ti-0.3Mo-0.8Ni	Smls. & welded tube	AS
B/SB-338	38	R54250	130 (895)	54	115	500	53	Ti-4Al-2.5V-1.5Fe	Smls. & welded tube	M
B/SB-338	9	R56320	90 (620)	53	115	500	53	Ti-3Al-2.5V	Smls. & welded tube	B
B/SB-338	28	R56323	90 (620)	53	115	500	53	Ti-3Al-2.5V-0.1Ru	Smls. & welded tube	PVC
B345	1060	A91060	8.5 (59)	21	104	200	21	99.60Al	Smls. pipe & tube	ASME BPVC.IX-2019
B345	3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu	Smls. pipe & tube	20
B345	5083	A95083	39 (270)	25	105	220	22.4	Al-4.4Mg-Mn	Smls. pipe & tube	19
B345	5086	A95086	35 (240)	25	105	220	22.4	Al-4.0Mg-Mn	Smls. pipe & tube	
B345	6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu	Smls. pipe & tube	
B345	6063	A96063	17 (115)	23	105	210	23.1	Al-Mg-Si	Smls. pipe & tube	
B/SB-348	1	R50250	35 (240)	51	115	500	51.1	Ti	Bars & billets	
B/SB-348	2	R50400	50 (345)	51	115	500	51.2	Ti	Bars & billets	
B/SB-348	2H	R50400	58 (400)	51	115	500	51.2	Ti	Bars & billets	
B/SB-348	3	R50550	65 (450)	52	115	500	51.3	Ti	Bars & billets	
B/SB-348	7	R52400	50 (345)	51	115	500	52	Ti–Pd	Bars & billets	
B/SB-348	7H	R52400	58 (400)	51	115	500	52	Ti–Pd	Bars & billets	
B/SB-348	16	R52402	50 (345)	51	115	500	51.2	Ti–Pd	Bars & billets	
B/SB-348	16H	R52402	58 (400)	51	115	500	51.2	Ti–Pd	Bars & billets	
B/SB-348	26	R52404	50 (345)	51	115	500	51.2	Ti–Ru	Bars & billets	
B/SB-348	26H	R52404	58 (400)	51	115	500	51.2	Ti–Ru	Bars & billets	
B/SB-348	12	R53400	70 (485)	52	115	500	52	Ti-0.3Mo-0.8Ni	Bars & billets	
B/SB-348	38	R54250	130 (895)	54	115	500	53	Ti-4Al-2.5V-1.5Fe	Bars & billets	
B/SB-348	9	R56320	90 (620)	53	115	500	53	Ti-3Al-2.5V	Bars & billets	
B/SB-348	28	R56323	90 (620)	53	115	500	53	Ti-3Al-2.5V-0.1Ru	Bars & billets	
B/SB-359		C12200	30 (205)	31	107	300	31	99.9Cu-P	Smls. tube	
B/SB-359		C44300	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06As	Smls. tube	ک دو سه صنعت

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

****.***.*.*.	Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)													
	Alloy, Type,		Minimum Specified Tensile, ksi	Weld- ing	Bra	azing	ISO 15608							
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	P-No.	AWS B2.2 BM	Group	Nominal Composition	Typical Product Form					
-						Nonferrou	s (Cont'd)							
B/SB-359		C44400	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06Sb	Smls. tube					
B/SB-359		C44500	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06P	Smls. tube					
, B/SB-359		C70600	40 (275)	34	107	300	34	90Cu-10Ni	Smls. tube					
B/SB-359		C70620	40 (275)	34	107	300	34	90Cu-10Ni	Smls. tube					
B/SB-359		C71000	45 (310)	34	107	300	34	80Cu-20Ni	Smls. tube					
B/SB-359		C71500	52 (360)	34	107	300	34	70Cu-30Ni	Smls. tube					
, B/SB-359		C71520	52 (360)	34	107	300	34	70Cu-30Ni	Smls. tube					
B361	WP Alclad 3003	A83003	13 (90)	21	104	200		Al-Mn-Cu	Fittings					
B361	WP1060	A91060	8.5 (59)	21	104	200	21	99.60Al	Fittings					
B361	WP1100	A91100	11 (76)	21	104	200	21	99.0Al-Cu	Fittings					
B361	WP3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu	Fittings					
B361	5083	A95083	39 (270)	25	105	220	22.4	Al-4.4Mg-Mn	Fittings					
B361	5154	A95154	30 (205)	22	105	220	22.3	Al-3.5Mg	Fittings					
B361	WP6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu	Fittings					
B361	WP6063	A96063	17 (115)	23	105	210	23.1	Al-Mg-Si	Fittings					
B/SB-363	WPT 1	R50250	35 (240)	51	115	500	51.1	Ti	Smls. & welded fittings					
B/SB-363	WPT 2	R50400	50 (345)	51	115	500	51.2	Ti	Smls. & welded fittings					
B/SB-363	WPT 3	R50550	65 (450)	52	115	500	51.3	Ti	Smls. & welded fittings					
B/SB-363	WPT 7	R52400	50 (345)	51	115	500	52	Ti–Pd	Smls. & welded fittings					
B/SB-363	WPT 7H	R52400	58 (400)	51	115	500	52	Ti–Pd	Smls. & welded fittings					
B/SB-363	WPT 16	R52402	50 (345)	51	115	500	51.2	Ti–Pd	Smls. & welded fittings					
B/SB-363	WPT 16H	R52402	58 (400)	51	115	500	51.2	Ti–Pd	Smls. & welded fittings					
B/SB-363	WPT 26	R52404	50 (345)	51	115	500	51.2	Ti–Ru	Smls. & welded fittings					
B/SB-363	WPT 26H	R52404	58 (400)	51	115	500	51.2	Ti–Ru	Smls. & welded fittings					
B/SB-363	WPT 12	R53400	70 (485)	52	115	500	52	Ti-0.3Mo-0.8Ni	Smls. & welded fittings					
B/SB-363	WPT 38	R54250	130 (895)	54	115	500	53	Ti-4Al-2.5V-1.5Fe	Smls. & welded fittings					
B/SB-363	WPT 9	R56320	90 (620)	53	115	500	53	Ti-3Al-2.5V	Smls. & welded fittings					
B/SB-363	WPT 28	R56323	90 (620)	53	115	500	53	Ti-3Al-2.5V-0.1Ru	Smls. & welded fittings					
B/SB-366		N02200	55 (380)	41	110	400	41	99.0Ni	Fittings					
B/SB-366		N02201	50 (345)	41	110	400	41	99.0Ni-Low C	Fittings					
B/SB-366		N04400	70 (485)	42	110	400	42	67Ni-30Cu	Fittings					
B/SB-366		N06002	100 (690)	43	111	420	43	47Ni-22Cr-9Mo-18Fe	Fittings					
B/SB-366		N06007	90 (620)	45	111	420	43	47Ni-22Cr-19Fe-6Mo	Fittings					
B/SB-366		N06022	100 (690)	43	111	420	44	55Ni-21Cr-13.5Mo	Fittings					
B/SB-366		N06025	98 (675)	43	111	420	43	63Ni-25Cr-10Fe-2Al-Ti-Y-Zr	Fittings					

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

157

			Minimum Specified	Weld- ing	Bra	azing	ISO			
	Alloy, Type,		Tensile, ksi			AWS	15608			
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form	
					ľ	lonferrous	s (Cont'd)			
B/SB-366		N06030	85 (585)	45	111	420	45	40Ni-29Cr-15Fe-5Mo	Fittings	
B/SB-366		N06035	85 (585)	43	111	420	43	58Ni-33Cr-8Mo	Fittings	
B/SB-366		N06045	90 (620)	46	111	420	45	46Ni-27Cr-23Fe-2.75Si	Fittings	
B/SB-366		N06059	100 (690)	43	111	420	43	59Ni-23Cr-16Mo	Fittings	
3/SB-366		N06200	100 (690)	43	111	420	43	59Ni-23Cr-16Mo-1.6Cu	Fittings	
B/SB-366		N06210	100 (690)	43	111	420	43	60Ni-19Cr-19Mo-1.8Ta	Fittings	
B/SB-366		N06230	110 (760)	43	111	420	43	53Ni-22Cr-14W-Co-Fe-Mo	Fittings	
B/SB-366		N06455	100 (690)	43	111	420	43	61Ni-15Mo-16Cr	Fittings	
B/SB-366		N06600	80 (550)	43	111	420	43	72Ni–15Cr–8Fe	Fittings	
B/SB-366		N06625	100 (690)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Fittings	ASI
B/SB-366		N06985	90 (620)	45	111	420	45	47Ni-22Cr-20Fe-7Mo	Fittings	ME
3/SB-366		N08020	80 (550)	45	111	420	45	35Ni-35Fe-20Cr-Cb	Fittings	B
3/SB-366		N08031	94 (650)	45	111	420	45	31Ni-31Fe-27Cr-7Mo	Fittings	ν V
3/SB-366		N08120	90 (620)	45	111	430	45	37Ni-33Fe-25Cr	Fittings	
3/SB-366		N08330	70 (485)	46	111	420	45	35Ni-19Cr-1.25Si	Fittings	(-2
3/SB-366		N08367	95 (655)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Fittings > $\frac{3}{16}$ in. (5 mm)	ASME BPVC.IX-2019
8/SB-366		N08367	100 (690)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Fittings $\leq \frac{3}{16}$ in. (5 mm)	9
, 3/SB-366		N08800	75 (515)	45	111	430	45	33Ni-42Fe-21Cr	Fittings	
, 3/SB-366		N08825	85 (585)	45	111	430	45	42Ni-21.5Cr-3Mo-2.3Cu	Fittings	
, 3/SB-366		N08925	87 (600)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Fittings	
, 3/SB-366		N08926	94 (650)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Fittings	
, 3/SB-366		N10001	100 (690)	44	112	410	44	62Ni-28Mo-5Fe	Fittings	
, B/SB-366		N10003	100 (690)	44	112	410	44	70Ni-16Mo-7Cr-5Fe	Fittings	
, 3/SB-366		N10242	105 (725)	44	112	410	44	62Ni–25Mo–8Cr–2Fe	Fittings	
, B/SB-366		N10276	100 (690)	43	111	420	43	54Ni-16Mo-15Cr	Fittings	
, B/SB-366		N10362	105 (725)	43	111	420	43	62Ni-22Mo-15Cr	Fittings	
B/SB-366		N10629	110 (760)	44	112	410	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Fittings	
B/SB-366		N10665	110 (760)	44	112	410	44	65Ni-28Mo-2Fe	Fittings	
, B/SB-366		N10675	110 (760)	44	112	410	44	65Ni-29.5Mo-2Fe-2Cr	Fittings	
3/SB-366		N12160	90 (620)	46		420	46	37Ni-30Co-28Cr-2.7Si	Fittings	
3/SB-366		R20033	109 (750)	45	111	420	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Fittings	
3/SB-366		R30556	100 (690)	45	111	420	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Fittings	
B/SB-367	C-2	R52550	50 (345)	51	115	500	51.4	Ti	Castings	
, B/SB-367	C-3	R52550	65 (450)	52	115	500	51.4	Ti	Castings	
3/SB-369		C96200	45 (310)	34	107	500	34	87.5Cu–10Ni–Fe–Mn	Castings	سه صنعت

ASME BPVC.IX-2019

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

			Minimum	Weld-										
			Specified	ing	Bra	azing	ISO							
	Alloy, Type,		Tensile, ksi			AWS	15608							
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	P-No.	B2.2 BM	Group	Nominal Composition	Typical Product Form					
Nonferrous (Cont'd)														
B/SB-381	F-1	R50250	35 (240)	51	115	500	51.1	Ti	Forgings					
, B/SB-381	F-2	R50400	50 (345)	51	115	500	51.2	Ti	Forgings					
, B/SB-381	F-2H	R50400	58 (400)	51	115	500	51.2	Ti	Forgings					
B/SB-381	F-3	R50550	65 (450)	52	115	500	51.3	Ti	Forgings					
, B/SB-381	F-7	R52400	50 (345)	51	115	500	52	Ti–Pd	Forgings					
, B/SB-381	F-7H	R52400	58 (400)	51	115	500	52	Ti–Pd	Forgings					
B/SB-381	F-16	R52402	50 (345)	51	115	500	51.2	Ti–Pd	Forgings					
, B/SB-381	F-16H	R52402	58 (400)	51	115	500	51.2	Ti–Pd	Forgings					
B/SB-381	F-26	R52404	50 (345)	51	115	500	51.2	Ti–Ru	Forgings					
, B/SB-381	F-26H	R52404	58 (400)	51	115	500	51.2	Ti–Ru	Forgings					
, B/SB-381	F-12	R53400	70 (485)	52	115	500	52	Ti-0.3Mo-0.8Ni	Forgings					
B/SB-381	F-38	R54250	130 (895)	54	115	500	53	Ti-4Al-2.5V-1.5Fe	Forgings					
, B/SB-381	F-9	R56320	90 (620)	53	115	500	53	Ti-3Al-2.5V	Forgings					
B/SB-381	F-28	R56323	90 (620)	53	115	500	53	Ti-3Al-2.5V-0.1Ru	Forgings					
B/SB-395		C10200	30 (205)	31	107	300	31	99.95Cu-P	Smls. tube					
B/SB-395		C12000	30 (205)	31	107	300	31	99.9Cu-P	Smls. tube					
B/SB-395		C12200	30 (205)	31	107	300	31	99.9Cu-P	Smls. tube					
B/SB-395		C14200	30 (205)	31	107	300	31	99.4Cu-As-P	Smls. tube					
B/SB-395		C19200	38 (260)	31	107	300	31	99.7Cu-Fe-P	Smls. tube					
B/SB-395		C23000	40 (275)	32	107	300	32.1	85Cu-15Zn	Smls. tube					
B/SB-395		C44300	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06As	Smls. tube					
B/SB-395		C44400	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06Sb	Smls. tube					
B/SB-395		C44500	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06P	Smls. tube					
B/SB-395		C60800	50 (345)	35	108	360	35	95Cu-5Al	Smls. tube					
B/SB-395		C68700	50 (345)	32	108	350	32.2	78Cu-20Zn-2Al	Smls. tube					
B/SB-395		C70600	40 (275)	34	107	300	34	90Cu-10Ni	Smls. tube					
B/SB-395		C70620	40 (275)	34	107	300	34	90Cu-10Ni	Smls. tube					
B/SB-395		C71000	45 (310)	34	107	300	34	80Cu-20Ni	Smls. tube					
B/SB-395		C71500	52 (360)	34	107	300	34	70Cu-30Ni	Smls. tube					
B/SB-395		C71520	52 (360)	34	107	300	34	70Cu-30Ni	Smls. tube					
B/SB-407		N08120	90 (620)	45	111	430	45	37Ni-33Fe-25Cr	Smls. pipe & tube					
B/SB-407		N08800	75 (515)	45	111	430	45	33Ni-42Fe-21Cr	Smls. pipe & tube					
B/SB-407		N08801	65 (450)	45	111	430	45	32Ni-45Fe-20.5Cr-Ti	Smls. pipe & tube					
B/SB-407		N08810	65 (450)	45	111	430	45	33Ni-42Fe-21Cr	Smls. pipe & tube					
B/SB-407		N08811	65 (450)	45	111	430	45	33Ni-42Fe-21Cr-Al-Ti	Smls. pipe & tube					

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

159

Spec. No.	Alloy, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	Weld- ing P-No.		AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form	
	of ditue		(⁽⁾	1 1101			is (Cont'd)		Typical Product Form	
		Nacion	0.0 ((0.0.0)			100			D 101	
B/SB-408		N08120	90 (620)	45	111	430	45	37Ni-33Fe-25Cr	Rod & bar	1
B/SB-408		N08800	75 (515)	45	111	430	45	33Ni-42Fe-21Cr	Rod & bar	1
B/SB-408		N08810	65 (450)	45	111	430	45	33Ni-42Fe-21Cr	Rod & bar	l i
B/SB-408		N08811	65 (450)	45	111	430	45	33Ni-42Fe-21Cr-Al-Ti	Rod & bar	1
B/SB-409		N08120	90 (620)	45	111	430	45	37Ni-33Fe-25Cr	Plate, sheet & strip	l i
3/SB-409		N08800	75 (515)	45	111	430	45	33Ni-42Fe-21Cr	Plate, sheet & strip	1
3/SB-409		N08810	65 (450)	45	111	430	45	33Ni-42Fe-21Cr	Plate, sheet & strip	1
B/SB-409		N08811	65 (450)	45	111	430	45	33Ni-42Fe-21Cr-Al-Ti	Plate, sheet & strip	1
			()						· ····) ······························	AS
3/SB-423		N08825	75 (515)	45	111	430	45	42Ni-21.5Cr-3Mo-2.3Cu	Smls. pipe & tube	ME
B/SB-424		N08825	85 (585)	45	111	430	45	42Ni-21.5Cr-3Mo-2.3Cu	Plate, sheet & strip	B
5725-424		100025	03 (303)	45	111	430	45	42M-21.3CI-3M0-2.3Cu	Flate, sheet & strip	PV
B/SB-425		N08825	85 (585)	45	111	430	45	42Ni-21.5Cr-3Mo-2.3Cu	Rod & bar	ASME BPVC.IX-2019
D/CD 424		N10002	100 ((00)	4.4	110	420		70N: 1(M- 70- FF-	Dista shart 0 study	- 2
B/SB-434		N10003	100 (690)	44	112	430	44	70Ni-16Mo-7Cr-5Fe	Plate, sheet & strip	1 1
B/SB-434		N10242	105 (725)	44	112	410	44	62Ni-25Mo-8Cr-2Fe	Plate, sheet & strip	9
B/SB-435		N06002	95 (655)	43	111	420	43	47Ni-22Cr-9Mo-18Fe	Plate, sheet & strip	
, B/SB-435		N06230	110 (760)	43	111	420	43	53Ni-22Cr-14W-Co-Fe-Mo	Plate, sheet & strip	1
, B/SB-435		N12160	90 (620)	46		420	46	37Ni-30Co-28Cr-2.7Si	Plate, sheet & strip	1
, B/SB-435		R30556	100 (690)	45	111	420	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Plate, sheet & strip	1
-		NACCOF		10		100	10		-	
B/SB-443	1	N06625	110 (760)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Plate & hot-rolled sheet	1
B/SB-443	1	N06625	120 (825)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Cold-rolled sheet & strip	1
B/SB-443	2	N06625	100 (690)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Plate, sheet & strip	1
B/SB-444	1	N06625	120 (825)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Smls. pipe & tube	1
B/SB-444	2	N06625	100 (690)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Smls. pipe & tube	1
										1
B/SB-446	1	N06625	100 (690)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Rod & bar 4 in10 in. (100 mm-250 mm) dia.	1
B/SB-446	1	N06625	120 (825)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Rod & bar < 4 in. (100 mm) dia.	1
B/SB-446	2	N06625	100 (690)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Rod & bar	l i
B/SB-462		N06022	100 (690)	43	111	420	44	55Ni-21Cr-13.5Mo	Forgings	1
B/SB-462		N06030	85 (585)	45	111	420	45	40Ni-29Cr-15Fe-5Mo	Forgings	l i
B/SB-462 B/SB-462		N06035	85 (585)	43	111	420	43	58Ni-33Cr-8Mo	Forgings	1
B/SB-462 B/SB-462		N06045	90 (620)	43 46	111	420	45	46Ni-27Cr-23Fe-2.75Si	Forgings	i
B/SB-462 B/SB-462		N06059	100 (690)	40	111	420	43	59Ni-23Cr-16Mo		سه صنعت

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

	Alloy, Type,		Minimum Specified Tensile, ksi	Weld- ing		azing AWS	ISO 15608		
Spec. No.	or Grade	UNS No.	(MPa)	P-No.		B2.2 BM Nonferrou	Group s (Cont'd)	Nominal Composition	Typical Product Form
B/SB-462		N06200	100 (690)	43	111	420	43	59Ni-23Cr-16Mo-1.6Cu	Forgings
B/SB-462 B/SB-462		N06686	100 (690)	43	111	420	43	58Ni-21Cr-16Mo-3.5N	Forgings
B/SB-462 B/SB-462		N08020	80 (550)	45	111	420	45	35Ni-35Fe-20Cr-Cb	Forgings
B/SB-462 B/SB-462		N08020	94 (650)	45	111	420	45	31Ni-33Fe-22Cr-6.5Mo-Cu-N	Forgings
B/SB-462 B/SB-462		N08367	95 (655)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Forgings
B/SB-462 B/SB-462		N10276	100 (690)	43	111	420	43	54Ni-16Mo-15Cr	Forgings
B/SB-462		N10270	105 (725)	43	111	420	43	62Ni-22Mo-15Cr	Forgings
B/SB-462		N10502	110 (760)	44	111	410	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Forgings
B/SB-462		N10665	110 (760)	44	112	410	44	65Ni-28Mo-2Fe	Forgings
B/SB-462		N10675	110 (760)	44	112	410	44	65Ni-29.5Mo-2Fe-2Cr	Forgings
B/SB-462 B/SB-462		R20033	109 (750)	45	112	420	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Forgings
B/SB-463		N08020	80 (550)	45	111	420	45	35Ni-35Fe-20Cr-Cb	Plate, sheet & strip
, B/SB-463		N08024	80 (550)	45	111	420	45	37Ni-33Fe-23Cr-4Mo	Plate, sheet & strip
B/SB-463		N08026	80 (550)	45	111	420	45	35Ni-30Fe-24Cr-6Mo-3Cu	Plate, sheet & strip
B/SB-464		N08020	80 (550)	45	111	420	45	35Ni-35Fe-20Cr-Cb	Welded pipe
B/SB-464		N08024	80 (550)	45	111	420	45	37Ni-33Fe-23Cr-4Mo	Welded pipe
B/SB-464		N08026	80 (550)	45	111	420	45	35Ni-30Fe-24Cr-6Mo-3Cu	Welded pipe
B/SB-466		C70600	38 (260)	34	107	300	34	90Cu-10Ni	Smls. pipe & tube
B/SB-466		C70620	38 (260)	34	107	300	34	90Cu-10Ni	Smls. pipe & tube
B/SB-466		C71000	45 (310)	34	107	300	34	80Cu-20Ni	Smls. pipe & tube
B/SB-466		C71500	52 (360)	34	107	300	34	70Cu-30Ni	Smls. pipe & tube
B/SB-466		C71520	52 (360)	34	107	300	34	70Cu-30Ni	Smls. pipe & tube
B/SB-467		C70600	38 (260)	34	107	300	34	90Cu-10Ni	Welded pipe > 4.5 in. (114 mm) 0.D.
, B/SB-467		C70600	40 (275)	34	107	300	34	90Cu-10Ni	Welded pipe ≤ 4.5 in. (114 mm) O.D.
B/SB-467		C70620	38 (260)	34	107	300	34	90Cu-10Ni	Welded pipe > 4.5 in. (114 mm) O.D.
B/SB-467		C70620	40 (275)	34	107	300	34	90Cu-10Ni	Welded pipe ≤ 4.5 in. (114 mm) O.D.
B/SB-467		C71500	45 (310)	34	107	300	34	70Cu-30Ni	Welded pipe > 4.5 in. (114 mm) O.D.
B/SB-467		C71500	50 (345)	34	107	300	34	70Cu-30Ni	Welded pipe ≤ 4.5 in. (114 mm) 0.D.
B/SB-467		C71520	45 (310)	34	107	300	34	70Cu-30Ni	Welded pipe > 4.5 in. (114 mm) O.D.
B/SB-467		C71520	50 (345)	34	107	300	34	70Cu-30Ni	Welded pipe \leq 4.5 in. (114 mm) O.D.
B/SB-468		N08020	80 (550)	45	111	420	45	35Ni-35Fe-20Cr-Cb	Welded tube
B/SB-468		N08024	80 (550)	45	111	420	45	37Ni-33Fe-23Cr-4Mo	Welded tube
B/SB-468		N08026	80 (550)	45	111	420	45	35Ni-30Fe-24Cr-6Mo-3Cu	Welded tube

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

Spec. No.	Alloy, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	Weld- ing P-No.		AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form	
			()			lonferrou	-		- J F	
B/SB-473		N08020	80 (550)	45	111	420	45	35Ni-35Fe-20Cr-Cb	Bar	
B491	3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu	Extruded tube	
B/SB-493	R60702	R60702	55 (380)	61	117	600	61	99.2Zr	Forgings	
B/SB-493	R60705	R60705	70 (485)	62	117	600	62	95.5Zr+2.5Cb	Forgings	
B/SB-505		C95200	68 (470)	35	108	360	35	88Cu-9Al-3Fe	Castings	
B/SB-511		N08330	70 (485)	46	111	420	45	35Ni-19Cr-1.25Si	Bars & shapes	
B/SB-514		N08120	90 (620)	45	111	430	45	37Ni-33Fe-25Cr	Welded pipe	ASM
B/SB-514		N08800	75 (515)	45	111	430	45	33Ni-42Fe-21Cr	Welded pipe	E
B/SB-514		N08810	65 (450)	45	111	430	45	33Ni-42Fe-21Cr	Welded pipe	BPV
B/SB-515		N08120	90 (620)	45	111	430	45	37Ni-33Fe-25Cr	Welded tube	ASME BPVC.IX-2019
B/SB-515		N08800	75 (515)	45	111	430	45	33Ni-42Fe-21Cr	Welded tube	(-2)
B/SB-515		N08810	65 (450)	45	111	430	45	33Ni-42Fe-21Cr	Welded tube	019
B/SB-515		N08811	65 (450)	45	111	430	45	33Ni-42Fe-21Cr-Al-Ti	Welded tube	Ŭ
B/SB-516		N06025	98 (675)	43	111	420	43	63Ni-25Cr-10Fe-2Al-Ti-Y-Zr	Welded tube	
B/SB-516		N06045	90 (620)	46	111	420	45	46Ni-27Cr-23Fe-2.75Si	Welded tube	
B/SB-516		N06600	80 (550)	43	111	420	43	72Ni–15Cr–8Fe	Welded tube	
B/SB-517		N06025	98 (675)	43	111	420	43	63Ni–25Cr–10Fe–2Al–Ti–Y–Zr	Welded pipe	
B/SB-517		N06045	90 (620)	46	111	420	45	46Ni-27Cr-23Fe-2.75Si	Welded pipe	
B/SB-517		N06600	80 (550)	43	111	420	43	72Ni–15Cr–8Fe	Welded pipe	
B/SB-523	R60702	R60702	55 (380)	61	117	600	61	99.2Zr	Smls. & welded tube	
B/SB-523	R60705	R60705	80 (550)	62	117	600	62	95.5Zr+2.5Cb	Smls. & welded tube	
B/SB-535		N08330	70 (485)	46	111	420	45	35Ni-19Cr-1.25Si	Smls. pipe & tube	
B/SB-536		N08330	70 (485)	46	111	420	45	35Ni-19Cr-1.25Si	Plate, sheet & strip	
B/SB-543		C12200	30 (205)	31	107	300	31	99.9Cu-P	Welded tube	
B/SB-543		C19400	45 (310)	31	107	300	31	97.5Cu-P	Welded tube	
B/SB-543		C23000	40 (275)	32	107	300	32.1	85Cu-15Zn	Welded tube	
B/SB-543		C44300	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06As	Welded tube	
B/SB-543		C44400	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06Sb	Welded tube	
B/SB-543		C44500	45 (310)	32	107	300	32.2	71Cu-28Zn-1Sn-0.06P	Welded tube	دو سه صنعت

B/SB-564

B/SB-564

				Group	oing of	Base	Metals	for Qua	lification (Cont'd)
		Alloy, Type,		Minimum Specified Tensile, ksi	Weld- ing		azing AWS	ISO 15608	
	Spec. No.	or Grade	UNS No.	(MPa)	P-No.	P-No.		Group	Nominal Composition
							Nonferrou	. ,	
	B/SB-543		C68700	50 (345)	32	108	350	32.2	78Cu-20Zn-2Al
	B/SB-543		C70400	38 (260)	34	107	300	34	95Cu-5Ni
	B/SB-543		C70600	40 (275)	34	107	300	34	90Cu-10Ni
	B/SB-543		C70620	40 (275)	34	107	300	34	90Cu-10Ni
	B/SB-543		C71500	52 (360)	34	107	300	34	70Cu-30Ni
	B/SB-543		C71520	52 (360)	34	107	300	34	70Cu-30Ni
	B547	Alclad 3003	A83003	13 (90)	21	104	200		Al-Mn-Cu
	B547	3003	A93003	14 (97)	21	104	200	22.1	Al-Mn-Cu
	B547	5083	A95083	40 (275)	25	105	220	22.4	Al-4.4Mg-Mn
	B547	5454	A95454	31 (215)	22	105	220	22.3	Al-2.7Mg-Mn
	B547	6061	A96061	24 (165)	23	105	220	23.1	Al-Mg-Si-Cu
	B/SB-550	R60702	R60702	55 (380)	61	117	600	61	99.2Zr
2	B/SB-550	R60705	R60705	80 (550)	62	117	600	62	95.5Zr+2.5Cb
	B/SB-551	R60702	R60702	55 (380)	61	117	600	61	99.2Zr
	B/SB-551	R60705	R60705	80 (550)	62	117	600	62	95.5Zr+2.5Cb
	B/SB-564		N04400	70 (485)	42	110	400	42	67Ni-30Cu
	B/SB-564		N06022	100 (690)	43	111	420	44	55Ni-21Cr-13.5Mo
	B/SB-564		N06025	84 (580)	43	111	420	43	63Ni–25Cr–10Fe–2Al–Ti–Y–Zr
	B/SB-564		N06025	98 (675)	43	111	420	43	63Ni–25Cr–10Fe–2Al–Ti–Y–Zr
	B/SB-564		N06035	85 (585)	43	111	420	43	58Ni-33Cr-8Mo
	B/SB-564		N06045	90 (620)	46	111	420	45	46Ni-27Cr-23Fe-2.75Si
	B/SB-564		N06059	100 (690)	43	111	420	43	59Ni-23Cr-16Mo
	B/SB-564		N06200	100 (690)	43	111	420	43	59Ni-23Cr-16Mo-1.6Cu
	B/SB-564		N06210	100 (690)	43	111	420	43	60Ni–19Cr–19Mo–1.8Ta
	B/SB-564		N06230	110 (760)	43	111	420	43	53Ni-22Cr-14W-Co-Fe-Mo
	B/SB-564		N06600	80 (550)	43	111	420	43	72Ni–15Cr–8Fe
	B/SB-564		N06617	95 (655)	43	111	420	46	52Ni-22Cr-13Co-9Mo
	B/SB-564		N06625	110 (760)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb
	B/SB-564		N06625	120 (825)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb
	B/SB-564		N06686	100 (690)	43	111	430	43	58Ni-21Cr-16Mo-3.5W
	B/SB-564		N06690	85 (585)	43	111	420	43	58Ni–29Cr–9Fe
	B/SB-564		N08031	94 (650)	45	111	420	45	31Ni-31Fe-27Cr-7Mo

90 (620)

95 (655)

N08120

N08367

....

...

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

Typical Product Form

Welded tube Welded tube

Welded tube Welded tube Bar & wire Bar & wire

Forgings Forgings

Forgings Forgings Forgings Forgings Forgings Forgings Forgings

Forgings Forgings Forgings

Forgings

Forgings

Plate, sheet & strip Plate, sheet & strip

Forgings ≤ 4 in. (100 mm)

Forgings ≤ 4 in. (102 mm)

Forgings > 4 in.-12 in. (100 mm-300 mm)

Forgings > 4 in.–10 in. (102 mm–254 mm), incl.

45

45

430

420

111

111

45

8.2

37Ni-33Fe-25Cr

46Fe-24Ni-21Cr-6Mo-N

163

							- J	
B/SB-564	 N08800	75 (515)	45	111	430	45	33Ni-42Fe-21Cr	Forgings
B/SB-564	 N08810	65 (450)	45	111	430	45	33Ni-42Fe-21Cr	Forgings
B/SB-564	 N08811	65 (450)	45	111	430	44	33Ni-42Fe-21Cr-Al-Ti	Forgings
B/SB-564	 N08825	85 (585)	45	111	430	45	42Ni-21.5Cr-3Mo-2.3Cu	Forgings
B/SB-564	 N10242	105 (725)	44	112	410	44	62Ni-25Mo-8Cr-2Fe	Forgings
B/SB-564	 N10276	100 (690)	43	111	420	43	54Ni-16Mo-15Cr	Forgings
B/SB-564	 N10362	105 (725)	43	111	420	43	62Ni-22Mo-15Cr	Forgings
B/SB-564	 N10629	110 (760)	44	112	410	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Forgings
B/SB-564	 N10665	110 (760)	44	112	410	44	65Ni-28Mo-2Fe	Forgings
B/SB-564	 N10675	110 (760)	44	112	410	44	65Ni-29.5Mo-2Fe-2Cr	Forgings
B/SB-564	 N12160	90 (620)	46		420	46	37Ni-30Co-28Cr-2.7Si	Forgings
B/SB-564	 R20033	109 (750)	45	111	420	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Forgings
B/SB-572	 N06002	95 (655)	43	111	420	43	47Ni-22Cr-9Mo-18Fe	Rod
B/SB-572	 N06230	110 (760)	43	111	420	43	53Ni-22Cr-14W-Co-Fe-Mo	Rod
B/SB-572	 N12160	90 (620)	46		420	46	37Ni-30Co-28Cr-2.7Si	Rod
B/SB-572	 R30556	100 (690)	45	111	420	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Rod
B/SB-573	 N10003	100 (690)	44	112	430	44	70Ni-16Mo-7Cr-5Fe	Rod
B/SB-573	 N10242	105 (725)	44	112	410	44	62Ni-25Mo-8Cr-2Fe	Rod
B/SB-574	 N06022	100 (690)	43	111	420	43	55Ni-21Cr-13.5Mo	Rod
B/SB-574	 N06035	85 (585)	43	111	420	43	58Ni-33Cr-8Mo	Rod
B/SB-574	 N06059	100 (690)	43	111	420	43	59Ni-23Cr-16Mo	Rod
B/SB-574	 N06200	100 (690)	43	111	420	43	59Ni-23Cr-16Mo-1.6Cu	Rod
B/SB-574	 N06210	100 (690)	43	111	420	43	60Ni–19Cr–19Mo–1.8Ta	Rod
B/SB-574	 N06455	100 (690)	43	111	420	43	61Ni-16Mo-16Cr	Rod
B/SB-574	 N06686	100 (690)	43	111	430	43	58Ni-21Cr-16Mo-3.5W	Rod
B/SB-574	 N10276	100 (690)	43	111	420	43	54Ni-16Mo-15Cr	Rod
B/SB-574	 N10362	105 (725)	43	111	420	43	62Ni-22Mo-15Cr	Rod
B/SB-575	 N06022	100 (690)	43	111	420	43	55Ni-21Cr-13.5Mo	Plate, sheet & strip
B/SB-575	 N06035	85 (585)	43	111	420	43	58Ni-33Cr-8Mo	Plate, sheet & strip
B/SB-575	 N06059	100 (690)	43	111	420	43	59Ni-23Cr-16Mo	Plate, sheet & strip
B/SB-575	 N06200	100 (690)	43	111	420	43	59Ni-23Cr-16Mo-1.6Cu	Plate, sheet & strip
B/SB-575	 N06210	100 (690)	43	111	420	43	60Ni-19Cr-19Mo-1.8Ta	Plate, sheet & strip
B/SB-575	 N06455	100 (690)	43	111	420	43	61Ni-16Mo-16Cr	Plate, sheet & strip
B/SB-575	 N06686	100 (690)	43	111	430	43	58Ni-21Cr-16Mo-3.5W	Plate, sheet & strip

Table QW/QB-422 **Ferrous and Nonferrous P-Numbers** Grouping of Base Metals for Qualification (Cont'd)

Nonferrous (Cont'd)

Brazing

P-No. B2.2 BM

AWS

ISO

15608

Group

Nominal Composition

Minimum

Specified

Tensile, ksi

(MPa)

UNS No.

Weld-

ing

P-No.

ASME BPVC.IX-2019

Typical Product Form

Alloy, Type,

Spec. No.

or Grade

Spog No.	Alloy, Type,	UNC No.	Minimum Specified Tensile, ksi	Weld- ing		AWS	ISO 15608	Nominal Composition	Tunical Duaduct Form
Spec. No.	or Grade	UNS No.	(MPa)	P-No.	-	B2.2 BM	Group s (Cont'd)	Nominal Composition	Typical Product Form
B/SB-575		N10276	100 (690)	43	111	420	43	54Ni-16Mo-15Cr	Plate, sheet & strip
B/SB-575		N10270	105 (725)	43	111	420	43	62Ni-22Mo-15Cr	Plate, sheet & strip
B/SB-581		N06007	85 (585)	45	111	420	43	47Ni-22Cr-19Fe-6Mo	Rod > 0.75 in3.5 in. (19 mm-89 mm), incl.
B/SB-581		N06007	90 (620)	45	111	420	43	47Ni-22Cr-19Fe-6Mo	Rod 0.3125 in0.75 in. (8 mm-19 mm), incl.
B/SB-581		N06030	85 (585)	45	111	420	45	40Ni-29Cr-15Fe-5Mo	Rod
, B/SB-581		N06975	85 (585)	45	111	430	45	49Ni-25Cr-18Fe-6Mo	Rod
B/SB-581		N06985	85 (585)	45	111	420	45	47Ni-22Cr-20Fe-7Mo	Rod > 0.75 in3.5 in. (19 mm-89 mm), incl.
, B/SB-581		N06985	90 (620)	45	111	420	45	47Ni-22Cr-20Fe-7Mo	Rod 0.3125 in0.75 in. (8 mm-19 mm), incl.
B/SB-581		N08031	94 (650)	45	111	420	45	31Ni-31Fe-27Cr-7Mo	Rod
B/SB-582		N06007	85 (585)	45	111	420	43	47Ni-22Cr-19Fe-6Mo	Plate, sheet & strip > 0.75 in2.5 in. (19 mm 64 mm), incl.
B/SB-582		N06007	90 (620)	45	111	420	43	47Ni-22Cr-19Fe-6Mo	Plate, sheet & strip ≤ 0.75 in. (19 mm)
, B/SB-582		N06030	85 (585)	45	111	420	45	40Ni-29Cr-15Fe-5Mo	Plate, sheet & strip
, B/SB-582		N06975	85 (585)	45	111	430	45	49Ni-25Cr-18Fe-6Mo	Plate, sheet & strip
B/SB-582		N06985	85 (585)	45	111	420	45	47Ni-22Cr-20Fe-7Mo	Plate, sheet & strip > 0.75 in2.5 in. (19 mm 64 mm), incl.
B/SB-582		N06985	90 (620)	45	111	420	45	47Ni-22Cr-20Fe-7Mo	Plate, sheet & strip ≤ 0.75 in. (19 mm)
B/SB-599		N08700	80 (550)	45	111	420	8.2	25Ni-47Fe-21Cr-5Mo	Plate, sheet & strip
B/SB-619		N06002	100 (690)	43	111	420	43	47Ni-22Cr-9Mo-18Fe	Welded pipe
B/SB-619		N06007	90 (620)	45	111	420	43	47Ni-22Cr-19Fe-6Mo	Welded pipe
B/SB-619		N06022	100 (690)	43	111	420	44	55Ni-21Cr-13.5Mo	Welded pipe
B/SB-619		N06030	85 (585)	45	111	420	45	40Ni-29Cr-15Fe-5Mo	Welded pipe
B/SB-619		N06035	85 (585)	43	111	420	43	58Ni-33Cr-8Mo	Welded pipe
B/SB-619		N06059	100 (690)	43	111	420	43	59Ni-23Cr-16Mo	Welded pipe
B/SB-619		N06200	100 (690)	43	111	420	43	59Ni-23Cr-16Mo-1.6Cu	Welded pipe
B/SB-619		N06210	100 (690)	43	111	420	43	60Ni–19Cr–19Mo–1.8Ta	Welded pipe
B/SB-619		N06230	110 (760)	43	111	420	43	53Ni-22Cr-14W-Co-Fe-Mo	Welded pipe
B/SB-619		N06455	100 (690)	43	111	420	43	61Ni-16Mo-16Cr	Welded pipe
B/SB-619		N06686	100 (690)	43	111	430	43	58Ni-21Cr-16Mo-3.5W	Welded pipe
B/SB-619		N06975	85 (585)	45	111	430	45	49Ni-25Cr-18Fe-6Mo	Welded pipe
B/SB-619		N06985	90 (620)	45	111	420	45	47Ni-22Cr-20Fe-7Mo	Welded pipe
B/SB-619		N08031	94 (650)	45	111	420	45	31Ni-31Fe-27Cr-7Mo	Welded pipe
B/SB-619		N08320	75 (515)	45	111	430	8.2	26Ni-22Cr-5Mo-Ti	Welded pipe
B/SB-619		N10001	100 (690)	44	112	410	44	62Ni-28Mo-5Fe	Welded pipe

Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)

165

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

Spec No.	Alloy, Type,	UNC No.	Minimum Specified Tensile, ksi	Weld- ing		AWS	ISO 15608	Naminal Composition	Tunical Decident Comm	
Spec. No.	or Grade	UNS No.	(MPa)	P-No.		B2.2 BM	Group s (Cont'd	Nominal Composition	Typical Product Form	-
3/SB-619		N10242	105 (725)	44	112	410	44	62Ni–25Mo–8Cr–2Fe	Welded pipe	-
3/SB-619		N10276	100 (690)	43	111	420	43	54Ni-16Mo-15Cr	Welded pipe	
3/SB-619		N10362	105 (725)	43	111	420	43	62Ni-22Mo-15Cr	Welded pipe	
/SB-619		N10629	110 (760)	44	112	410	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Welded pipe	
S/SB-619		N10665	110 (760)	44	112	410	44	65Ni-28Mo-2Fe	Welded pipe	
S/SB-619		N10675	110 (760)	44	112	410	44	65Ni-29.5Mo-2Fe-2Cr	Welded pipe	
/SB-619		N12160	90 (620)	46		420	46	37Ni-30Co-28Cr-2.7Si	Welded pipe	
3/SB-619		R20033	109 (750)	45	111	420	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Welded pipe	
3/SB-619		R30556	100 (690)	45	111	420	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Welded pipe	
3/SB-620		N08320	75 (515)	45	111	430	8.2	26Ni-22Cr-5Mo-Ti	Plate, sheet & strip	ASM
B/SB-621		N08320	75 (515)	45	111	420	8.2	26Ni-22Cr-5Mo-Ti	Rod	ASME BPVC.IX-2019
/SB-622		N06002	100 (690)	43	111	420	43	47Ni-22Cr-9Mo-18Fe	Smls. pipe & tube	VC.
/SB-622		N06007	90 (620)	45	111	420	43	47Ni-22Cr-19Fe-6Mo	Smls. pipe & tube	IX-
/SB-622		N06022	100 (690)	43	111	420	44	55Ni-21Cr-13.5Mo	Smls. pipe & tube	20
/SB-622		N06030	85 (585)	45	111	420	45	40Ni-29Cr-15Fe-5Mo	Smls. pipe & tube	19
/SB-622		N06035	85 (585)	43	111	420	43	58Ni-33Cr-8Mo	Smls. pipe & tube	
3/SB-622		N06059	100 (690)	43	111	420	43	59Ni-23Cr-16Mo	Smls. pipe & tube	
3/SB-622		N06200	100 (690)	43	111	420	43	59Ni-23Cr-16Mo-1.6Cu	Smls. pipe & tube	
3/SB-622		N06210	100 (690)	43	111	420	43	60Ni-19Cr-19Mo-1.8Ta	Smls. pipe & tube	
3/SB-622		N06230	110 (760)	43	111	420	43	53Ni-22Cr-14W-Co-Fe-Mo	Smls. pipe & tube	
/SB-622		N06455	100 (690)	43	111	420	43	61Ni-16Mo-16Cr	Smls. pipe & tube	
S/SB-622		N06686	100 (690)	43	111	430	43	58Ni-21Cr-16Mo-3.5W	Smls. pipe & tube	
/SB-622		N06975	85 (585)	45	111	430	45	49Ni-25Cr-18Fe-6Mo	Smls. pipe & tube	
/SB-622		N06985	90 (620)	45	111	420	45	47Ni-22Cr-20Fe-7Mo	Smls. pipe & tube	
/SB-622		N08031	94 (650)	45	111	420	45	31Ni-31Fe-27Cr-7Mo	Smls. pipe & tube	
S/SB-622		N08320	75 (515)	45	111	430	8.2	26Ni-22Cr-5Mo-Ti	Smls. pipe & tube	
8/SB-622		N10001	100 (690)	44	112	410	44	62Ni-28Mo-5Fe	Smls. pipe & tube	
3/SB-622		N10242	105 (725)	44	112	410	44	62Ni-25Mo-8Cr-2Fe	Smls. pipe & tube	
/SB-622		N10276	100 (690)	43	111	420	43	54Ni-16Mo-15Cr	Smls. pipe & tube	
/SB-622		N10362	105 (725)	43	111	420	43	62Ni-22Mo-15Cr	Smls. pipe & tube	
/SB-622		N10629	110 (760)	44	112	410	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Smls. pipe & tube	
3/SB-622		N10665	110 (760)	44	112	410	44	65Ni-28Mo-2Fe	Smls. pipe & tube	
8/SB-622		N10675	110 (760)	44	112	410	44	65Ni-29.5Mo-2Fe-2Cr	Smls. pipe & tube	
8/SB-622		N12160	90 (620)	46		420	46	37Ni-30Co-28Cr-2.7Si	Smls. pipe & tube	
3/SB-622		R20033	109 (750)	45	111	420	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Smls. pipe & tube	دو سه صنعت

166

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

	Table QW/QB-422 Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)										
Spec. No.	Alloy, Type, or Grade	UNS No.	Minimum Specified Tensile, ksi (MPa)	Weld- ing P-No.		azing AWS B2.2 BM	ISO 15608 Group	Nominal Composition	Typical Product Form		
opeernor	of druce		(in u)	1 1101		Nonferrou		•	Typical Product Porm		
B/SB-622		R30556	100 (690)	45	111	420	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Smls. pipe & tube		
B/SB-625		N08031	94 (650)	45	111	420	45	31Ni-31Fe-27Cr-7Mo	Plate, sheet & strip		
B/SB-625		N08904	71 (490)	45	111	420	8.2	44Fe-25Ni-21Cr-Mo	Plate, sheet & strip		
B/SB-625		N08925	87 (600)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Plate, sheet & strip		
B/SB-625		N08926	94 (650)	45	111	420	8.2	25Ni-20Cr-6Mo-Co-N	Plate, sheet & strip		
B/SB-625		R20033	109 (750)	45	111	420	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Plate, sheet & strip		
B/SB-626		N06002	100 (690)	43	111	420	43	47Ni-22Cr-9Mo-18Fe	Welded tube		
B/SB-626		N06007	90 (620)	45	111	420	43	47Ni-22Cr-19Fe-6Mo	Welded tube		
B/SB-626		N06022	100 (690)	43	111	420	44	55Ni-21Cr-13.5Mo	Welded tube		
B/SB-626 B/SB-626 B/SB-626		N06022 N06030 N06035	85 (585) 85 (585)	43 45 43	111 111 111	420 420 420	44 45 43	55Ni-21Cr-15.5M0 40Ni-29Cr-15Fe-5Mo 58Ni-33Cr-8Mo	Welded tube Welded tube Welded tube		
B/SB-626 B/SB-626		N06059 N06200	100 (690) 100 (690)	43 43	111 111 111	420 420	43 43	59Ni-23Cr-16Mo 59Ni-23Cr-16Mo-1.6Cu	Welded tube Welded tube		
B/SB-626		N06210	100 (690)	43	111	420	43	60Ni–19Cr–19Mo–1.8Ta	Welded tube		
B/SB-626		N06230	110 (760)	43	111	420	43	53Ni–22Cr–14W–Co–Fe–Mo	Welded tube		
B/SB-626		N06455	100 (690)	43	111	420	43	61Ni-16Mo-16Cr	Welded tube		
B/SB-626		N06686	100 (690)	43	111	430	43	58Ni-21Cr-16Mo-3.5W	Welded tube		
B/SB-626		N06975	85 (585)	45	111	430	45	49Ni-25Cr-18Fe-6Mo	Welded tube		
B/SB-626		N06985	90 (620)	45	111	420	45	47Ni-22Cr-20Fe-7Mo	Welded tube		
B/SB-626		N08031	94 (650)	45	111	420	45	31Ni-31Fe-27Cr-7Mo	Welded tube		
B/SB-626 B/SB-626		N08031 N08320 N10001	94 (650) 75 (515) 100 (690)	45 45 44	111 111 112	420 430 410	43 8.2 44	26Ni-22Cr-5Mo-Ti 62Ni-28Mo-5Fe	Welded tube Welded tube Welded tube		
B/SB-626		N10242	105 (725)	44	112	410	44	62Ni-25Mo-8Cr-2Fe	Welded tube		
B/SB-626		N10276	100 (690)	43	111	420	43	54Ni-16Mo-15Cr	Welded tube		
B/SB-626		N10362	105 (725)	43	111	420	43	62Ni-22Mo-15Cr	Welded tube		
B/SB-626		N10629	110 (760)	44	112	410	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Welded tube		
B/SB-626 B/SB-626		N10665 N10675	110 (760) 110 (760)	44 44	112 112	410 410	44 44	65Ni-28Mo-2Fe 65Ni-29.5Mo-2Fe-2Cr 27Ni 20Cr 27Si	Welded tube Welded tube		
B/SB-626		N12160	90 (620)	46		420	46	37Ni-30Co-28Cr-2.7Si	Welded tube		
B/SB-626		R20033	109 (750)	45	111	420	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Welded tube		
B/SB-626		R30556	100 (690)	45	111	420	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Welded tube		
B/SB-649		N08904	71 (490)	45	111	420	8.2	44Fe-25Ni-21Cr-Mo	Bar & wire		
B/SB-649		N08925	87 (600)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Bar & wire		
B/SB-649		N08926	94 (650)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Bar & wire		
B/SB-649		R20033	109 (750)	45	111	420	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Bar & wire		

Licensee=Khalda Petroleum/5986215001, User=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

167

Table QW/QB-422
Ferrous and Nonferrous P-Numbers
Grouping of Base Metals for Qualification (Cont'd)

			Minimum Specified	Weld- ing	Bra	zing	ISO			
Spec. No.	Alloy, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	P-No	AWS B2.2 BM	15608 Group	Nominal Composition	Typical Product Form	
Speel No.	of that	UND NO.	(Mi a)	1 110.			s (Cont'd)	•	Typical Flotact Form	_
D (0D (50	DCOROD	D (0 5 0 0	== (200)					00.07		
B/SB-653	R60702	R60702	55 (380)	61	117	600	61	99.2Zr	Smls. & welded fittings	
B/SB-658	R60702	R60702	55 (380)	61	117	600	61	99.2Zr	Smls. & welded pipe	
B/SB-658	R60705	R60705	80 (550)	62	117	600	62	95.5Zr+2.5Cb	Smls. & welded pipe	
B/SB-668		N08028	73 (505)	45	111	420	45	31Ni-31Fe-29Cr-Mo	Smls. tube	
B/SB-672		N08700	80 (550)	45	111	420	8.2	25Ni-47Fe-21Cr-5Mo	Bar & wire	
B/SB-673		N08904	71 (490)	45	111	420	8.2	44Fe-25Ni-21Cr-Mo	Welded pipe	
B/SB-673		N08925	87 (600)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Welded pipe	AS
B/SB-673		N08926	94 (650)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Welded pipe	ASME BPVC.IX-2019
B/SB-674		N08904	71 (490)	45	111	420	0.2	44Fe-25Ni-21Cr-Mo	Welded tube	BP
,		N08904 N08925	ç ,	45	111	420 420	8.2	44Fe-25Ni-21Cr-Mo 25Ni-20Cr-6Mo-Cu-N	Welded tube Welded tube	VC
B/SB-674			87 (600)	45			8.2			XI.
B/SB-674		N08926	94 (650)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Welded tube	(-20
B/SB-675		N08367	95 (655)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Welded pipe > $\frac{3}{16}$ in. (5 mm))19
B/SB-675		N08367	100 (690)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Welded pipe $\leq \frac{3}{16}$ in. (5 mm)	_
B/SB-676		N08367	95 (655)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Welded tube > $\frac{3}{16}$ in. (5 mm)	
B/SB-676		N08367	100 (690)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Welded tube $\leq \frac{3}{16}$ in. (5 mm)	
B/SB-677		N08904	71 (490)	45	111	420	8.2	44Fe-25Ni-21Cr-Mo	Smls. pipe & tube	
B/SB-677		N08925	87 (600)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Smls. pipe & tube	
B/SB-677		N08926	94 (650)	45	111	420	8.2	25Ni-20Cr-6Mo-Cu-N	Smls. pipe & tube	
B/SB-688		N08367	95 (655)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Plate, sheet & strip > $\frac{3}{16}$ in. (5 mm)	
B/SB-688		N08367	100 (690)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Plate, sheet & strip $\leq \frac{3}{16}$ in. (5 mm)	
B/SB-690		N08367	95 (655)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Smls. pipe & tube > $\frac{3}{16}$ in. (5 mm)	
B/SB-690		N08367	100 (690)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Smls. pipe & tube $\leq \frac{3}{16}$ in. (5 mm)	
B/SB-691		N08367	95 (655)	45	111	420	8.2	46Fe-24Ni-21Cr-6Mo-N	Rod, bar & wire	
B/SB-704	1	N06625	120 (825)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Welded tube	
B/SB-704	2	N06625	100 (690)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Welded tube	
B/SB-704		N08825	85 (585)	45	111	430	45	42Ni-21.5Cr-3Mo-2.3Cu	Welded tube	
B/SB-705	1	N06625	120 (825)	43	111	430	43	60Ni-22Cr-9Mo-3.5Cb	Welded pipe	
B/SB-705 B/SB-705	1 2	N06625 N06625	120 (825)	43 43	111	430 430	43 43	60Ni-22Cr-9Mo-3.5Cb	Welded pipe	

B/SB-862

3

R50550

0				Grouj					-Numbers llification (Cont'd)
Š		Alloy, Type,		Minimum Specified Tensile, ksi	Weld- ing		azing AWS	ISO 15608	
	Spec. No.	or Grade	UNS No.	(MPa)	P-No.		B2.2 BM	Group	Nominal Composition
						I	Nonferrou	s (Cont'd)	
	B/SB-705		N08825	85 (585)	45	111	430	45	42Ni-21.5Cr-3Mo-2.3Cu
	B/SB-709		N08028	73 (505)	45	111	420	45	31Ni-31Fe-29Cr-Mo
	B/SB-710		N08330	70 (485)	46	111	420	45	35Ni-19Cr-1.25Si
	B725		N02200	55 (380)	41	110	400	41	99.0Ni
	B725		N02201	50 (345)	41	110	400	41	99.0Ni-Low C
	B725		N04400	70 (485)	42	110	400	42	67Ni-30Cu
	B/SB-729		N08020	80 (550)	45	111	420	45	35Ni-35Fe-20Cr-Cb
	B730		N02200	55 (380)	41	110	400	41	99.0Ni
	B730		N02201	50 (345)	41	110	400	41	99.0Ni-Low C
168	B730		N04400	70 (485)	42	110	400	42	67Ni-30Cu
ω	B/SB-815		R31233	120 (825)	49		800		Co-26Cr-9Ni-5Mo-3Fe-2W
	B/SB-818		R31233	120 (825)	49		800		Co-26Cr-9Ni-5Mo-3Fe-2W
	B819	C12200	C12200	30 (205)		107	300	NA	99.9Cu-P
	B/SB-861	1	R50250	35 (240)	51	115	500	51.1	Ti
	B/SB-861	2	R50400	50 (345)	51	115	500	51.2	Ti
	B/SB-861	2H	R50400	58 (400)	51	115	500	51.2	Ti
	B/SB-861	3	R50550	65 (450)	52	115	500	51.3	Ti
	B/SB-861	7	R52400	50 (345)	51	115	500	52	Ti–Pd
	B/SB-861	7H	R52400	58 (400)	51	115	500	52	Ti–Pd
	B/SB-861	16	R52402	50 (345)	51	115	500	51.2	Ti–Pd
	B/SB-861	16H	R52402	58 (400)	51	115	500	51.2	Ti–Pd
	B/SB-861	26	R52404	50 (345)	51	115	500	51.2	Ti–Ru
	B/SB-861	26H	R52404	58 (400)	51	115	500	51.2	Ti–Ru
	B/SB-861	12	R53400	70 (485)	52	115	500	52	Ti-0.3Mo-0.8Ni
	B/SB-861	38	R54250	130 (895)	54	115	500	53	Ti-4Al-2.5V-1.5Fe
	B/SB-861	9	R56320	90 (620)	53	115	500	53	Ti-3Al-2.5V
	B/SB-861	28	R56323	90 (620)	53	115	500	53	Ti-3Al-2.5V-0.1Ru
	B/SB-862	1	R50250	35 (240)	51	115	500	51.1	Ti
	B/SB-862	2	R50400	50 (345)	51	115	500	51.2	Ti
	B/SB-862	2H	R50400	58 (400)	51	115	500	51.2	Ti
				(

65 (450)

52

115

500

51.3

Ti

Table QW/QB-422 **Ferrous and Nonferrous P-Numbers**

Typical Product Form

Welded pipe Plate, sheet & strip Welded pipe Welded pipe Welded pipe Welded pipe Smls. pipe & tube

Welded tube Welded tube Welded tube

Welded pipe

Plate, sheet & strip Wrought pipe Smls. pipe Welded pipe Welded pipe Welded pipe

Rod

Copyright ASME International (BPVC) Provided by IHS under license with ASME No reproduction or networking permitted without license from IHS	
--	--

	Ferrous and Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)								
			Minimum Specified	Weld- ing	Bra	izing	ISO		
Spec. No.	Alloy, Type, or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	P-No.	AWS B2.2 BM	15608 Group	Nominal Composition	Typical Product Form
						lonferrous		•	
B/SB-862	7	R52400	50 (345)	51	115	500	52	Ti-Pd	Welded pipe
B/SB-862	7H	R52400	58 (400)	51	115	500	52	Ti–Pd	Welded pipe
B/SB-862	16	R52402	50 (345)	51	115	500	51.2	Ti–Pd	Welded pipe
B/SB-862	16H	R52402	58 (400)	51	115	500	51.2	Ti–Pd	Welded pipe
B/SB-862	26	R52404	50 (345)	51	115	500	51.2	Ti–Ru	Welded pipe
B/SB-862	26H	R52404	58 (400)	51	115	500	51.2	Ti–Ru	Welded pipe
B/SB-862	12	R53400	70 (485)	52	115	500	52	Ti-0.3Mo-0.8Ni	Welded pipe
B/SB-862	38	R54250	130 (895)	54	115	500	53	Ti-4Al-2.5V-1.5Fe	Welded pipe
B/SB-862	9	R56320	90 (620)	53	115	500	53	Ti-3Al-2.5V	Welded pipe
B/SB-862	28	R56323	90 (620)	53	115	500	53	Ti-3Al-2.5V-0.1Ru	Welded pipe
B/SB-928	5083	A95083	39 (270)	25	105	220	22.4	Al-4.4Mg-Mn	Plate & sheet > 1.5 in3 in. (38 mm-76 mm), incl.
B/SB-928	5086	A95086	35 (240)	25	105	220	22.4	Al-4.0Mg-Mn	Plate & sheet > 0.05 in2 in. (1.3 mm-51 mm incl.
B/SB-928	5456	A95456	41 (285)	25	105	220	22.4	Al-5.1Mg-Mn	Plate & sheet > 1.5 in.–3 in. (38 mm–76 mm), incl.
B/SB-956		C70600	40 (275)	34	107	300	34	90Cu-10Ni	Finned welded tube
B/SB-956		C70620	40 (275)	34	107	300	34	90Cu-10Ni	Finned welded tube
B/SB-956		C71500	52 (360)	34	107	300	34	70Cu-30Ni	Finned welded tube
B/SB-956		C71520	52 (360)	34	107	300	34	70Cu-30Ni	Finned welded tube
EN or SB/EN 1706	EN AC 43000		22 (150)	26	104	210	24.2	Al-10Si-Mg	Castings

169

Licensee=Khalda Petroleum/5986215001, Uset=Amer, Mohamed Not for Resale, 07/02/2019 13:22:09 MDT

QW-423 ALTERNATE BASE MATERIALS FOR WELDER QUALIFICATION

(19) QW-423.1 Base metal used for welder qualification may be substituted for the base metal specified in the WPS in accordance with the following table. Any base metal shown in the same row may be substituted in the performance qualification test coupon for the base metal(s) specified in the WPS followed during welder qualification. When a base metal shown in the left column of the table is used for welder qualification, the welder is qualified to weld all combinations of base metals shown in the right column, including unassigned metals of similar chemical composition to these metals.

Base Metal(s) Used for Performance Qualification	Base Metals Qualified
P-No. 1 through P-No. 15F, P-No. 34, or P-No. 41 through P-No. 49	P-No. 1 through P-No. 15F, P-No. 34, and P-No. 41 through P-No. 49
P-No. 21 through P-No. 26	P-No. 21 through P-No. 26
P-No. 51 through P-No. 53 or P-No. 61 or P-No. 62	P-No. 51 through P-No. 53 and P-No. 61 and P-No. 62
Any unassigned metal to the same unassigned metal	The unassigned metal to itself
Any unassigned metal to any P-Number metal	The unassigned metal to any metal assigned to the same P-Number as the qualified metal
Any unassigned metal to any other unassigned metal	The first unassigned metal to the second unassigned metal

QW-423.2 Metals used for welder qualification conforming to national or international standards or specifications may be considered as having the same P-Number as an assigned metal provided it meets the mechanical and chemical requirements of the assigned metal. The base metal specification and corresponding P-Number shall be recorded on the qualification record.

QW-424 BASE METALS USED FOR PROCEDURE QUALIFICATION

(19) QW-424.1 Base metals are assigned P-Numbers in Table QW/QB-422; metals that do not appear in Table QW/QB-422 are considered to be unassigned metals except as otherwise defined for base metals having the same UNS numbers. Unassigned metals shall be identified in the WPS and on the PQR by specification, type, and grade, or by chemical analysis and mechanical properties. The minimum tensile strength shall be defined by the organization that specified the unassigned metal if the tensile strength of that metal is not defined by the material specification.

Base Metal(s) Used for	
Procedure Qualification Coupon	Base Metals Qualified
One metal from a P-Number to any metal from the same P-Number	Any metals assigned that P-Number
One metal from a P-Number to any metal from any other P-Number	Any metal assigned the first P-Number to any metal assigned the second P-Number
One metal from P-No. 15E to any metal from P-No. 15E	Any P-No. 15E or 5B metal to any metal assigned P-No. 15E or 5B
One metal from P-No. 15E to any metal from any other P-Number	Any P-No. 15E or 5B metal to any metal assigned the second P-Number
One metal from P-No. 3 to any metal from P-No. 3	Any P-No. 3 metal to any metal assigned P-No. 3 or 1
One metal from P-No. 4 to any metal from P-No. 4	Any P-No. 4 metal to any metal assigned P-No. 4, 3, or 1
One metal from P-No. 5A to any metal from P-No. 5A	Any P-No. 5A metal to any metal assigned P-No. 5A, 4, 3, or 1
One metal from P-No. 5A to a metal from P-No. 4, or P-No. 3, or P-No. 1	Any P-No. 5A metal to any metal assigned to P-No. 4, 3, or 1
One metal from P-No. 4 to a metal from P-No. 3 or P-No. 1	Any P-No. 4 metal to any metal assigned to P-No. 3 or 1
Any unassigned metal to the same unassigned metal	The unassigned metal to itself
Any unassigned metal to any P-Number metal	The unassigned metal to any metal assigned to the same P-Number as the qualified metal
Any unassigned metal to any metal from P-No. 15E	The unassigned metal to any metal assigned P-No. 15E or 5B
Any unassigned metal to any other unassigned metal	The first unassigned metal to the second unassigned metal

QW-424.2 For welds joining base metals to weld metal buildup or corrosion-resistant weld metal overlay, the buildup or overlay portion of the joint may be substituted in the test coupon by any P-Number base material that nominally matches the chemical analysis of the buildup or overlay.

QW-430 F-NUMBERS

QW-431 GENERAL

The following F-Number grouping of electrodes and welding rods in Table QW-432 is based essentially on their usability characteristics, which fundamentally determine the ability of welders to make satisfactory welds with a given filler metal. This grouping is made to reduce the number of welding procedure and performance

qualifications, where this can logically be done. The grouping does not imply that base metals or filler metals within a group may be indiscriminately substituted for a metal that was used in the qualification test without consideration of the compatibility of the base and filler metals from the standpoint of metallurgical properties, postweld heat treatment design and service requirements, and mechanical properties.

Table QW-432 F-Numbers Grouping of Electrodes and Welding Rods for Qualification						
F-No.	ASME Specification	AWS Classification	UNS No.			
	Steel and St	eel Alloys				
1	SFA-5.1	EXX20				
1	SFA-5.1 SFA-5.1	EXX20				
1	SFA-5.1 SFA-5.1	EXX22 EXX24				
1	SFA-5.1	EXX27				
1	SFA-5.1	EXX28				
1	5171 5.1	LAALO				
1	SFA-5.4	EXXX(X)-26				
1	SFA-5.5	EXX20-X				
1	SFA-5.5	EXX27-X				
2	SFA-5.1	EXX12				
2	SFA-5.1 SFA-5.1	EXX12				
2	SFA-5.1 SFA-5.1	EXX13				
2	SFA-5.1	EXX19				
2	SFA-5.5	E(X)XX13-X				
-	5111 0.0	E(I)MIO N				
3	SFA-5.1	EXX10				
3	SFA-5.1	EXX11				
3	SFA-5.5	E(X)XX10-X				
3	SFA-5.5	E(X)XX11-X				
4	SFA-5.1	EXX15				
4	SFA-5.1	EXX16				
4	SFA-5.1	EXX18				
4	SFA-5.1	EXX18M				
4	SFA-5.1	EXX48				
4	SFA-5.4 other than austenitic and duplex	EVVV(V) 1E				
4	SFA-5.4 other than austenitic and duplex	EXXX(X)-15 EXXX(X)-16				
4	SFA-5.4 other than austenitic and duplex					
4	SFA-5.5 SFA-5.5	EXXX(X)-17 E(X)XX15-X				
4	SFA-5.5 SFA-5.5	E(X)XX16-X				
т	314-3.5					
4	SFA-5.5	E(X)XX18-X				
4	SFA-5.5	E(X)XX18M				
4	SFA-5.5	E(X)XX18M1				
4	SFA-5.5	E(X)XX45				
5	SFA-5.4 austenitic and duplex	EXXX(X)-15				
5	SFA-5.4 austenitic and duplex	EXXX(X)-16				
5	SFA-5.4 austenitic and duplex	EXXX(X)-17				
	-					
6	SFA-5.2	All classifications				
6	SFA-5.9	All classifications				
6	SFA-5.17	All classifications				
6 6	SFA-5.18 SFA-5.20	All classifications All classifications				

(19)

Table QW-432 F-Numbers Grouping of Electrodes and Welding Rods for Qualification (Cont'd)					
F-No.	ASME Specification	AWS Classification	UNS No.		
	Steel a	nd Steel Alloys (Cont'd)			
6	SFA-5.22	All classifications			
6	SFA-5.23	All classifications			
6	SFA-5.25	All classifications			
6	SFA-5.26	All classifications			
6	SFA-5.28	All classifications			
6	SFA-5.29	All classifications			
6	SFA-5.30	INMs-X			
6	SFA-5.30	IN5XX			
6	SFA-5.30	IN3XX(X)			
6	SFA-5.36	All classifications			
	Aluminu	ım and Aluminum Alloys			
21	SFA-5.3	E1100	A91100		
21	SFA-5.3	E3003	A93003		
21	SFA-5.10	ER1070	A91070		
21	SFA-5.10	ER1080A	A91080		
21	SFA-5.10 SFA-5.10	ER1100	A91100		
21	SFA-5.10	ER1188	A91188		
21	SFA-5.10	ER1200	A91200		
21	SFA-5.10	ER1450	A91450		
21	SFA-5.10	ER3103	A93103		
21	SFA-5.10	R1070	A91070		
21	SFA-5.10	R1080A	A91080		
21	SFA-5.10	R1100	A91100		
21	SFA-5.10	R1100	A91188		
21	SFA-5.10 SFA-5.10	R1200	A91200		
21	SFA-5.10	R1450	A91200		
21	SFA-5.10 SFA-5.10	R3101	A91430 A93103		
22	SFA-5.10	ER5087	A95087		
22	SFA-5.10	ER5183	A95183		
22	SFA-5.10	ER5183A	A95183		
22 22	SFA-5.10 SFA-5.10	ER5187 ER5249	A95187 A95249		
22	SFA-5.10	ER5356	A95356		
22	SFA-5.10	ER5356A	A95356		
22	SFA-5.10	ER5554	A95554		
22	SFA-5.10	ER5556	A95556		
22	SFA-5.10	ER5556A	A95556		
22	SFA-5.10	ER5556B	A95556		
22	SFA-5.10	ER5556C	A95556		
22	SFA-5.10	ER5654	A95654		
22	SFA-5.10	ER5654A	A95654		
22	SFA-5.10	ER5754	A95754		
22	SFA-5.10	R5087	A95087		
22	SFA-5.10	R5183	A95183		
22	SFA-5.10	R5183A	A95183		
22	SFA-5.10	R5187	A95187		
22	SFA-5.10	R5249	A95249		
22	SFA-5.10	R5356	A95356		
22	SFA-5.10	R5356A	A95356		

172

F-No.	ASME Specification	AWS Classification	UNS No.
		nd Aluminum Alloys (Cont'd)	
22	SFA-5.10	R5554	A95554
22	SFA-5.10	R5556	A95556
22	SFA-5.10	R5556A	A95556
22	SFA-5.10	R5556B	A95556
22	SFA-5.10	R5556C	A95556
22	SFA-5.10	R5654	A95654
22	SFA-5.10	R5654A	A95654
22	SFA-5.10	R5054A	A95754
			1175751
23	SFA-5.3	E4043	A94043
23	SFA-5.10	ER4010	A94010
23	SFA-5.10	ER4018	A94018
23	SFA-5.10	ER4043	A94043
23	SFA-5.10	ER4043A	A94043
23	SFA-5.10	ER4046	A94046
23	SFA-5.10	ER4047	A94047
23	SFA-5.10	ER4047A	A94047
23	SFA-5.10	ER4643	A94643
23	SFA-5.10	ER4943	A94943
23	SFA-5.10	R4010	A94010
23	SFA-5.10	R4011	A94011
23	SFA-5.10	R4018	A94018
23	SFA-5.10	R-A356.0	A13560
23	SFA-5.10	R357.0	A03570
23	SFA-5.10	R-A357.0	A13570
23	SFA-5.10	R4043	A94043
23	SFA-5.10	R4043A	A94043
23	SFA-5.10	R4046	A94046
23	SFA-5.10	R4047A	A94047
23	SFA-5.10	R4047	A94047
23	SFA-5.10	R4643	A94643
23	SFA-5.10	R4943	A94943
25	SFA-5.10	ER2319	A92319
25	SFA-5.10	R2319	A92319
25	SFA-5.10	R206.0	A02060
26	SFA-5.10	ER4009	A94009
26	SFA-5.10	ER4145	A94145
26	SFA-5.10	R4009	A94009
26	SFA-5.10	R4145	A94145
26	SFA-5.10	R-C355.0	A33550
	Сорр	per and Copper Alloys	
31	SFA-5.6	ECu	W60189
31	SFA-5.7	ERCu	C18980
32	SFA-5.6	ECuSi	W60656
32	SFA-5.7	ERCuSi-A	C65600
33	SFA-5.6	ECuSn-A	W60518
33	SFA-5.6	ECuSn-C	W60521
33	SFA-5.7	ERCuSn-A	C51800
33	SFA-5.7	ERCuSn-C	C52100
34	SFA-5.6	ECuNi	W60715
34 34	SFA-5.6 SFA-5.7	ERCUNI	C71580

T-610 0W-432

F-No.	ASME Specification	AWS Classification	UNS No.
	Copper a	nd Copper Alloys (Cont'd)	
34	SFA-5.30	IN67	C71581
35	SFA-5.8	RBCuZn-A	C47000
35	SFA-5.8	RBCuZn-B	C68000
35	SFA-5.8	RBCuZn-C	C68100
35	SFA-5.8	RBCuZn-D	C77300
36	SFA-5.6	ECuAl-A2	W60614
36	SFA-5.6	ECuAl-B	W60619
36	SFA-5.7	ERCuAl-A1	C61000
36	SFA-5.7	ERCuAl-A2	C61800
36	SFA-5.7	ERCuAl-A3	C62400
37	SFA-5.6	ECuMnNiAl	C60633
37	SFA-5.6	ECuNiAl	C60632
37	SFA-5.7	ERCuMnNiAl	C63380
37	SFA-5.7	ERCuNiAl	C63280
	Nic	kel and Nickel Alloys	
41	SFA-5.11	ENi-1	W82141
41	SFA-5.14	ERNi-1	N02061
41	SFA-5.30	IN61	N02061
42	SFA-5.11	ENiCu-7	W84190
42	SFA-5.14	ERNiCu-7	N04060
42	SFA-5.14	ERNiCu-8	N05504
42	SFA-5.30	IN60	N0406

Table OW-132

	41	SFA-5.11	ENi-1	W82141
	41	SFA-5.14	ERNi-1	N02061
	41	SFA-5.30	IN61	N02061
	42	SFA-5.11	ENiCu-7	W84190
	42	SFA-5.14	ERNiCu-7	N04060
	42	SFA-5.14	ERNiCu-8	N05504
	42	SFA-5.30	IN60	N04060
	43	SFA-5.11	ENiCr-4	W86172
	43	SFA-5.11	ENiCrCoMo-1	W86117
	43	SFA-5.11	ENiCrFe-1	W86132
	43	SFA-5.11	ENiCrFe-2	W86133
	43	SFA-5.11	ENiCrFe-3	W86182
	43	SFA-5.11	ENiCrFe-4	W86134
	43	SFA-5.11	ENiCrFe-7	W86152
	43	SFA-5.11	ENiCrFe-9	W86094
	43	SFA-5.11	ENiCrFe-10	W86095
	43	SFA-5.11	ENiCrFe-12	W86025
	43	SFA-5.11	ENiCrMo-2	W86002
	43	SFA-5.11	ENiCrMo-3	W86112
	43	SFA-5.11	ENiCrMo-4	W80276
	43	SFA-5.11	ENiCrMo-5	W80002
	43	SFA-5.11	ENiCrMo-6	W86620
	43	SFA-5.11	ENiCrMo-7	W86455
	43	SFA-5.11	ENiCrMo-10	W86022
3	43	SFA-5.11	ENiCrMo-12	W86032
	43	SFA-5.11	ENiCrMo-13	W86059
	43	SFA-5.11	ENiCrMo-14	W86026
	43	SFA-5.11	ENiCrMo-17	W86200
L.	43	SFA-5.11	ENiCrMo-18	W86650
5	43	SFA-5.11	ENiCrMo-19	W86058
	43	SFA-5.11	ENiCrWMo-1	W86231
i) T	43	SFA-5.14	ERNiCr-3	N06082
	43	SFA-5.14	ERNiCr-4	N06072
	43	SFA-5.14	ERNiCr-6	N06076

	Table QW-432 F-Numbers Grouping of Electrodes and Welding Rods for Qualification (Cont'd)						
F-No.	ASME Specification	AWS Classification	UNS No.				
		Nickel and Nickel Alloys (Cont'd)					
43	SFA-5.14	ERNiCr-7	N06073				
43	SFA-5.14	ERNiCrCoMo-1	N06617				
43	SFA-5.14	ERNiCrFe-5	N06062				
43	SFA-5.14	ERNiCrFe-6	N07092				
43	SFA-5.14	ERNiCrFe-7	N06052				
43	SFA-5.14	ERNiCrFe-7A	N06054				
43	SFA-5.14	ERNiCrFe-8	N07069				
43	SFA-5.14	ERNiCrFe-11	N06601				
43	SFA-5.14	ERNiCrFe-12	N06025				
43	SFA-5.14	ERNiCrFe-13	N06055				
43	SFA-5.14	ERNiCrFe-14	N06043				
43	SFA-5.14	ERNiCrFeAl-1	N06693				
43	SFA-5.14	ERNiCrMo-2	N06002				
43	SFA-5.14	ERNiCrMo-3	N06625				
43	SFA-5.14	ERNiCrMo-4	N10276				
43	SFA-5.14	ERNiCrMo-7	N06455				
43	SFA-5.14	ERNiCrMo-10	N06022				
43	SFA-5.14	ERNiCrMo-13	N06059				
43	SFA-5.14	ERNiCrMo-14	N06686				
43	SFA-5.14	ERNiCrMo-16	N06057				
43	SFA-5.14	ERNiCrMo-17	N06200				
43	SFA-5.14	ERNiCrMo-18	N06650				
43	SFA-5.14	ERNiCrMo-19	N06058				
43	SFA-5.14	ERNiCrMo-20	N06660				
43	SFA-5.14	ERNiCrMo-21	N06205				
43	SFA-5.14	ERNiCrMo-22	N06035				
43	SFA-5.14	ERNiCrWMo-1	N06231				
43	SFA-5.30	IN52	N06052				
43	SFA-5.30	IN62	N06062				
43	SFA-5.30	IN6A	N07092				
43	SFA-5.30	IN82	N06082				
43	SFA-5.34	All classifications					
44	SFA-5.11	ENiMo-1	W80001				
44	SFA-5.11	ENiMo-3	W80004				
44	SFA-5.11	ENiMo-7	W80665				
44	SFA-5.11	ENiMo-8	W80008				
44	SFA-5.11	ENiMo-9	W80009				
44	SFA-5.11	ENiMo-10	W80675				
44	SFA-5.11	ENiMo-11	W80629				
44	SFA-5.14	ERNiMo-1	N10001				
44	SFA-5.14	ERNiMo-2	N10003				
44	SFA-5.14	ERNiMo-3	N10004				
44	SFA-5.14	ERNiMo-7	N10665				
44	SFA-5.14 SFA-5.14	ERNIMO-7 ERNiMo-8	N10008				
44	SFA-5.14	ERNIMO-8 ERNIMO-9	N10009				
44	SFA-5.14 SFA-5.14	ERNIMO-9 ERNiMo-10	N10675				
44	SFA-5.14	ERNiMo-10 ERNiMo-11	N10675				
44	SFA-5.14	ERNiMo-11 ERNiMo-12	N10242				
45	SFA-5.11	ENiCrMo-1	W86007				
45	SFA-5.11 SFA-5.11	ENICIMO-1 ENICrMo-9	W86985				
45	SFA-5.11	ENICrMo-11	W86030				

Table 0W-432

-No.	ASME Specification	AWS Classification	UNS No.
	Nickola	nd Nickel Alloys (Cont'd)	
45	SFA-5.14	ERNiCrMo-1	N06007
45	SFA-5.14	ERNICIMO-1 ERNICrMo-8	N06007
45	5FA-5.14	EKNICI MO-O	100975
45	SFA-5.14	ERNiCrMo-9	N06985
45	SFA-5.14	ERNiCrMo-11	N06030
45	SFA-5.14	ERNiFeCr-1	N08065
10	CEA E 11	EN:CEEC: 1	WOCOAF
46 46	SFA-5.11 SFA-5.14	ENiCrFeSi-1 ERNiCrFeSi-1	W86045 N06045
46	SFA-5.14	ERNiCoCrSi-1	N00043 N12160
40	517-5.14	EKINCOCI 5I-1	N12100
	Titaniu	um and Titanium Alloys	
51	SFA-5.16	ERTi-1	R50100
51	SFA-5.16	ERTi-11	R52251
51	SFA-5.16	ERTi-13	R53423
51	SFA-5.16	ERTi-17	R52253
51	SFA-5.16	ERTi-27	R52255
51	SFA-5.16	ERTi-2	R50120
51	SFA-5.16	ERTi-7	R52401
51	SFA-5.16	ERTi-14	R53424
51	SFA-5.16	ERTi-16	R52403
51	SFA-5.16	ERTi-26	R52405
51	SFA-5.16	ERTi-30	R53531
51	SFA-5.16	ERTi-33	R53443
51	SFA-5.16	ERTi-3	R50125
51	SFA-5.16	ERTi-15A	R53416
51	SFA-5.16	ERTi-31	R53533
51	SFA-5.16	ERTi-34	R53444
52	SFA-5.16	ERTi-4	R50130
53	SFA-5.16	ERTi-9	R56320
53	SFA-5.16	ERTi-9ELI	R56321
53	SFA-5.16	ERTi-18	R56326
53	SFA-5.16	ERTi-28	R56324
54	SFA-5.16	ERTi-12	R53400
55	SFA-5.16	ERTi-5	R56400
55	SFA-5.16	ERTI-23	R56408
55	SFA-5.16	ERTi-29	R56414
55	SFA-5.16	ERTi-24	R56415
55	SFA-5.16	ERTi-25	R56413
55	SFA-5.16	ERTi-38	R54251
56	SFA-5.16	ERTi-32	R55112
50			K35112
		um and Zirconium Alloys	
61	SFA-5.24	ERZr2	R60702
61	SFA-5.24	ERZr3	R60704
61	SFA-5.24	ERZr4	R60705
	Hard-Fa	ncing Weld Metal Overlay	
71	SFA-5.13	ECoCr-A	W73006
71	SFA-5.13	ECoCr-B	W73012
71	SFA-5.13	ECoCr-C	W73001
71	SFA-5.13	ECoCr-E	W73021

Table QW-432

-	Welding Rods for Qualification	-	
UNS No.	AWS Classification	ASME Specification	F-No.
	Weld Metal Overlay (Cont'd)	Hard-Facing	
W60617	ECuAl-A2	SFA-5.13	71
W60619	ECuAl-B	SFA-5.13	71
W60625	ECuAl-C	SFA-5.13	71
W61625	ECuAl-D	SFA-5.13	71
W62625	ECuAl-E	SFA-5.13	71
W60633	ECuMnNiAl	SFA-5.13	71
W60715	ECuNi	SFA-5.13	71
W60632	ECUNIAI	SFA-5.13 SFA-5.13	71 71
W60652 W60656	ECuSi	SFA-5.13	71
W60518	ECuSi ECuSn-A	SFA-5.13	71
W60518 W60521	ECuSh-A ECuSh-C	SFA-5.13 SFA-5.13	71 71
W80321	ECUSII-C	SFA-3.15	/1
W74001	EFe1	SFA-5.13	71
W74002	EFe2	SFA-5.13	71
W74003	EFe3	SFA-5.13	71
W74004	EFe4	SFA-5.13	71
W75110	EFe5	SFA-5.13	71
W77510	EFe6	SFA-5.13	71
W77610	EFe7	SFA-5.13	71
W74011	EFeCr-A1A	SFA-5.13	71
W74012	EFeCr-A2	SFA-5.13	71
W74013	EFeCr-A3	SFA-5.13	71
W74014	EFeCr-A4	SFA-5.13	71
W74015	EFeCr-A5	SFA-5.13	71
W74016	EFeCr-A6	SFA-5.13	71
W74017	EFeCr-A7	SFA-5.13	71
W74018	EFeCr-A8	SFA-5.13	71
W74211	EFeCr-E1	SFA-5.13	71
W74212	EFeCr-E2	SFA-5.13	71
W74213	EFeCr-E3	SFA-5.13	71
W74214	EFeCr-E4	SFA-5.13	71
W79110	EFeMn-A	SFA-5.13	71
W79310	EFeMn-B	SFA-5.13	71
W79210	EFeMn-C	SFA-5.13	71
			71
W79410 W79510	EFeMn-D EFeMn-E	SFA-5.13 SFA-5.13	71
W79510 W79610	EFeMn-F	SFA-5.13	71
W79710	EFeMnCr	SFA-5.13	71
W89606	ENiCr-C	SFA-5.13	71
W83002	ENiCrFeCo	SFA-5.13	71
W80002	ENiCrMo-5A	SFA-5.13	71
	EWCX-12/30	SFA-5.13	71
	EWCX-20/30	SFA-5.13	71
	EWCX-30/40	SFA-5.13	71 71
	EWCX-40 EWCX-40/120	SFA-5.13 SFA-5.13	71 71
W73036	ERCCoCr-A	SFA-5.21	72
W73042	ERCCoCr-B	SFA-5.21	72
W73031	ERCCoCr-C	SFA-5.21	72
W73041 W73032	ERCCoCr-E ERCCoCr-G	SFA-5.21 SFA-5.21	72 72

Table OW 422

-No.	ASME Specification	AWS Classification	UNS No.
	Hard-Facing	Weld Metal Overlay (Cont'd)	
70	_		W(0(10
72	SFA-5.21	ERCCuAl-A2	W60618
72	SFA-5.21	ERCCuAl-A3	W60624
72	SFA-5.21	ERCCuAl-C	W60626
72	SFA-5.21	ERCCuAl-D	W61626
72	SFA-5.21	ERCCuAl-E	W62626
72	SFA-5.21	ERCCuSi-A	W60657
72	SFA-5.21	ERCCuSn-A	W60518
72	SFA-5.21	ERCCuSn-D	W60524
72	SFA-5.21	ERCFe-1	W74030
72	SFA-5.21	ERCFe-1A	W74031
72	SFA-5.21	ERCFe-2	W74032
72	SFA-5.21	ERCFe-3	W74033
72	SFA-5.21	ERCFe-5	W74035
72	SFA-5.21	ERCFe-6	W77530
72	SFA-5.21	ERCFe-8	W77538
72	SFA-5.21	ERCFeCr-A	W74531
72			W74531 W74530
	SFA-5.21	ERCFeCr-A1A	
72	SFA-5.21	ERCFeCr-A3A	W74533
72	SFA-5.21	ERCFeCr-A4	W74534
72	SFA-5.21	ERCFeCr-A5	W74535
72	SFA-5.21	ERCFeCr-A9	W74539
72	SFA-5.21	ERCFeCr-A10	W74540
72	SFA-5.21	ERCFeMn-C	W79230
72	SFA-5.21	ERCFeMn-F	W79630
72	SFA-5.21	ERCFeMn-G	W79231
72	SFA-5.21	ERCFeMn-H	W79232
72	SFA-5.21	ERCFeMnCr	W79730
72	SFA-5.21	ERCNiCr-A	W89634
72	SFA-5.21	ERCNICI-A ERCNICI-B	W89635
72	SFA-5.21	ERCNICr-C	W89635 W89636
72	SFA-5.21	ERCNiCrFeCo	W83032
72	SFA-5.21	ERCNiCrMo-5A	W80036
72	SFA-5.21	ERCoCr-A	R30006
72	SFA-5.21	ERCoCr-B	R30012
72	SFA-5.21	ERCoCr-C	R30001
72	SFA-5.21	ERCoCr-E	R30021
72	SFA-5.21	ERCoCr-F	R30002
72	SFA-5.21	ERCoCr-G	R30014
72	SFA-5.21	ERCuAl-A2	C61800
72	SFA-5.21	ERCuAl-A3	C62400
72	SFA-5.21	ERCuAl-C	C62580
72	SFA-5.21	ERCuAl-D	C62581
72	SFA-5.21	ERCuAl-E	C62582
72	SFA-5.21	ERCuSi-A	C65600
72	SFA-5.21	ERCuSn-A	C51800
72	SFA-5.21	ERCuSn-D	C52400
72	SFA-5.21	ERFe-1	T74000
72	SFA-5.21	ERFe-1A	T74000
72	SFA-5.21	ERFe-2	T74001 T74002
72 72	SFA-5.21 SFA-5.21	ERFe-3	T74002

Table QW-432

Grouping of Electrodes and Welding Rods for Qualification (Cont'd)						
F-No.	ASME Specification	AWS Classification	UNS No.			
	Hard-Facing	Weld Metal Overlay (Cont'd)				
72	SFA-5.21	ERFe-5	T74005			
72	SFA-5.21	ERFe-6	T74006			
72	SFA-5.21	ERFe-8	T74008			
72	SFA-5.21	ERFeCr-A				
72	SFA-5.21	ERFeCr-A1A				
72	SFA-5.21	ERFeCr-A3A				
72	SFA-5.21	ERFeCr-A4				
72	SFA-5.21	ERFeCr-A5				
72	SFA-5.21	ERFeCr-A9				
72	SFA-5.21	ERFeCr-A10				
72	SFA-5.21	ERFeMn-C				
72	SFA-5.21	ERFeMn-F				
72	SFA-5.21	ERFeMn-G				
72	SFA-5.21	ERFeMn-H				
72	SFA-5.21	ERFeMnCr				
72	SFA-5.21	ERNiCr-A	N99644			
72	SFA-5.21	ERNiCr-B	N99645			
72	SFA-5.21	ERNiCr-C	N99646			
72	SFA-5.21	ERNiCr-D	N99647			
72	SFA-5.21	ERNiCr-E	N99648			
72	SFA-5.21	ERNiCrFeCo	F46100			
72	SFA-5.21	ERNiCrMo-5A	N10006			
72	SFA-5.21	ERWCX-20/30				
72	SFA-5.21	ERWCX-30/40				
72	SFA-5.21	ERWCX-40				
72	SFA-5.21	ERWCX-40/120				
72	SFA-5.21	RWCX-20/30				
72	SFA-5.21	RWCX-30/40				
72	SFA-5.21	RWCX-40				
72	SFA-5.21	RWCX-40/120				

QW-433 ALTERNATE F-NUMBERS FOR WELDER PERFORMANCE QUALIFICATION

The following tables identify the filler metal or electrode that the welder used during qualification testing as "Qualified With," and the electrodes or filler metals that the welder is qualified to use in production welding as "Qualified For." See Table QW-432 for the F-Number assignments.

Qualified With → Qualified For ↓	F-No. 1 With Backing	F-No. 1 Without Backing	F-No. 2 With Backing	F-No. 2 Without Backing	F-No. 3 With Backing	F-No. 3 Without Backing	F-No. 4 With Backing	F-No. 4 Without Backing	F-No. 5 With Backing	F-No. 5 Without Backing
F-No. 1 With Backing	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
F-No. 1 Without Backing		Х								
F-No. 2 With Backing			Х	Х	Х	Х	Х	Х		
F-No. 2 Without Backing				Х						
F-No. 3 With Backing					Х	Х	Х	Х		
F-No. 3 Without Backing						Х				
F-No. 4 With Backing							Х	Х		
F-No. 4 Without Backing								Х		
F-No. 5 With Backing									Х	Х
F-No. 5 Without Backing										Х
		Qualified With Qualified For								
	Any F-	No. 6		А	All F-No. 6 [Note (1)]					
	Any F-	No. 21 thre	ough F-No.	26 A	ll F-No. 21	through F-	No. 26			
	5		o. 32, F-No 36, or F-No		only the san used durin test	ne F-Numbo ng the qual				
		34 or any F- 5. 46	No. 41 thro	ough F	-No. 34 and through F		1			
	Any F-	No. 51 thre	ough F-No.	55 A	ll F-No. 51	through F-	No. 55			
	Any F-	No. 61		All F-No. 61						
	Any F-No. 71 through F-No. 72 Only the samused during test									
	(1) D SI	NOTE: (1) Deposited weld metal made using a bare rod not covered by an SFA Specification but which conforms to an analysis listed in Table QW-442 shall be considered to be classified as F-No. 6.				listed in				

QW-440 WELD METAL CHEMICAL COMPOSITION

QW-441 GENERAL

Identification of weld metal chemical composition designated on the PQR and WPS shall be as given in QW-404.5.

	Classification of Ferro	Table QW-442 A-Numbers rous Weld Metal Analysis for Procedure Qualification					
	Analysis, % [Note (1)] and [Note (2)]						
A-No.	Types of Weld Deposit	С	Cr	Мо	Ni	Mn	Si
1	Mild Steel	0.20	0.20	0.30	0.50	1.60	1.0
2	Carbon-Molybdenum	0.15	0.50	0.40-0.65	0.50	1.60	1.0
3	Chrome (0.4% to 2%)-Molybdenum	0.15	0.40-2.00	0.40-0.65	0.50	1.60	1.0
4	Chrome (2% to 4%)-Molybdenum	0.15	2.00-4.00	0.40-1.50	0.50	1.60	2.0
5	Chrome (4% to 10.5%)-Molybdenum	0.15	4.00-10.5	0.40-1.50	0.80	1.20	2.0
6	Chrome-Martensitic	0.15	11.0-15.0	0.70	0.80	2.00	1.0
7	Chrome-Ferritic	0.15	11.0-30.0	1.00	0.80	1.00	3.0
8	Chromium-Nickel	0.15	14.5-30.0	4.00	7.50-15.0	2.50	1.0
9	Chromium-Nickel	0.30	19.0-30.0	6.00	15.0-37.0	2.50	1.0
10	Nickel to 4%	0.15	0.50	0.55	0.80-4.00	1.70	1.0
11	Manganese-Molybdenum	0.17	0.50	0.25-0.75	0.85	1.25-2.25	1.0
12	Nickel-Chrome—Molybdenum	0.15	1.50	0.25-0.80	1.25-2.80	0.75-2.25	1.0

(1) Single values shown above are maximum.

(2) Only listed elements are used to determine A-numbers.

QW-450	SPECIMENS
QW-451	PROCEDURE QUALIFICATION THICKNESS LIMITS AND TEST SPECIMENS

	Table QW-451.1 Groove-Weld Tension Tests and Transv				ests		
	Base M	of Thickness <i>T</i> of Aetal, Qualified, in. (mm) L)] and [Note (2)]	. Maximum Thickness t of	Type and Number of Tests Required (Tension an Guided-Bend Tests) [Note (2)]			
Thickness <i>T</i> of Test Coupon, Welded, in. (mm)	Min.	Max.	Deposited Weld Metal, Qualified, in. (mm) [Note (1)] and [Note (2)]	Tension, QW-150	Side Bend, <mark>QW-160</mark>	Face Bend, <mark>QW-160</mark>	Root Bend, <mark>QW-160</mark>
Less than ¹ / ₁₆ (1.5)	Т	2 <i>T</i>	2 <i>t</i>	2		2	2
$\frac{1}{16}$ to $\frac{3}{8}$ (1.5 to 10), incl.	¹ / ₁₆ (1.5)	2 <i>T</i>	2 <i>t</i>	2	[Note (5)]	2	2
Over ³ / ₈ (10), but less than ³ / ₄ (19)	³ / ₁₆ (5)	2 <i>T</i>	2 <i>t</i>	2	[Note (5)]	2	2
$\frac{3}{4}$ (19) to less than $1\frac{1}{2}$ (38)	³ / ₁₆ (5)	27	$2t$ when $t < \frac{3}{4}$ (19)	2 [Note (4)]	4		
$\frac{3}{4}$ (19) to less than $1\frac{1}{2}$ (38)	³ / ₁₆ (5)	2T	$2T$ when $t \ge \frac{3}{4}$ (19)	2 [Note (4)]	4		
1 ¹ / ₂ (38) to 6 (150), incl.	³ / ₁₆ (5)	8 (200) [Note (3)]	$2t$ when $t < \frac{3}{4}$ (19)	2 [Note (4)]	4		
1 ¹ / ₂ (38) to 6 (150), incl.	³ / ₁₆ (5)	8 (200) [Note (3)]	8 (200) [Note (3)] when $t \ge \frac{3}{4}$ (19)	2 [Note (4)]	4		
Over 6 (150) [Note (6)]	³ / ₁₆ (5)	1.33 <i>T</i>	$2t$ when $t < \frac{3}{4}(19)$	2 [Note (4)]	4		
Over 6 (150) [Note (6)]	³ / ₁₆ (5)	1.33 <i>T</i>	1.33 <i>T</i> when $t \ge \frac{3}{4}$ (19)	2 [Note (4)]	4		

NOTES:

(1) The following variables further restrict the limits shown in this table when they are referenced in QW-250 for the process under consideration: QW-403.9, QW-403.10, and QW-404.32. Also, QW-202.2, QW-202.3, and QW-202.4 provide exemptions that supersede the limits of this table.

(2) For combination of welding procedures, see QW-200.4.

(3) For the SMAW, SAW, GMAW, PAW, LLBW, and GTAW welding processes only; otherwise per Note (1) or 2*T*, or 2*t*, whichever is applicable.

(4) see QW-151.1, QW-151.2, and QW-151.3 for details on multiple specimens when coupon thicknesses are over 1 in. (25 mm).

(5) Four side-bend tests may be substituted for the required face- and root-bend tests, when thickness T is $\frac{3}{8}$ in. (10 mm) and over.

(6) For test coupons over 6 in. (150 mm) thick, the full thickness of the test coupon shall be welded.

	Groove-Wel		able QW-451.2 Tests and Longitu	Idinal-Bend	Tests	
	Base Metal (mm) [No	iickness <i>T</i> of Qualified, in. te (1)] and e (2)]	Thickness t of Deposited Weld Metal Qualified, in. (mm) [Note (1)] and [Note (2)]	J I	per of Tests Requin d-Bend Tests) [No	
Thickness <i>T</i> of Test Coupon Welded, in. (mm)	Min.	Max.	Max.	Tension, QW-150	Face Bend, QW-160	Root Bend, QW-160
Less than $\frac{1}{16}$ (1.5)	Т	2T	2 <i>t</i>	2	2	2
$\frac{1}{16}$ to $\frac{3}{8}$ (1.5 to 10), incl.	¹ / ₁₆ (1.5)	2T	2 <i>t</i>	2	2	2
Over $\frac{3}{8}$ (10)	$\frac{3}{16}(5)$	2T	2 <i>t</i>	2	2	2

NOTES:

(1) The following variables further restrict the limits shown in this table when they are referenced in QW-250 for the process under consideration: QW-403.9, QW-403.10, and QW-404.32. Also, QW-202.2, QW-202.3, and QW-202.4 provide exemptions that supersede the limits of this table.

(2) For combination of welding procedures, see QW-200.4.

Table QW-451.3 Fillet-Weld Tests

Type of Joint	Thickness of Test Coupons as Welded, in.	Range Qualified	Type and Number of Tests Required [Figure QW-462.4(a) or Figure QW-462.4(d)] Macro
Fillet	Per Figure QW-462.4(a)	All fillet sizes on all base metal thicknesses and all diameters	5
Fillet	Per Figure QW-462.4(d)		4

	GENERAL NOTE:	A production assembl	y mockup may	y be substituted in accordance with (W-181.1.1.
--	---------------	----------------------	--------------	---------------------------------------	------------

Table QW-451.4 Fillet Welds Qualified by Groove-Weld Tests

(Plate or Pipe) as Welded	Range Qualified	Type and Number of Tests Required
All groove tests	All fillet sizes on all base metal thicknesses and all diameters	Fillet welds are qualified when the groove weld is qualified in accordance with either Table QW-451.1 or Table OW-451.2 (see OW-202.2)

(**19**)

(**19**)

QW-452 PERFORMANCE QUALIFICATION THICKNESS LIMITS AND TEST SPECIMENS

QW-452.1 Groove-Weld Test. The following tables identify the required type and number of tests and the thickness of weld metal qualified.

(**19**)

Table QW-452.1(a) Test Specimens				
	Type and N	umber of Examina	tions and Test Specim	ens Required
Thickness of Weld Metal, in. (mm)	Visual Examination per QW-302.4	Side Bend QW-462.2 [Note (1)]	Face Bend QW-462.3(a) or QW-462.3(b) [Note (1)], [Note (2)]	Root Bend QW-462.3(a) or QW-462.3(b) [Note (1)], [Note (2)]
Less than 3/8 (10)	Х		1	1
³ / ₈ (10) to less than ³ / ₄ (19)	Х	2 [Note (3)]		
³ / ₄ (19) and over	Х	2		

GENERAL NOTE: The "Thickness of Weld Metal" is the total weld metal thickness deposited by all welders and all processes in the test coupon exclusive of the weld reinforcement.

NOTES:

- (1) To qualify using positions 5G or 6G, a total of four bend specimens are required. To qualify using a combination of 2G and 5G in a single test coupon, a total of six bend specimens are required. see QW-302.3. The type of bend test shall be based on weld metal thickness.
- (2) Coupons tested by face and root bends shall be limited to weld deposit made by one welder with one or two processes or two welders with one process each. Weld deposit by each welder and each process shall be present on the convex surface of the appropriate bent specimen.
- (3) One face and root bend may be substituted for the two side bends. For a test coupon welded in the 5G or 6G position, two face and two root bends may be substituted for the four side bends in accordance with Figure QW-463.2(d). For a test coupon welded using a combination of 2G and 5G positions, three face and three root bends may be substituted for the six side bends in accordance with Figure QW-463.2(f) or Figure QW-463.2(g).

Table QW-4 Thickness of Weld	
Thickness, <i>t</i> , of Weld Metal in the Coupon, in. (mm) [Note (1)] and [Note (2)]	Thickness of We Metal Qualified [Note (3)]
All	2t
¹ / ₂ (13) and over with a minimum of three layers	Maximum to be welded
NOTES:	
 When more than one welder, prables is used during welding of of the weld metal in the coupon each process, and with each set determined and used individual Metal in the Coupon" column to Weld Metal Qualified." Two or more pipe test coupo thickness may be used to determ qualified and that thickness n welds to the smallest diameter fied in accordance with Table Q 	a test coupon, the thickness, <i>t</i> deposited by each welder, for of essential variables shall be ly in the "Thickness, <i>t</i> , of Weld o determine the "Thickness o ns with different weld meta mine the weld metal thickness hay be applied to production for which the welder is quali
 (3) Thickness of test coupon of ³/₄ used for qualifying a combinat 	in. (19 mm) or over shall be

	e QW-452.3 Id Diameter Lim	iits
Outside Diameter of Test	Outside Diameter Qualified, in. (mm)	
Coupon, in. (mm)	Min.	Max.
Less than 1 (25)	Size welded	Unlimited
1 (25) to $2^{7}/_{8}$ (73)	1 (25)	Unlimited
Over $2^{7}/_{8}$ (73)	$2^{7}/_{8}$ (73)	Unlimited

Table QW-452.4 Small Diameter Fillet-Weld Test

Outside Diameter of Test Coupon, in. (mm)	Minimum Outside Diameter, Qualified, in. (mm)	Qualified Thick- ness
Less than 1 (25)	Size welded	All
1 (25) to $2^{7}/_{8}$ (73)	1 (25)	All
Over $2^{7}/_{8}$ (73)	2 ⁷ / ₈ (73)	All

GENERAL NOTES:

(a) Type and number of tests required shall be in accordance with Table QW-452.5.

(b) $2\frac{7}{8}$ in. (73 mm) O.D. is considered the equivalent of NPS $2\frac{1}{2}$ (DN 65).

Thickness of Test		Fillet-Weld Test	Type and Number of Tests Required [Figure QW-462.4(b) o	
Type of Joint	Coupon as Welded, in. (mm)	Qualified Range	Macro	W-462.4(c)] Fracture
Tee fillet [Figure QW-462.4(b)]	$^{3}/_{16}$ (5) or greater	All base material thicknesses, fillet sizes, and diameters 2 ⁷ / ₈ (73) 0.D. and over [Note (1)]	1	1
	Less than $\frac{3}{16}$ (5)	<i>T</i> to 2 <i>T</i> base material thickness, <i>T</i> maximum fillet size, and all diameters $2^{7}/_{8}$ (73) O.D. and over [Note (1)]	1	1

(1) Test coupon prepared as shown in Figure QW-462.4(b) for plate or Figure QW-462.4(c) for pipe.

(2) 2⁷/₈ in. (73 mm) O.D. is considered the equivalent of NPS 2¹/₂ (DN 65). For smaller diameter qualifications, refer to Table QW-452.4 or Table QW-452.6.

(**19**)

Table QW-452.6 Fillet Qualification by Groove-Weld Tests							
Type of Joint	Thickness of Test Coupon as Welded, in. (mm)	Qualified Range	Type and Number of Tests Required				
Any groove	All thicknesses	All base material thicknesses, fillet sizes, and diameters	Fillet welds are qualified when a welder or welding operator qualifies on a groove weld test				

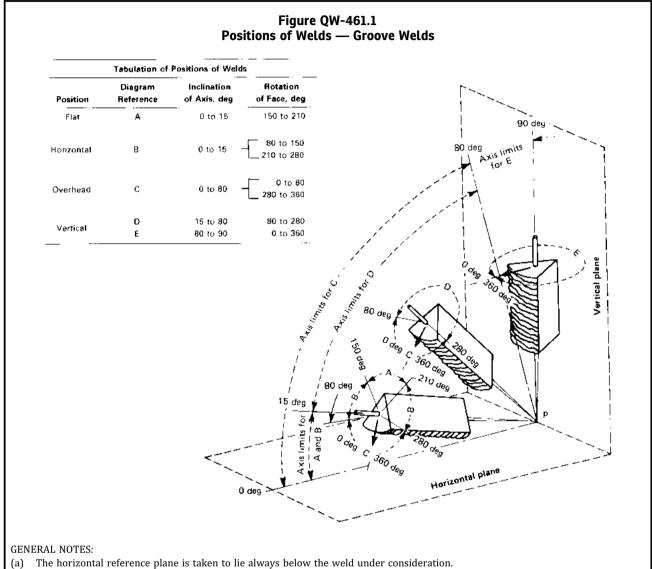
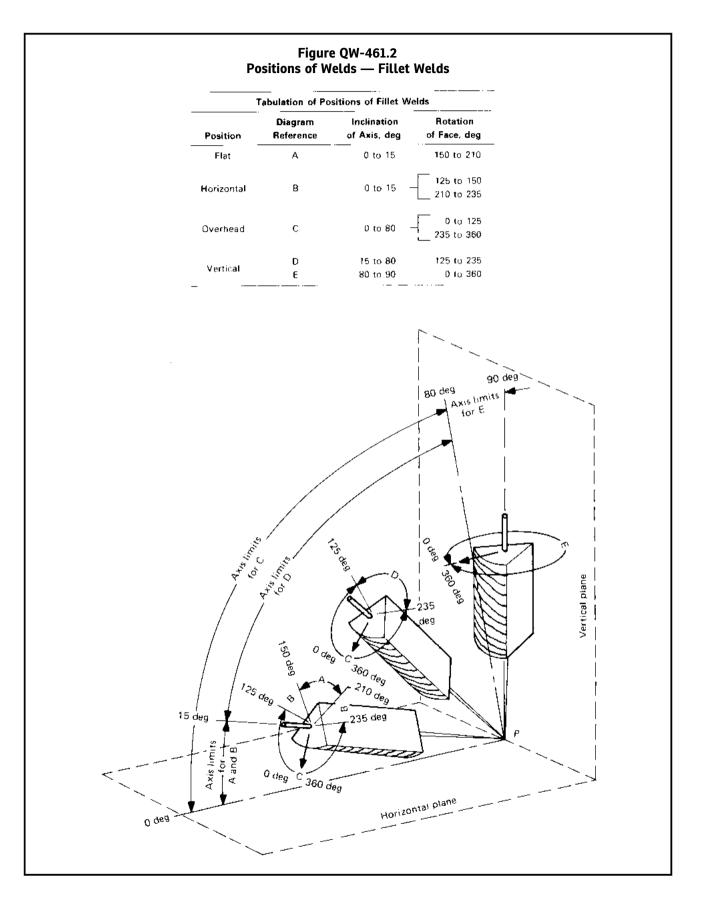
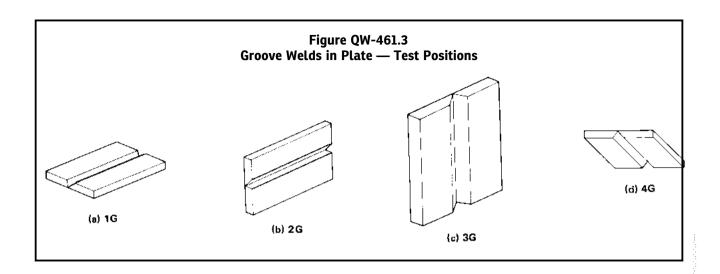
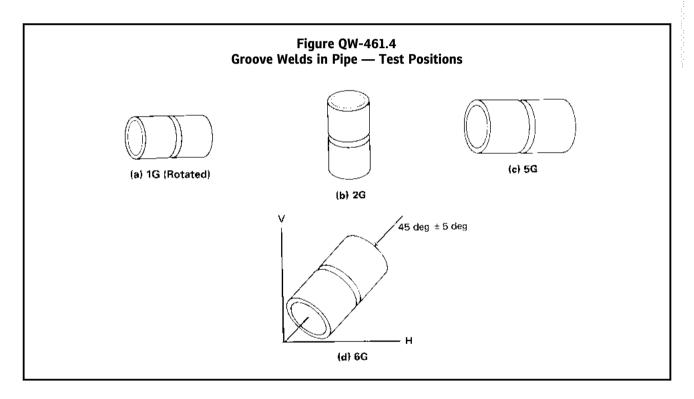
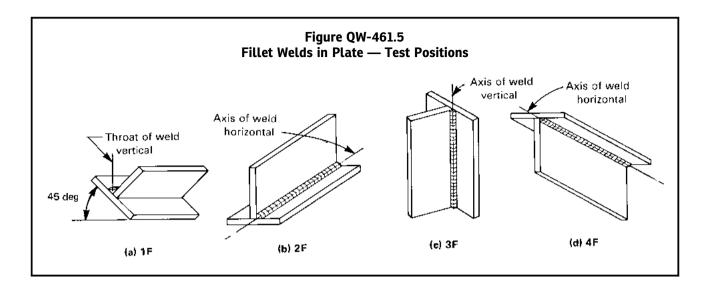

(**19**)

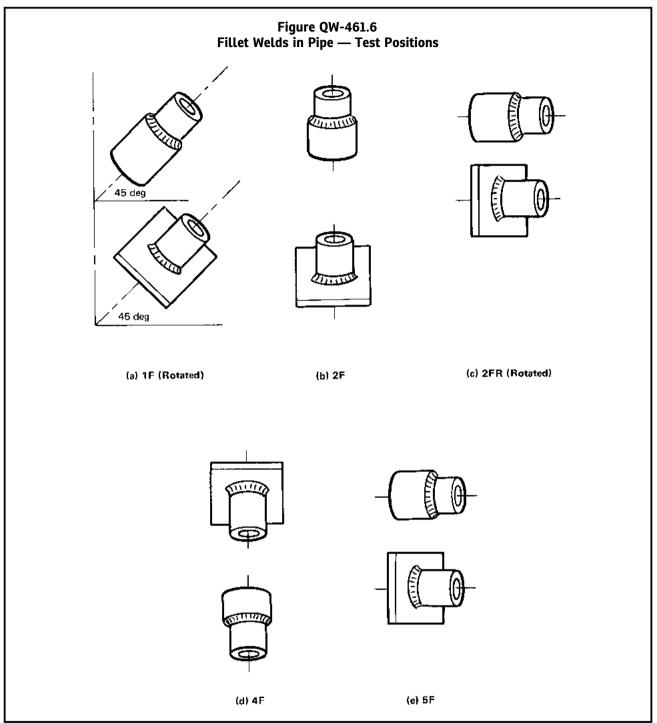
Table QW-453 Procedure and Performance Qualification Thickness Limits and Test Specimens for Hard-Facing (Wear-Resistant) and Corrosion-Resistant Overlays

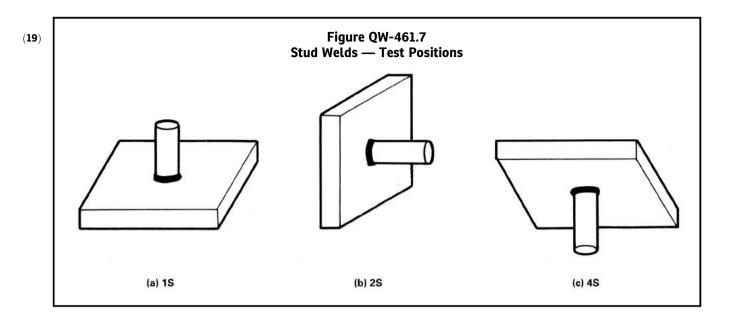

	Corrosion-Resistant Overlay		Hard-facing Overlay (Wear-Resistant)						
Thickness of Test Coupon	Nominal Base Metal	Type and Number of Tests	Nominal Base Metal	Type and Number of Tests					
(T)	Thickness Qualified (T)	Required	Thickness Qualified (T)	Required					
Procedure Qualification Testing									
	<i>T</i> qualified to unlimited	Liquid penetrant 2 transverse side bend and 2 longitudinal side bend, or	<i>T</i> qualified up to 1 in. (25 mm)	Liquid penetrant 3 hardness readings per specimen					
1 in. (25 mm) and over <i>T</i>	1 in. (25 mm) to unlimited	4 transverse side bend	1 in. (25 mm) to unlimited	Macro test					
Performance Qualification Testing									
Less than 1 in. (25 mm) T	T qualified to unlimited	2 transverse side bend per	T qualified to unlimited	Liquid penetrant					
1 in. (25 mm) and over T	1 in. (25 mm) to unlimited	position	1 in. (25 mm) to unlimited	Macro test					

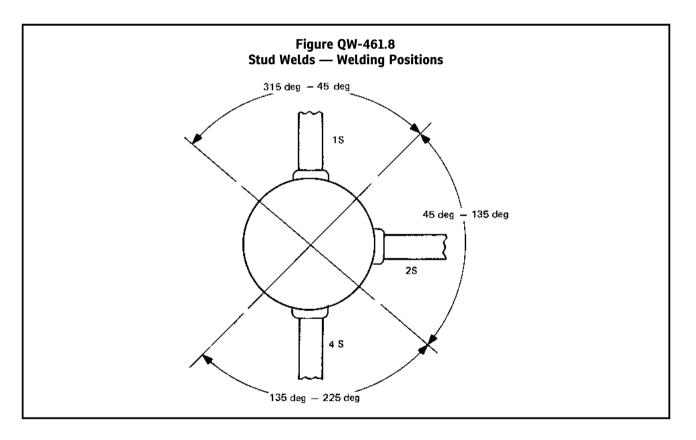

یک دو سه صنعت


QW-460 GRAPHICS QW-461 POSITIONS




- (b) Inclination of axis is measured from the horizontal reference plane toward the vertical.
- (c) Angle of rotation of face is measured from a line perpendicular to the axis of the weld and lying in a vertical plane containing this axis. The reference position (0 deg) of rotation of the face invariably points in the direction opposite to that in which the axis angle increases. The angle of rotation of the face of weld is measured in a clockwise direction from this reference position (0 deg) when looking at point *P*.





ASME BPVC.IX-2019

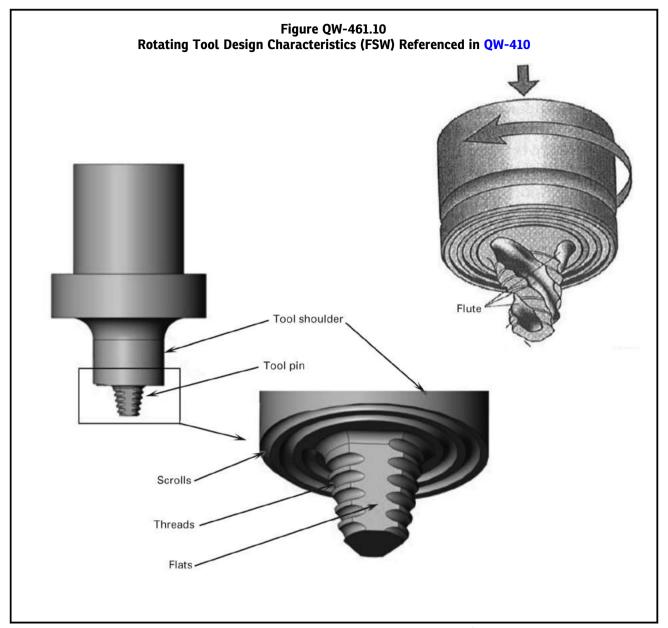
		Position and Type Weld Qualified [Note (1)]				
Qualification Test		Groove		Fillet or Tack [Note (2)		
Weld	Position	Plate and Pipe Over 24 in. (610 mm) O.D.	Pipe ≤ 24 in. (610 mm) 0.D.	Plate and Pipe		
	1G	F	F [Note (3)]	F		
	2G	F, H	F, H [Note (3)]	F, H		
	3G	F, V	F [Note (3)]	F, H, V		
Plate — Groove	4G	F, O	F [Note (3)]	F, H, O		
	3G and 4G	F, V, O	F [Note (3)]	All		
	2G, 3G, and 4G	All	F, H [Note (3)]	All		
	Special Positions (SP)	SP, F	SP, F	SP, F		
	1F			F [Note (3)]		
	2F			F, H [Note (3)]		
Plate — Fillet	3F			F, H, V [Note (3)]		
Plate — Fillet	4F			F, H, O [Note (3)]		
	3F and 4F			All [Note (3)]		
	Special Positions (SP)			SP, F [Note (3)]		
	1G	F	F	F		
	2G	F, H	F, H	F, H		
Din a Constant [Nata (4)]	5G	F, V, O	F, V, O	All		
Pipe — Groove [Note (4)]	6G	All	All	All		
	2G and 5G	All	All	All		
	Special Positions (SP)	SP, F	SP, F	SP, F		
	1F			F		
	2F			F, H		
Dine Fillet [Note (4)]	2FR			F, H		
Pipe — Fillet [Note (4)]	4F			F, H, O		
	5F			All		
	Special Positions (SP)			SP, F		

Table QW-461.9 ismotor Limitations

NOTES:

(1) Positions of welding as shown in QW-461.1 and QW-461.2.

F = Flat


H = Horizontal

V = Vertical

0 = 0verhead

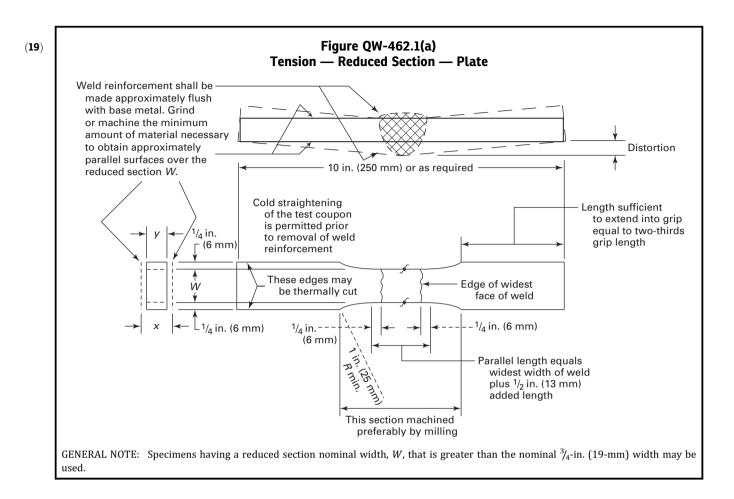
SP = Special Positions (see QW-303.3)

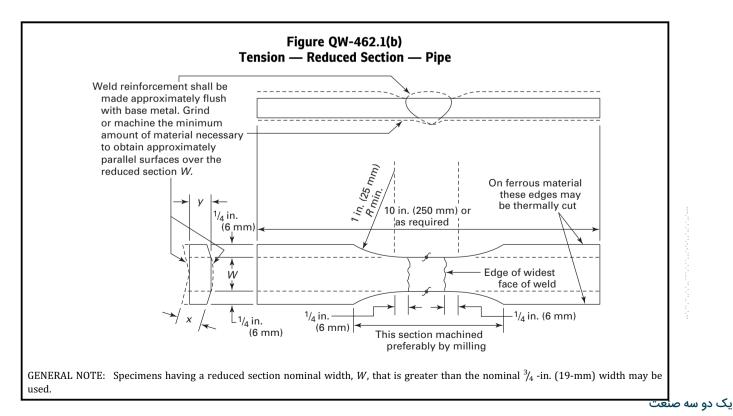
(2) Tack welds are not limited by pipe or tube diameters when their aggregate length does not exceed 25% of the weld circumference.
(3) Pipe 2⁷/₈ in. (73 mm) 0.D. and over.
(4) See diameter restrictions in QW-452.3, QW-452.4, and QW-452.6.

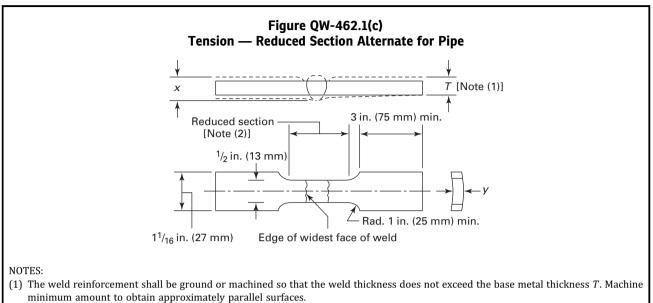
(19) QW-462 TEST SPECIMENS

The purpose of the QW-462 figures is to give the organization guidance in dimensioning test specimens for tests required for procedure and performance qualifications. Unless a minimum, maximum, or tolerance is given in the figures (or as QW-150, QW-160, or QW-180 requires), the dimensions are to be considered approximate. All welding processes and filler material to be qualified must be included in the test specimen.

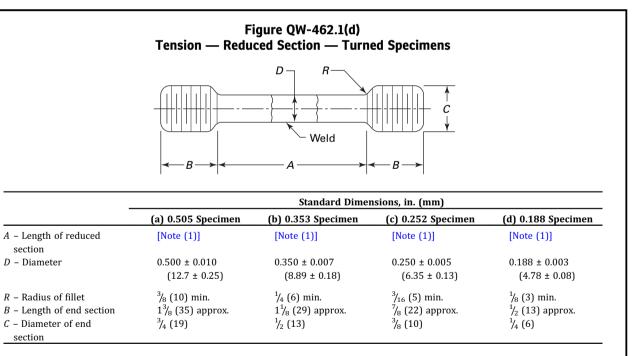
The following nomenclature is in reference to Figures QW-462.1(a) through QW-462.1(e):


W = specimen width, $\frac{3}{4}$ in. (19 mm)


x = coupon thickness including reinforcement


y = specimen thickness

As an alternative, any tension specimen dimensional geometry meeting the requirements of another welding qualification standard is acceptable as long as a cross section can be measured so that an ultimate tensile strength can be determined. All welding processes, filler materials, and heat-affected zones to be qualified shall be included in the test specimen. Weld reinforcement shall be removed prior to testing.

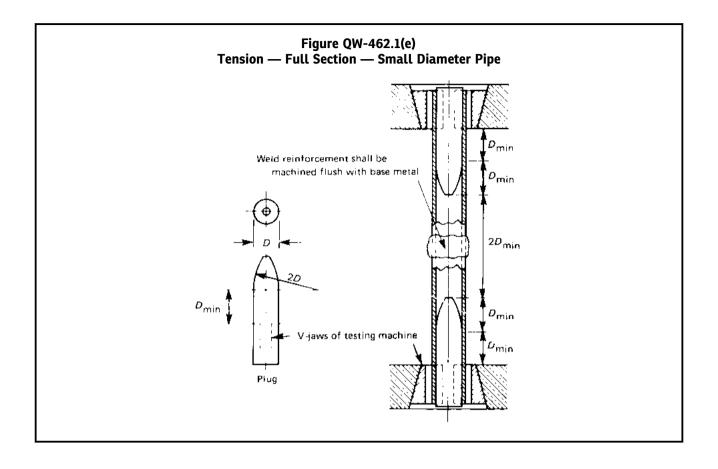

T = coupon thickness excluding reinforcement

(2) The reduced section shall not be less than the width of the weld plus 2y.

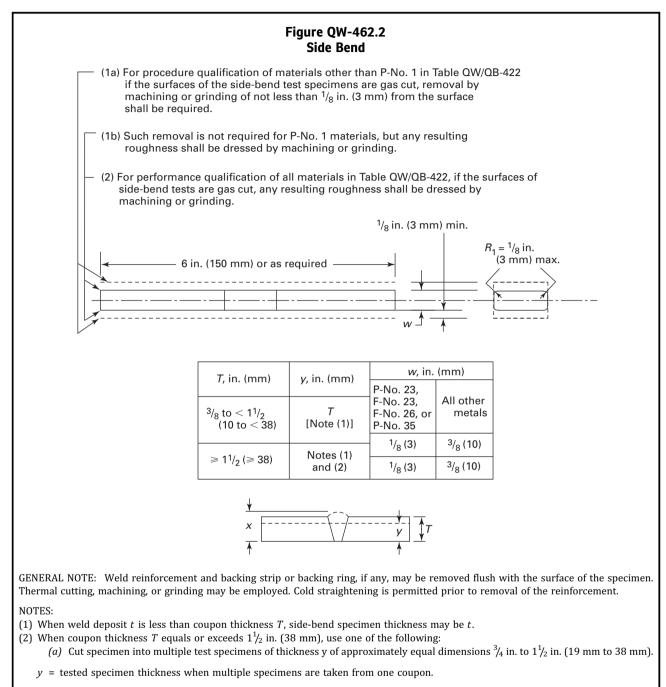
GENERAL NOTES:

(a) Use maximum diameter specimen (a), (b), (c), or (d) that can be cut from the section.

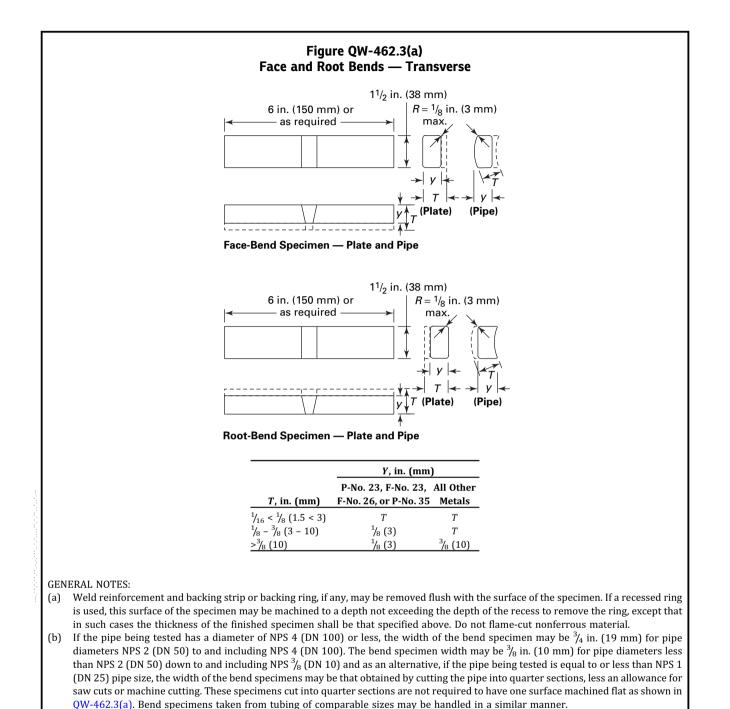
(b) Weld should be in center of reduced section.

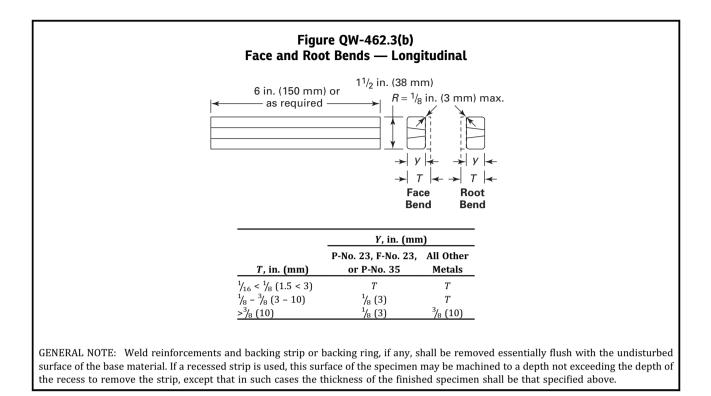

(c) Where only a single coupon is required, the center of the specimen should be midway between the surfaces.

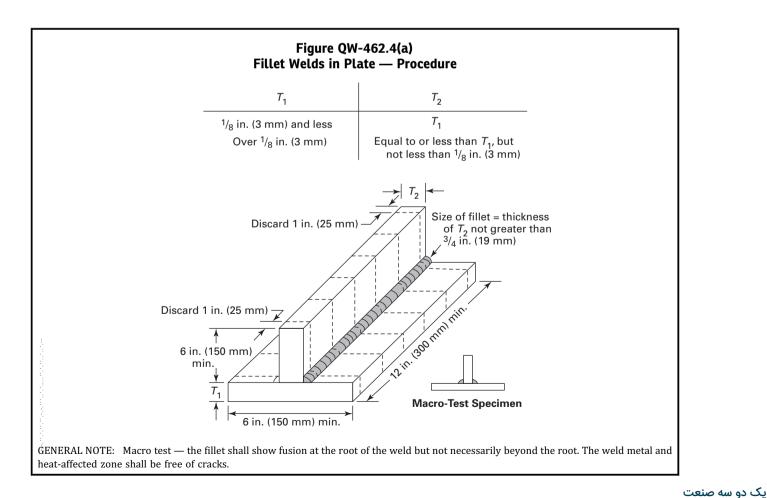
(d) The ends may be of any shape to fit the holders of the testing machine in such a way that the load is applied axially.

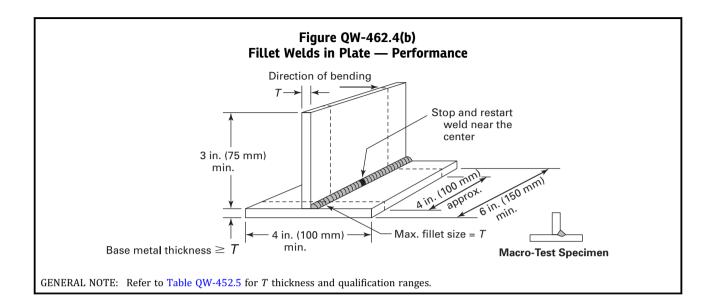

(e) When the diameter, *D*, of the reduced section is measured and the actual value is used to calculate the tensile stress, specimens of nominal diameters other than those shown above may be used.

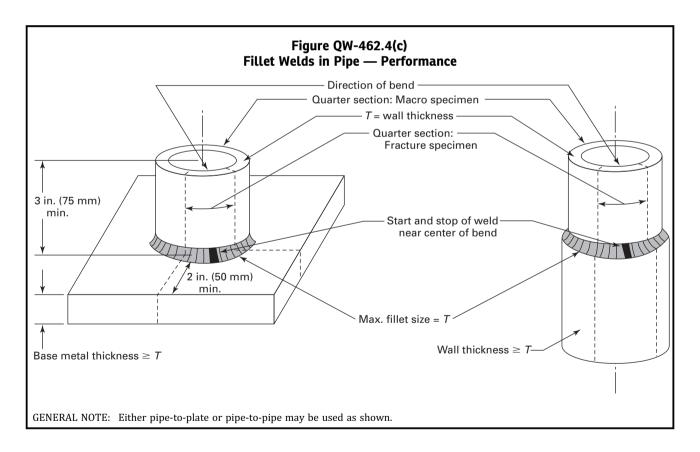
NOTE:

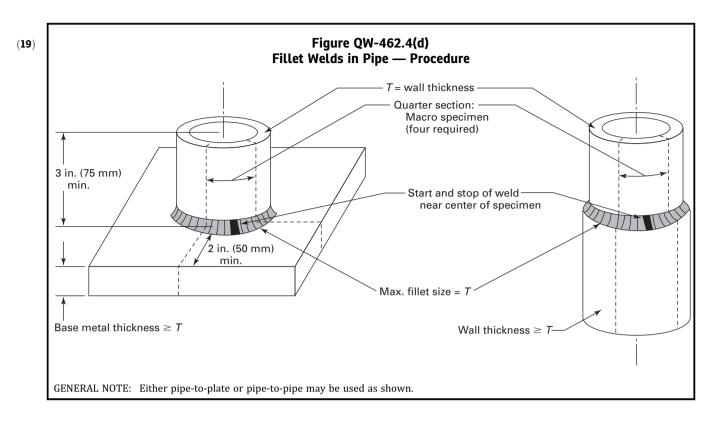

(1) Reduced section A should not be less than width of weld plus 2D.

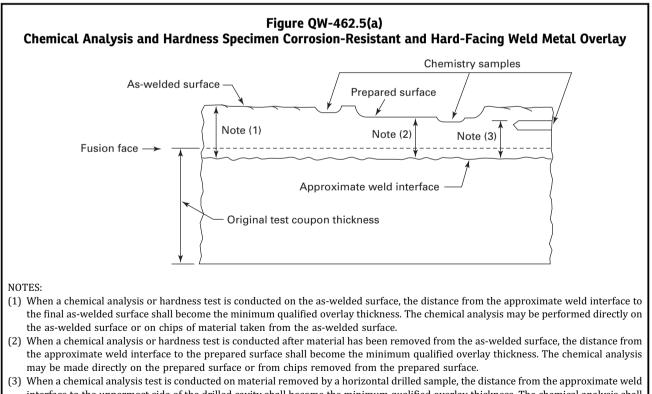



Copyright ASME International (BPVC)

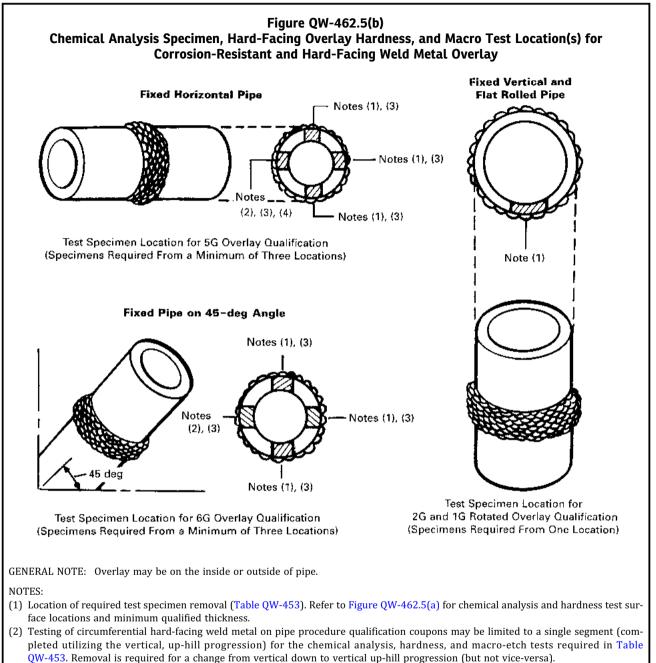

(b) The specimen may be bent at full width. See requirements on jig width in QW-466.1.

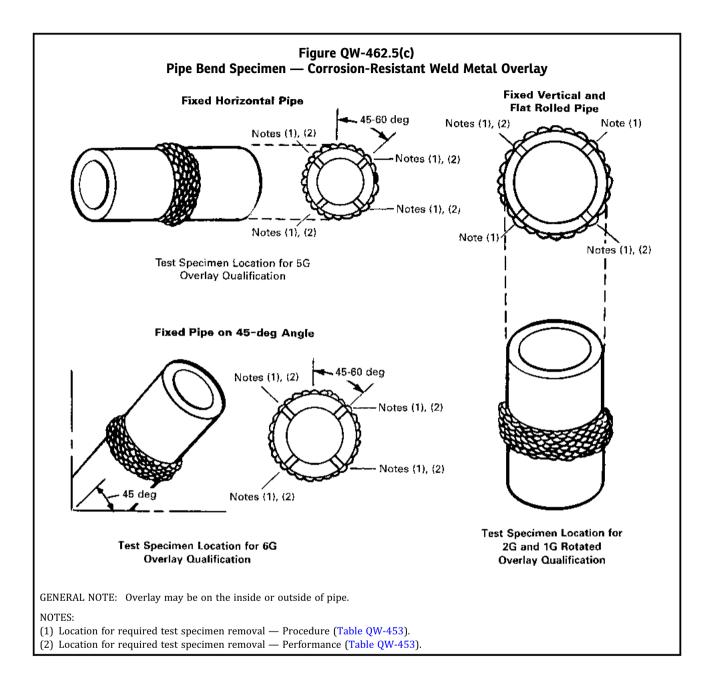


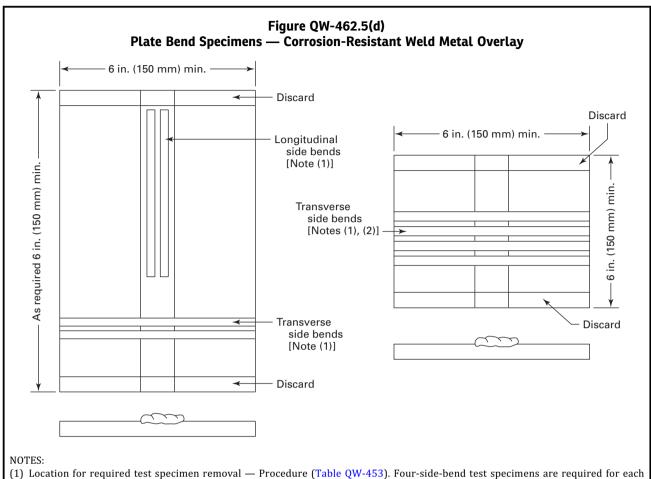




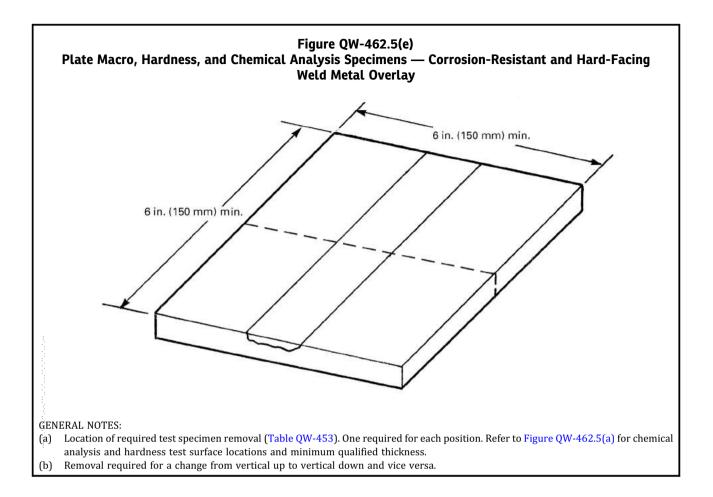
123sanat.com

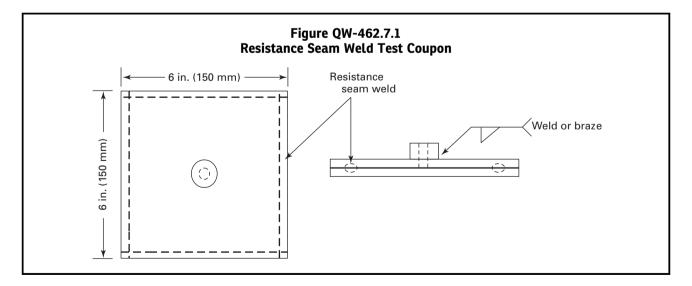


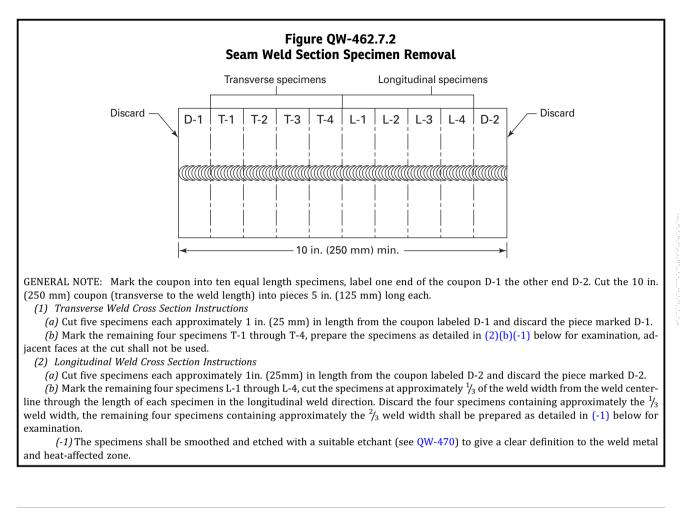


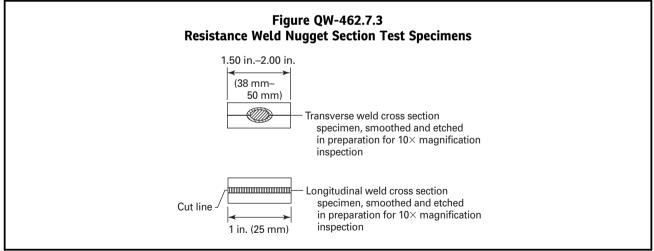


(3) When a chemical analysis test is conducted on material removed by a horizontal drilled sample, the distance from the approximate weld interface to the uppermost side of the drilled cavity shall become the minimum qualified overlay thickness. The chemical analysis shall be performed on chips of material removed from the drilled cavity.

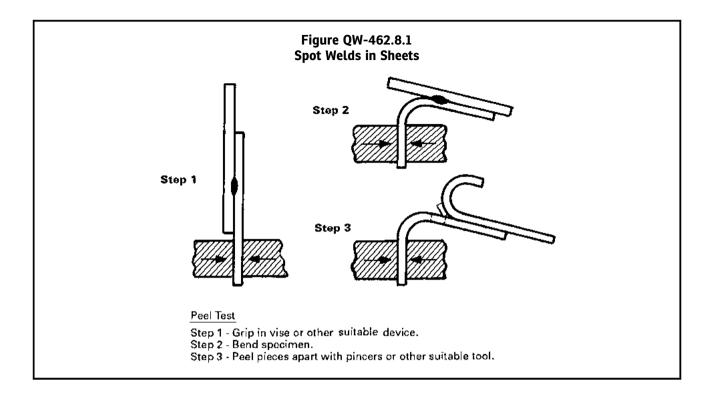

- (3) Location of test specimens shall be in accordance with the angular position limitations of QW-120.
- (4) When overlay welding is performed using machine or automatic welding and the vertical travel direction of adjacent weld beads is reversed on alternate passes, only one chemical analysis or hardness specimen is required to represent the vertical portion. Qualification is then restricted in production to require alternate pass reversal of rotation direction method.

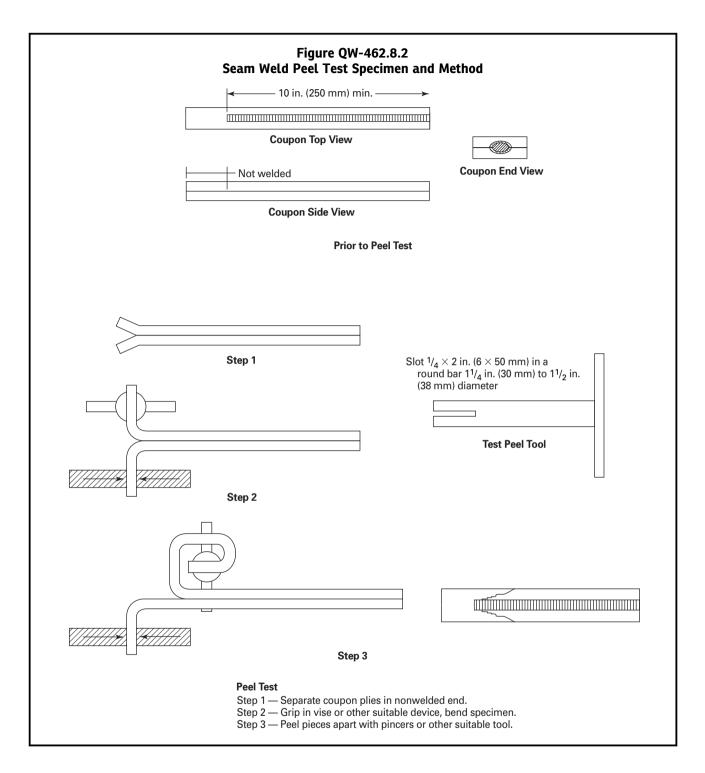


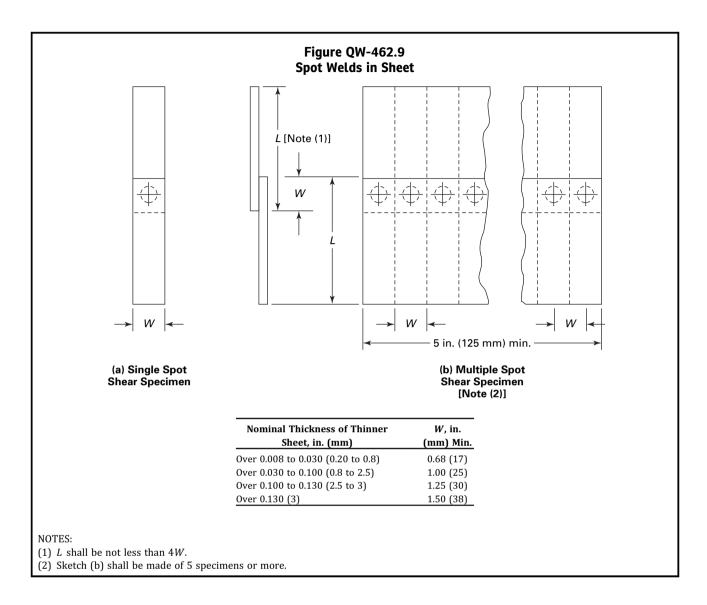



position.

(2) Location for required test specimen removal — Performance (Table QW-453). Two-side-bend test specimens are required for each position.







یک دو سه صنعت

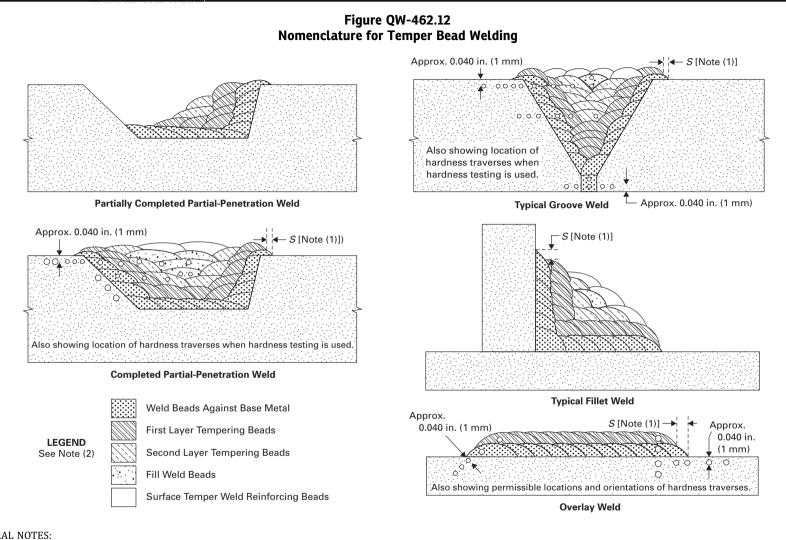
Table QW-462.10(a)Shear Strength Requirements for Spot or Projection Weld Specimens

DELETED

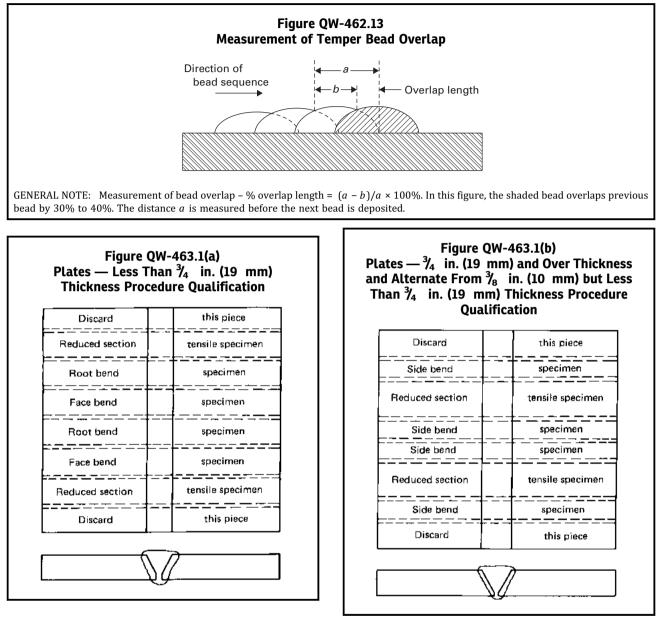
Table QW-462.10(b)Shear Strength Requirements for Spot or Projection Weld Specimens

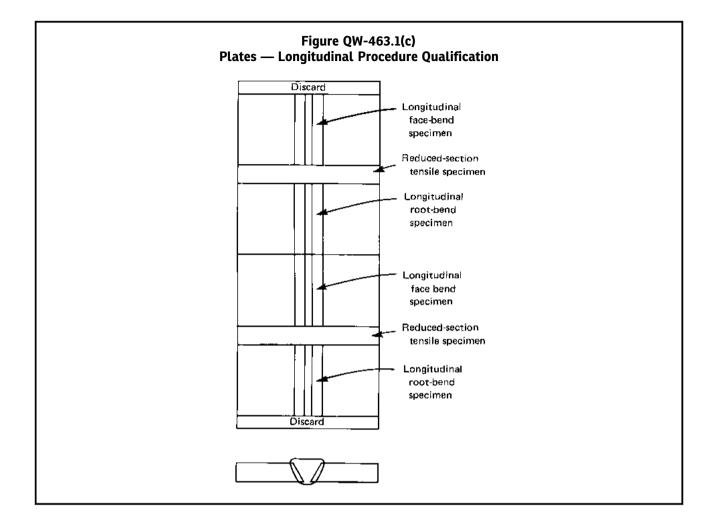
DELETED

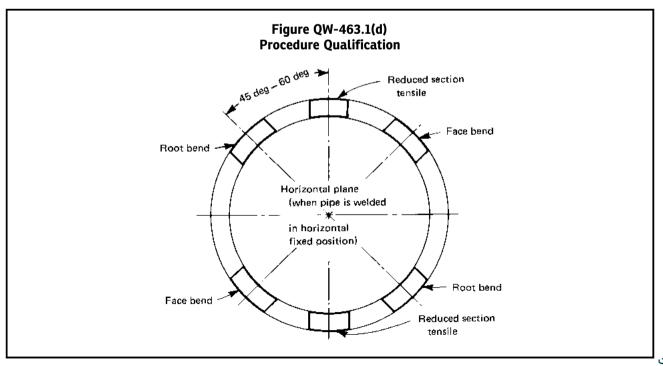
Table QW-462.10(c)Shear Strength Requirements for Spot or Projection Weld Specimens

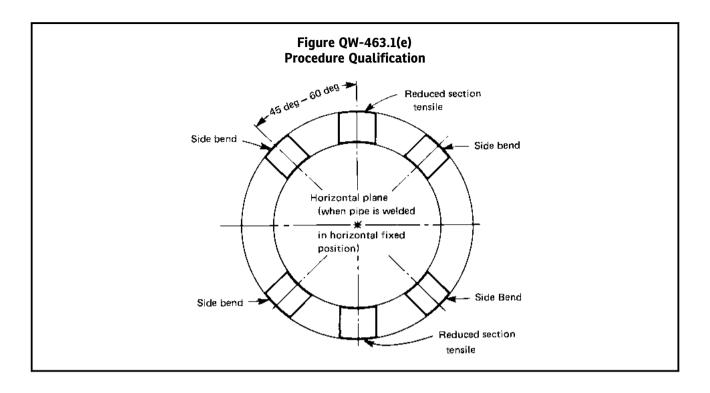

DELETED

(**19**)

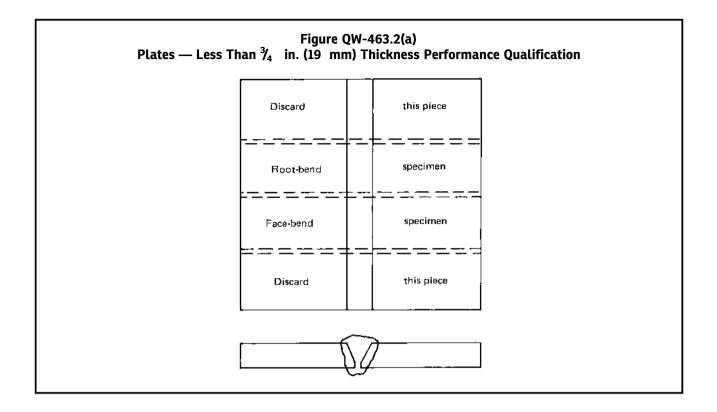

(**19**)

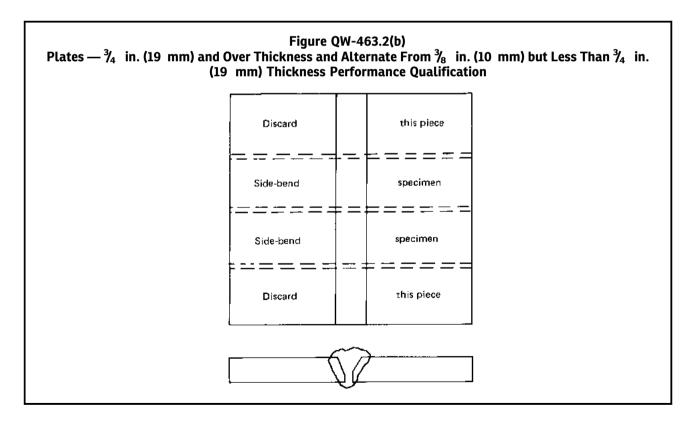

(**19**)

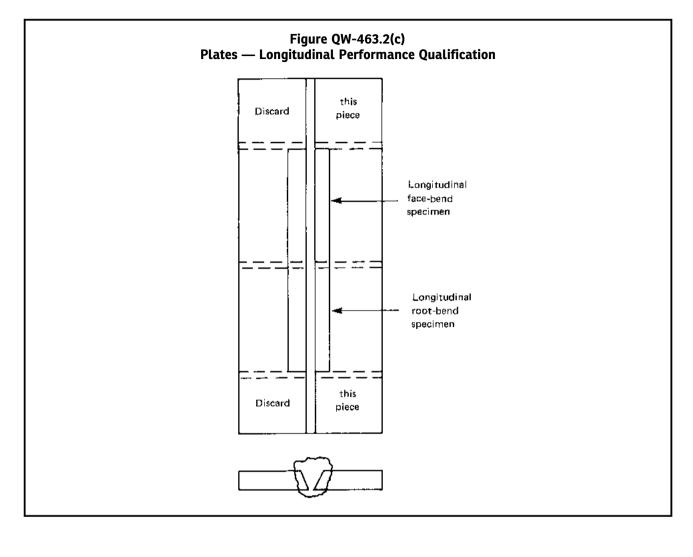


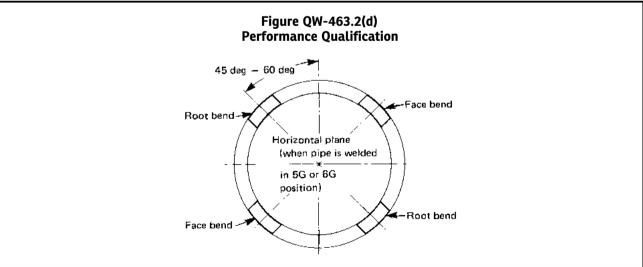


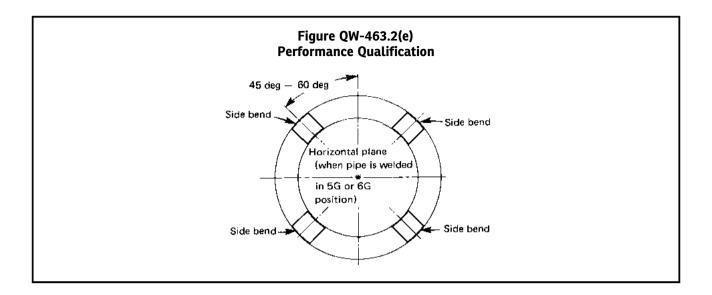
- GENERAL NOTES:
- (a) Weld beads shown above may be deposited in any sequence that will result in placement of the beads as shown.
- (b) Surface temper reinforcing beads may cover the entire weld surface, or may only be placed at the toe of the weld; they may or may not be mechanically removed. NOTES:
- (1) The distance, *S*, is measured from the toe of the weld to the edge of the temper beads. Measurements shall be made parallel to the base metal surface.
- (2) Beads near the finished surface may be both tempering beads and surface temper reinforcing beads.

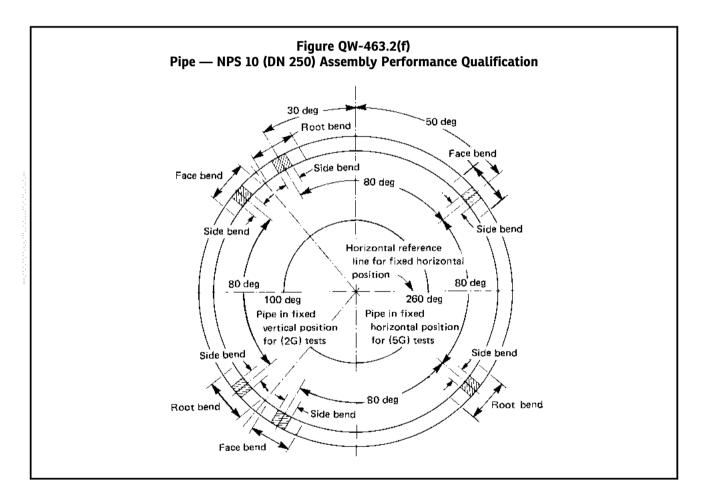


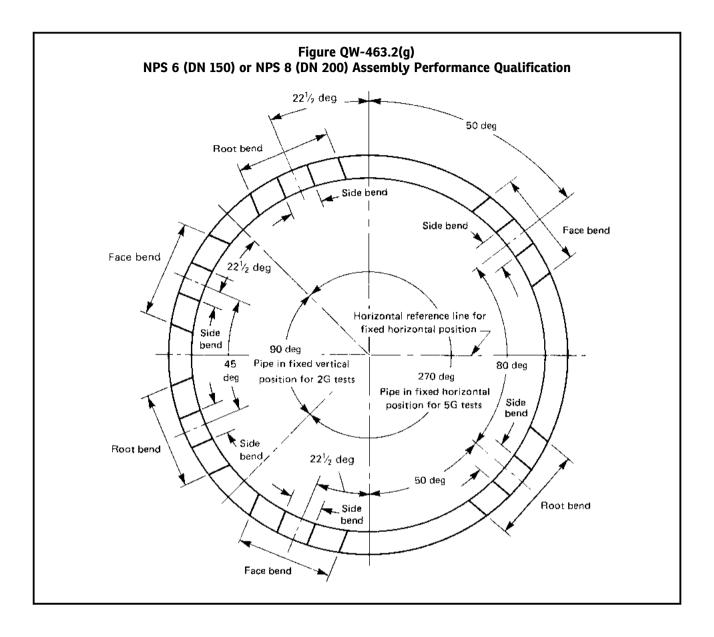


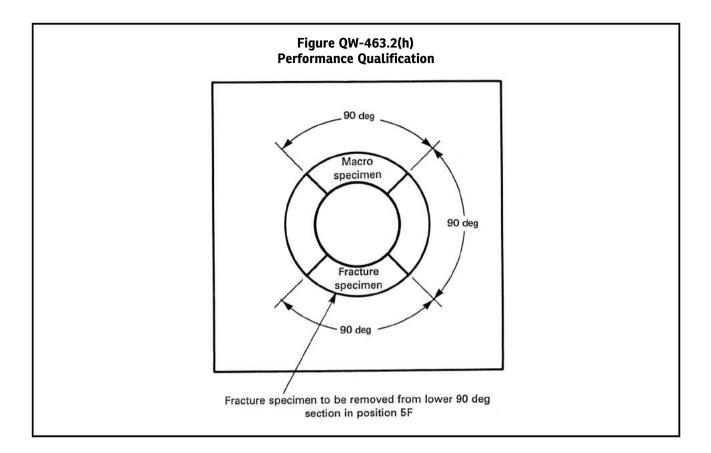


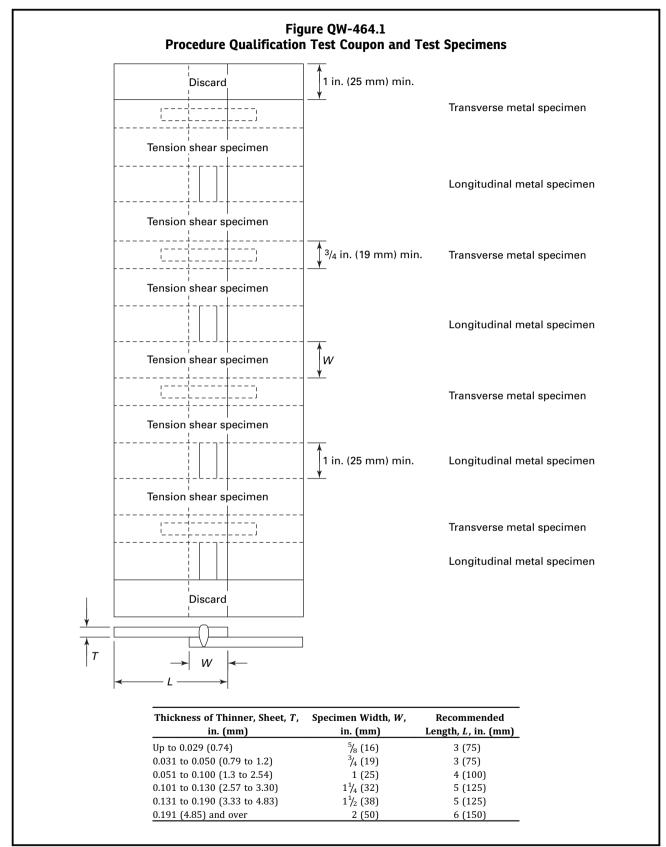


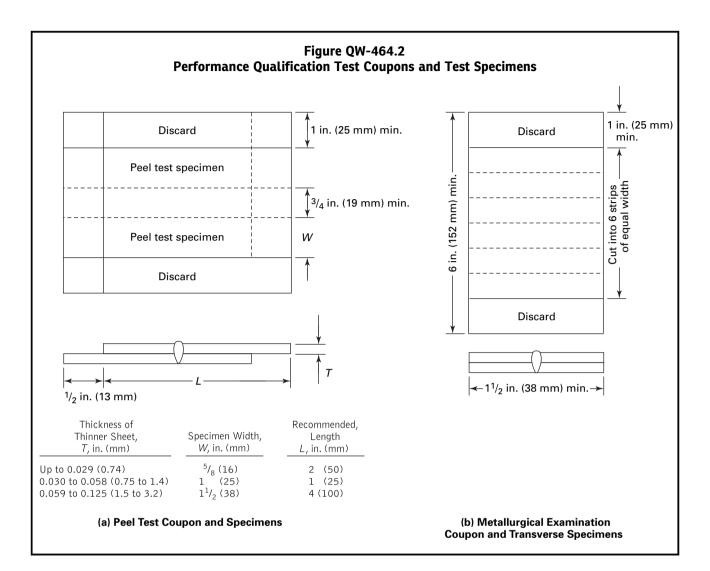


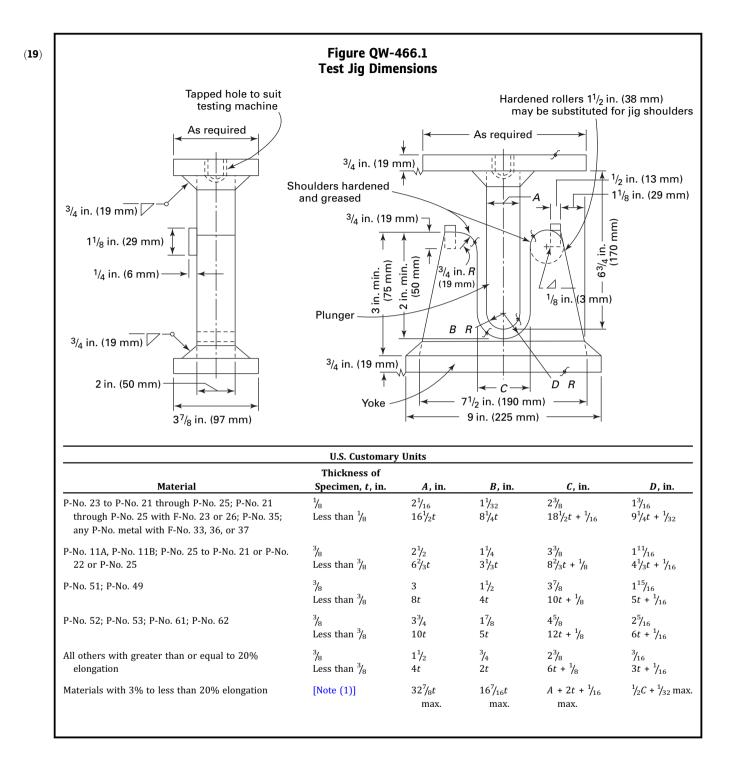

Copyright ASME International (BPVC)











1	Figure QW-4 Test Jig Dimensio				
SI Units					
Material	Thickness of Specimen, <i>t</i> , mm	A, mm	<i>B</i> , mm	<i>C</i> , mm	D, mm
P-No. 23 to P-No. 21 through P-No. 25; P-No. 21 through P-No. 25 with F-No. 23 or 26; P-No. 35; any P-No. metal with F-No. 33, 36, or 37	3 Less than 3	50 16 ¹ / ₂ t	25 8¼/4t	57 $18^{1}/_{2}t + 1.6$	29 9 ¹ / ₄ t + 0.8
P-No. 11A, P-No. 11B; P-No.25 to P-No. 21 or P-No. 22 or P-No. 25	10 Less than 10	67 6²/ ₃ t	33 3 ¹ / ₃ t	90 $8^{2}_{3}t + 3.2$	45 4 ¹ / ₃ t + 1.6
P-No. 51; P-No. 49	10 Less than 10	80 8t	40 4 <i>t</i>	103 10 <i>t</i> + 3.2	52 5 <i>t</i> + 1.6
P-No. 52; P-No. 53; P-No. 61; P-No. 62	10 Less than 10	100 10 <i>t</i>	50 5 <i>t</i>	123 12t + 3.2	62 6 <i>t</i> + 1.6
All others with greater than or equal to 20% elongation	10 Less than 10	40 4 <i>t</i>	20 2 <i>t</i>	63 6 <i>t</i> + 3.2	32 3t + 1.6
Materials with 3% to less than 20% elongation	[Note (1)]	32 ⁷ / ₈ t max.	16 ⁷ / ₁₆ t max.	A + 2t + 1.6 max.	$^{1}/_{2}C$ + 0.8 max.

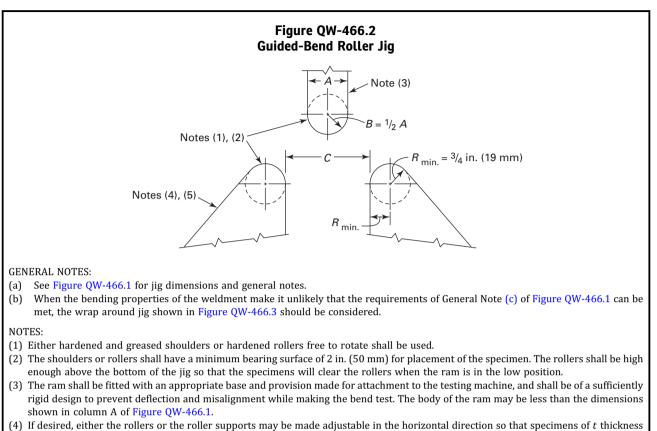
GENERAL NOTES:

(a) For P-Numbers, see QW/QB-422; for F-Numbers, see QW-432.

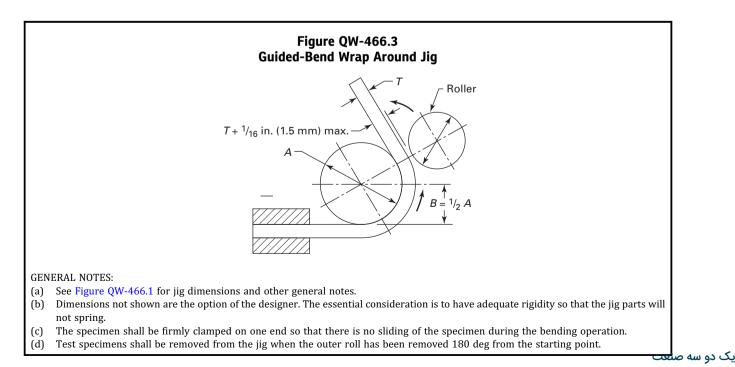
(b) For guided-bend jig configuration, see QW-466.2, QW-466.3, and QW-466.4.

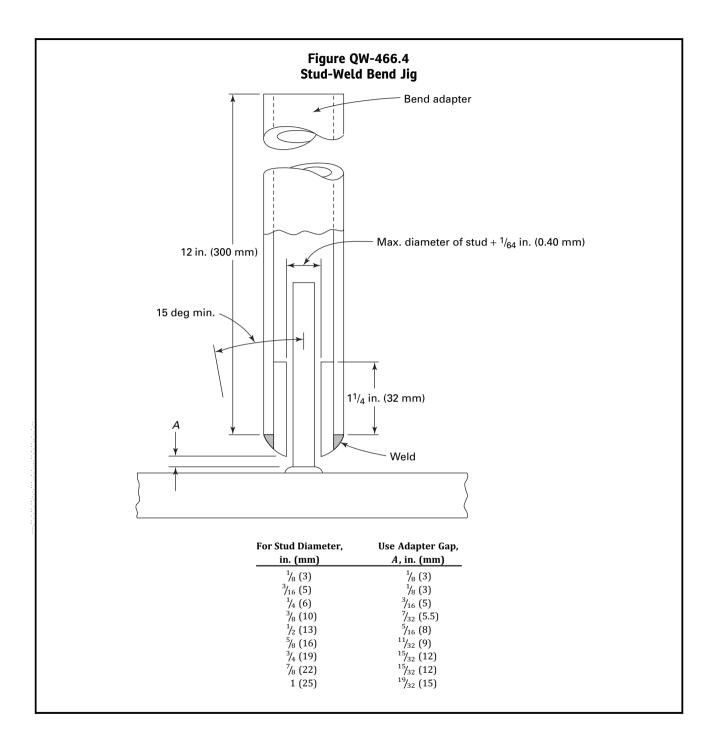
(c) The weld and heat-affected zone, in the case of a transverse weld bend specimen, shall be completely within the bend portion of the specimen after testing.

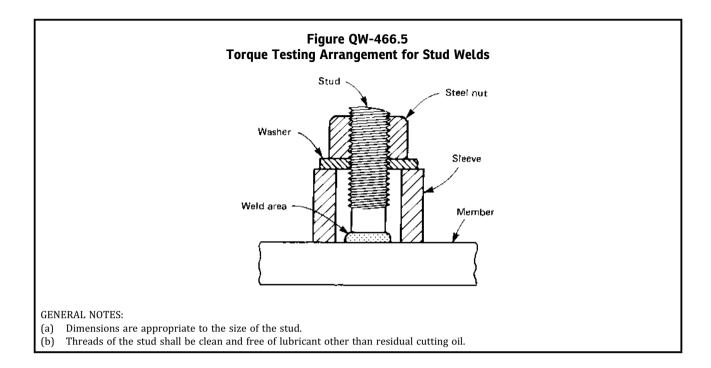
(d) When the bending properties of the weldment make it unlikely that the requirements of General Note (c) can be met, the wrap around jig shown in Figure QW-466.3 should be considered.

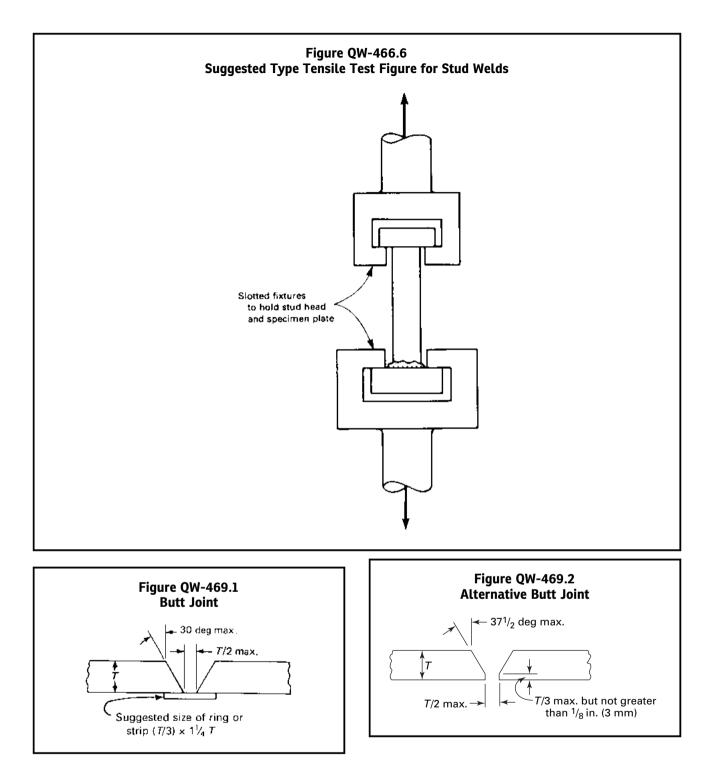

NOTE:

(1) The dimensions of the test jig shall be such as to give the bend test specimen a calculated percent outer fiber elongation equal to at least that of the base material with the lower minimum elongation as specified in the base material specification.


percent outer fiber elongation =
$$\frac{100t}{A + t}$$


The following equation is provided for convenience in calculating the bend specimen thickness:


thickness of specimen $(t) = \frac{A \times \text{percent elongation}}{[100 - (\text{percent elongation})]}$



- (4) If desired, either the rollers or the roller supports may be made adjustable in the horizontal direction so that specimens of t thickness may be tested on the same jig.
- (5) The roller supports shall be fitted with an appropriate base designed to safeguard against deflection and misalignment and equipped with means for maintaining the rollers centered midpoint and aligned with respect to the ram.

QW-470 ETCHING — PROCESSES AND REAGENTS

QW-471 GENERAL

The surfaces to be etched should be prepared by filing, machining, grinding, or polishing to delineate the macrofeatures of the specimen's weld and HAZ after etching. With different alloys and tempers, the etching period will vary from a few seconds to several minutes, and should be continued until the desired contrast is obtained. As a protection from the fumes liberated during the etching process, this work should be done under a hood. After etching, the specimens should be thoroughly rinsed and then dried with a blast of warm air. Coating the surface with a thin clear lacquer will preserve the appearance. (Reference ASTM E340, Standard Test Method for Macroetching Metals and Alloys, or other industry-accepted standards.)

QW-472 FOR FERROUS METALS

Etching solutions suitable for carbon and low alloy steels, together with directions for their use, are suggested in QW-472.1 through QW-472.4.

QW-472.1 Hydrochloric Acid. Hydrochloric (muriatic) acid and water, equal parts, by volume. The solution should be kept at or near the boiling temperature during the etching process. The specimens are to be immersed in the solution for a sufficient period of time to reveal all lack of soundness that might exist at their cross-sectional surfaces.

QW-472.2 Ammonium Persulfate. One part of ammonium persulfate to nine parts of water, by weight. The solution should be used at room temperature, and should be applied by vigorously rubbing the surface to be etched with a piece of cotton saturated with the solution. The etching process should be continued until there is a clear definition of the structure in the weld.

QW-472.3 lodine and Potassium lodide. One part of powdered iodine (solid form), two parts of powdered potassium iodide, and ten parts of water, all by weight. The solution should be used at room temperature, and brushed on the surface to be etched until there is a clear definition or outline of the weld

QW-472.4 Nitric Acid. One part of nitric acid and three parts of water, by volume.

CAUTION: Always pour the acid into the water. Nitric acid causes bad stains and severe burns.

The solution may be used at room temperature and applied to the surface to be etched with a glass stirring rod. The specimens may also be placed in a boiling solution of the acid, but the work should be done in a well-ventilated room. The etching process should be continued for a sufficient period of time to reveal all lack of soundness that might exist at the cross-sectional surfaces of the weld.

QW-473 FOR NONFERROUS METALS

The following etching reagents and directions for their use are suggested for revealing the macrostructure.

QW-473.1 Aluminum and Aluminum-Base Alloys.

Solution	Volume	
Hydrochloric acid (concentrated)	15 ml	
Hydrofluoric acid (48%)	10 ml	
Water	85 ml	

This solution is to be used at room temperature, and etching is accomplished by either swabbing or immersing the specimen.

QW-473.2 For Copper and Copper-Base Alloys: Cold Concentrated Nitric Acid. Etching is accomplished by either flooding or immersing the specimen for several seconds under a hood. After rinsing with a flood of water, the process is repeated with a 50-50 solution of concentrated nitric acid and water.

In the case of the silicon bronze alloys, it may be necessary to swab the surface to remove a white (SiO₂) deposit.

QW-473.3 For Nickel and Nickel-Base Alloys.

Material	Formula
Nickel	Nitric Acid or Lepito's Etch
Low Carbon Nickel	Nitric Acid or Lepito's Etch
Nickel-Copper (400)	Nitric Acid or Lepito's Etch
Nickel-Chromium-Iron (600 and 800)	Aqua Regia or Lepito's Etch

Table QW-473.3-1 Makeup of Equations for Aqua Regia and Lepito's Etch

Aqua Regia [Note (1)], [Note (2)]	Lepito's Etch [Note (2)], [Note (3)]
1 part	3 ml
2 parts	10 ml
	1.5 g
	2.5 g
	7.5 ml
	[Note (1)], [Note (2)] 1 part 2 parts

NOTES:

- (1) Warm the parts for faster action.
- (2) Etching is accomplished by either swabbing or immersing the specimen.

(3) Mix solution as follows:

- (a) Dissolve $(NH_4)_2$ (SO₄) in H₂O.
- (b) Dissolve powdered $FeCl_3$ in warm HCl.
- (c) Mix (a) and (b) above and add HNO_3 .

QW-473.4 For Titanium.

Solution	Kroll's Etch	Keller's Etch
Hydrofluoric acid (48%)	1 to 3 ml	$^{1}/_{2}$ ml
Nitric acid (concentrated)	2 to 6 ml	2 ¹ / ₂ ml
Hydrochloric Acid		
(concentrated)		$1^{1}/_{2}$ ml
Water	To make 100 ml	To make 100 ml

QW-473.5 For Zirconium.

Solution	Volume
Hydrofluoric acid	3 ml
Nitric acid (concentrated)	22 ml
Water	22 ml

Apply by swab and rinse in cold water.

These are general purpose etchants which are applied at room temperature by swabbing or immersion of the specimen.

ARTICLE V STANDARD WELDING PROCEDURE SPECIFICATIONS (SWPSS)

QW-500 GENERAL

The SWPSs listed in Mandatory Appendix E are acceptable for construction in which the requirements of the ASME Boiler and Pressure Vessel Code, Section IX are specified. Any requirements of the applicable Construction Code Section regarding SWPS take precedence over the requirements of Section IX. These SWPSs are not permitted for construction where toughness testing of the WPS is required by the Construction Code.

Only SWPSs (including edition) that have been accepted in Mandatory Appendix E within the 1998 Edition or any later edition of Section IX may be used in accordance with this Article. Adoption of SWPSs (including edition) shall be in accordance with the current edition of Section IX [see QG-100(d)].

QW-510 ADOPTION OF SWPSS

Prior to use, the organization that will be responsible for and provide operational control over production welding shall comply with the following for each SWPS that it intends to use, except as noted in QW-520.

(a) Enter the name of the organization on the SWPS.

(b) An employee of that organization shall sign and date the SWPS.

(c) The applicable Code Section(s) (Section VIII, B31.1, etc.) and/or any other fabrication document (contract, specification, etc.) that must be followed during welding shall be listed on the SWPS.

(*d*) The organization shall weld and test one groove weld test coupon following that SWPS. The following information shall be recorded:

(1) the specification, type, and grade of the base metal welded

(2) groove design

(3) initial cleaning method

(4) presence or absence of backing

(5) The ASME or AWS specification and AWS classification of electrode or filler metal used and manufacturer's trade name

(6) size and classification of tungsten electrode for GTAW

(7) size of consumable electrode or filler metal

(8) shielding gas and flow rate for GTAW and GMAW

(9) preheat temperature

(10) position of the groove weld and, if applicable, the progression

(11) if more than one process or electrode type is used, the approximate weld metal deposit thickness for each process or electrode type

(12) maximum interpass temperature

(13) post weld heat treatment used, including holding time and temperature range

(14) visual inspection and mechanical testing results

(15) the results of volumetric examination when permitted as an alternative to mechanical testing by QW-304

(e) The coupon shall be visually examined in accordance with QW-302.4 and mechanically tested in accordance with QW-302.1 or volumetrically examined in accordance with QW-302.2. If visual examination, volumetric examination, or any test specimen fails to meet the required acceptance criteria, the test coupon shall be considered as failed and a new test coupon shall be welded before the organization may use the SWPS.

QW-511 USE OF DEMONSTRATED SWPSS

Code Sections or fabrication documents that are required to be referenced by QW-510(c) may be added or deleted from a demonstrated SWPS without further demonstrations.

QW-520 USE OF SWPSS WITHOUT DISCRETE DEMONSTRATION

Once an SWPS has been demonstrated, additional SWPSs that are similar to the SWPS that was demonstrated may be used without further demonstration. Such additional SWPSs shall be compared to the SWPS that was used for the demonstration, and the following limitations shall not be exceeded:

(a) a change in the welding process.

(b) a change in the P-Number.

(c) a change from the as-welded condition to the heattreated condition. This limitation also applies for SWPSs that allow use in both conditions (e.g., SWPS B2.1-021 allows production welding with or without heat treatment; if the demonstration was performed without heat treatment, production welding with heat treatment is not permitted). Once heat treatment has been demonstrated for any SWPS, this limitation no longer applies.

(*d*) a change from a gas-shielded flux-cored wire or solid wire to a self-shielded flux-cored wire or vice versa.

(e) a change from globular, spray or pulsed spray transfer welding to short-circuiting transfer welding or vice versa.

(f) a change in the F-Number of the welding electrode.(g) the addition of preheat above ambient temperature.

(*h*) a change from an SWPS that is identified as for sheet metal to one that is not and vice versa.

QW-530 FORMS

A suggested Form QW-485 for documenting the welding variables and test results of the demonstration is provided in Nonmandatory Appendix B.

(19) QW-540 PRODUCTION USE OF SWPSS

As with any WPS, welding that is done following an SWPS shall be done in strict accordance with the SWPS. In addition, the following requirements apply to the use of SWPSs:

(*a*) The organization may not deviate from the welding conditions specified on the SWPS.

(*b*) SWPSs may not be supplemented with PQRs or revised in any manner except for reference to the applicable Code Section or other fabrication documents as provided by QW-511.

(c) Only the welding processes shown on an SWPS shall be used in given production joint. When a multiprocess SWPS is selected, the processes shown on the SWPS shall be used in the order and manner specified on the SWPS.

(*d*) SWPSs shall not be used in the same production joint together with WPSs qualified by the organization.

(e) The organization may supplement an SWPS by attaching additional instructions to provide the welder with further direction for making production welds to Code or other requirements. When SWPSs are supplemented with instructions that address any condition shown on the SWPS, such instructions shall be within the limits of the SWPS. For example, when an SWPS permits use of several electrode sizes, supplemental instructions may direct the welder to use only one electrode size out of those permitted by the SWPS; however, the supplemental instructions may not permit the welder to use a size other than one or more of those permitted by the SWPS.

(f) SWPSs may not be used until the demonstration of QW-510 has been satisfactorily welded, tested, and certified.

(g) The identification number of the Supporting Demonstration shall be noted on each SWPS that it supports prior to using the SWPS.

(*h*) The certified Supporting Demonstration Record shall be available for review.

PART QB BRAZING

ARTICLE XI BRAZING GENERAL REQUIREMENTS

QB-100 SCOPE

The rules in this Part apply to the preparation of brazing procedure specifications, and the qualification of brazing procedures, brazers, and brazing operators for all types of manual and machine brazing processes permitted in this Section. These rules may also be applied, insofar as they are applicable, to other manual or machine brazing processes, permitted in other Sections.

QB-101

In performance qualification, the basic criterion established for brazer qualification is to determine the brazer's ability to make a sound brazed joint. The purpose of the performance qualification test for the brazing operator is to determine the operator's mechanical ability to operate the brazing equipment to make a sound braze joint.

QB-103 RESPONSIBILITY

QB-103.1 Brazing. Each organization shall conduct the tests required in this Section to qualify the brazing procedures used in the construction of the brazed assemblies built under this Code and the performance of brazers and brazing operators who apply these procedures.

QB-103.2 Records. Each organization shall maintain a record of the results obtained in brazing procedure and brazer or brazing operator performance qualifications. Refer to recommended Forms in Nonmandatory Appendix B.

QB-110 BRAZE ORIENTATION

NOTE: In the following paragraphs the word *position* is synonymous with *flow position*.

The orientations of brazes with respect to planes of reference are classified in accordance with Figure QB-461.1 into four positions (A, B, C, and D in column 1), based on the basic flow of brazing filler metal through joints. These positions are flat flow, vertical downflow, vertical upflow, and horizontal flow.

The maximum permitted angular deviation from the specified flow plane is ±45 deg.

QB-120 TEST POSITIONS FOR LAP, BUTT, SCARF, OR RABBET JOINTS

Brazed joints may be made in test coupons oriented in any of the positions in Figure QB-461.2 and as described in the following paragraphs, except that angular deviation from the specified horizontal and vertical flow planes in accordance with column 1 of Figure QB-461.2 is permitted during brazing.

QB-121 FLAT-FLOW POSITION

The test coupon joints in position suitable for applying brazing filler metal in rod, strip, or other suitable form under the flat-flow conditions are shown in illustrations (1) through (5) of Line A in Figure QB-461.2. The maximum permitted angular deviation from the specified flow plane is ± 15 deg.

QB-122 VERTICAL-DOWNFLOW POSITION

The test coupon joints in a position suitable for applying brazing filler metal in rod, strip, or other suitable form under the vertical-downflow conditions are shown in illustrations (1) through (4) of Line B in Figure QB-461.2. The brazing filler metal flows by capillary action with the aid of gravity downward into the joint. The maximum permitted angular deviation from the specified flow plane is ± 15 deg.

QB-123 VERTICAL-UPFLOW POSITION

The test coupon joints in position suitable for applying brazing filler metal in rod, strip, or other suitable form under the vertical-upflow conditions are shown in illustrations (1) through (4) of Line C in Figure QB-461.2. The

brazing filler metal flows by capillary action through the joint. The maximum permitted angular deviation from the specified flow plane is ± 15 deg.

QB-124 HORIZONTAL-FLOW POSITION

The test coupon joints in a position suitable for applying brazing filler metal in rod, strip, or other suitable form under the horizontal-flow conditions are shown in illustrations (1) and (2) of Line D of Figure QB-461.2. The brazing filler metal flows horizontally by capillary action through the joint. The maximum permitted angular deviation from the specified flow plane is ± 15 deg.

QB-140 TYPES AND PURPOSES OF TESTS AND EXAMINATIONS

QB-141 TESTS

Tests used in brazing procedure and performance qualifications are specified in QB-141.1 through QB-141.6.

QB-141.1 Tension Tests. Tension tests, as described in QB-150, are used to determine the ultimate strength of brazed butt, scarf, lap, and rabbet joints.

QB-141.2 Guided-Bend Tests. Guided-bend tests, as described in QB-160, are used to determine the degree of soundness and ductility of butt and scarf joints.

QB-141.3 Peel Tests. Peel tests, as described in QB-170, are used to determine the quality of the bond and the amount of defects in lap joints.

QB-141.4 Sectioning Tests. Sectioning tests, i.e., the sectioning of test coupons, as described in QB-180, are used to determine the soundness of workmanship coupons or test specimens. Sectioning tests are also a substitute for the peel test when the peel test is impractical to perform.

QB-141.5 Workmanship Coupons. Workmanship coupons, as described in QB-182, are used to determine the soundness of joints other than the standard butt, scarf, lap, and rabbet joints.

QB-141.6 Visual Examination. Visual examination of brazed joints is used for estimating the soundness by external appearance, such as continuity of the brazing filler metal, size, contour, and wetting of fillet along the joint and, where appropriate, to determine if filler metal flowed through the joint from the side of application to the opposite side.

QB-150 TENSION TESTS

QB-151 SPECIMENS

Tension test specimens shall conform to one of the types illustrated in Figures QB-462.1(a) through QB-462.1(f), and shall meet the requirements of QB-153.

QB-151.1 Reduced Section — **Plate.** Reduced-section specimens conforming to the requirements given in Figures QB-462.1(a) and QB-462.1(c) may be used for tension tests on all thicknesses of plate. The specimens may be tested in a support fixture in substantial accordance with Figure QB-462.1(f).

(*a*) For thicknesses up to and including 1 in. (25 mm), a full thickness specimen shall be used for each required tension test.

(b) For plate thicknesses greater than 1 in. (25 mm), full thickness specimens or multiple specimens may be used, provided (c) and (d) are complied with.

(c) When multiple specimens are used in lieu of full thickness specimens, each set shall represent a single tension test of the full plate thickness. Collectively, all of the specimens required to represent the full thickness of the brazed joint at one location shall comprise a set.

(*d*) When multiple specimens are necessary, the entire thickness shall be mechanically cut into a minimum number of approximately equal strips of a size that can be tested in the available equipment. Each specimen of the set shall be tested and meet the requirements of QB-153.

QB-151.2 Reduced Section — **Pipe.** Reduced-section specimens conforming to the requirements given in Figure QB-462.1(b) may be used for tension tests on all thicknesses of pipe or tube having an outside diameter greater than 3 in. (75 mm). The specimens may be tested in a support fixture in substantial accordance with Figure QB-462.1(f).

(*a*) For thicknesses up to and including 1 in. (25 mm), a full thickness specimen shall be used for each required tension test.

(*b*) For pipe thicknesses greater than 1 in. (25 mm), full thickness specimens or multiple specimens may be used, provided (c) and (d) are complied with.

(c) When multiple specimens are used in lieu of full thickness specimens, each set shall represent a single tension test of the full pipe thickness. Collectively, all of the specimens required to represent the full thickness of the brazed joint at one location shall comprise a set.

(*d*) When multiple specimens are necessary, the entire thickness shall be mechanically cut into a minimum number of approximately equal strips of a size that can be tested in the available equipment. Each specimen of the set shall be tested and meet the requirements of QB-153.

QB-151.3 Full-Section Specimens for Pipe. Tension (19) specimens conforming to the dimensions given in Figure QB-462.1(e) may be used for testing pipe with an outside diameter of 3 in. (75 mm) or less. The cross-sectional area of the pipe before testing shall be used to establish the tensile strength of the test specimen. As an alternative to full-section specimen for pipe, tension specimens in accordance with Figure QB-463.1(e), General Note (b) may be used.

QB-152 TENSION TEST PROCEDURE

The tension test specimen shall be ruptured under tensile load. The tensile strength shall be computed by dividing the ultimate total load by the least cross-sectional area of the specimen as measured before the load is applied.

(19) **QB-153** ACCEPTANCE CRITERIA — TENSION TESTS

QB-153.1 Tensile Strength. Minimum values for procedure qualification are provided under the column heading "Minimum Specified Tensile" of Table QW/QB-422. In order to pass the tension test, the specimen shall have a tensile strength that is not less than

(*a*) the specified minimum tensile strength of the base metal in the annealed condition; or

(*b*) the specified minimum tensile strength of the weaker of the two in the annealed condition, if base metals of different specified minimum tensile strengths are used; or

(c) if the specimen breaks in the base metal outside of the braze, the test shall be accepted as meeting the requirements, provided the strength is not more than 5% below the minimum specified tensile strength of the base metal in the annealed condition.

(*d*) the specified minimum tensile strength is for full thickness specimens including clad brazing sheets for Aluminum Alclad materials (P-No. 104 and P-No. 105) less than $\frac{1}{2}$ in. (13 mm). For Aluminum Alclad materials $\frac{1}{2}$ in. (13 mm) and greater, the specified minimum tensile strength is for both full thickness specimens that include clad brazing sheets.

QB-153.2 Unassigned Metals. Unassigned metals shall be identified in the BPS and on the PQR by specification, type, and grade, or by chemical analysis and mechanical properties. The minimum tensile strength shall be defined by the organization that specified the unassigned metal if the tensile strength of that metal is not defined by the material specification (see QW-420).

QB-160 GUIDED-BEND TESTS

QB-161 SPECIMENS

Guided-bend test specimens shall be prepared by cutting the test plate or pipe to form specimens of approximately rectangular cross section. The cut surfaces shall be designated the sides of the specimen. The other two surfaces shall be designated the first and second surfaces. The specimen thickness and bend radius are shown in Figures QB-466.1, QB-466.2, and QB-466.3. Guided-bend specimens are of five types, depending on whether the axis of the joint is transverse or parallel to the longitudinal axis of the specimen, and which surface (first or second) is on the convex (outer) side of the bent specimen. The five types are defined as follows (QB-161.1 through QB-161.6). **QB-161.1 Transverse First Surface Bend.** The joint is transverse to the longitudinal axis of the specimen, which is bent so that the first surface becomes the convex surface of the bent specimen. In general, the *first surface* is defined as that surface from which the brazing filler metal is applied and is fed by capillary attraction into the joint. Transverse first surface bend specimens shall conform to the dimensions shown in Figure QB-462.2(a). For subsize first surface bends, see QB-161.3.

QB-161.2 Transverse Second Surface Bend. The joint is transverse to the longitudinal axis of the specimen, which is bent so that the second surface becomes the convex surface of the bent specimen. In general, the *second surface* is defined as the surface opposite to that from which the brazing filler metal is placed or fed, but definitely is the surface opposite to that designated as the first surface, irrespective of how the brazing filler metal is fed. Transverse second surface bend specimens shall conform to the dimensions shown in Figure QB-462.2(a). For subsize first surface bends, see QB-161.3.

QB-161.3 Subsize Transverse Bend. In those cases where the wall thickness of the tube or pipe is less than $\frac{3}{8}$ in. (10 mm) and the diameter-to-thickness ratio does not permit the preparation of full-size rectangular guided-bend specimens, the $\frac{1}{2}$ in. (38 mm) wide standard guided-bend specimen shown in Figure QB-462.2(a) may be replaced by three subsize specimens having a width of $\frac{3}{8}$ in. (10 mm) or 4t, whichever is less.

QB-161.4 Longitudinal-Bend Tests. Longitudinalbend tests may be used in lieu of the transverse-bend tests for testing braze metal or base metal combinations, which differ markedly in bending properties between

- (a) the two base metals; or
- (b) the braze metal and the base metal.

QB-161.5 Longitudinal First Surface Bend. The joint is parallel to the longitudinal axis of the specimen, which is bent so that the first surface becomes the convex surface of the bent specimen. The definition of first surface is as given in QB-161.1. Longitudinal first surface bend specimens shall conform to the dimensions given in Figure QB-462.2(b).

QB-161.6 Longitudinal Second Surface Bend. The joint is parallel to the longitudinal axis of the specimen, which is bent so that the second surface becomes the convex surface of the specimen. The definition of the second surface is given in QB-161.2. Longitudinal second surface bend specimens shall conform to the dimensions given in Figure QB-462.2(b).

QB-162 GUIDED-BEND TEST PROCEDURE

QB-162.1 Jigs. Guided-bend specimens shall be bent in test jigs that are in substantial accordance with QB-466. When using the jigs in accordance with Figure QB-466.1 or Figure QB-466.2, the side of the specimen turned toward the gap of the jig shall be the first surface for first surface bend specimens (defined in QB-161.1), and the second surface for second surface bend specimens (defined in QB-161.2). The specimen shall be forced into the die by applying load on the plunger until the curvature of the specimen is such that a $\frac{1}{8}$ in. (3 mm) diameter wire cannot be inserted between the specimen and the die of Figure QB-466.1, or the specimen is bottom ejected, if the roller type of jig (Figure QB-466.2) is used.

When using the wrap around jig (Figure QB-466.3) the side of the specimen turned toward the roller shall be the first surface for first surface bend specimens, and the second surface for second surface bend specimens.

QB-163 ACCEPTANCE CRITERIA — BEND TESTS

The joint of a transverse-bend specimen shall be completely within the bent portion of the specimen after testing.

The guided-bend specimens shall have no open discontinuities exceeding $\frac{1}{8}$ in. (3 mm), measured in any direction on the convex surface of the specimen after bending. Cracks occurring on the corners of the specimen during testing shall not be considered, unless there is definite evidence that they result from flux inclusions, voids, or other internal discontinuities.

QB-170 PEEL TESTS

QB-171 SPECIMENS

The dimensions and preparation of the peel test specimen shall conform to the requirements of Figure QB-462.3.

QB-172 ACCEPTANCE CRITERIA — PEEL TEST

In order to pass the peel test, the specimens shall show evidence of brazing filler metal along each edge of the joint. Specimens shall be separated or peeled either by clamping Section A and striking Section B with a suitable tool such that the bending occurs at the fulcrum point (see Figure QB-462.3), or by clamping Section A and Section B in a machine suitable for separating the sections under tension. The separated faying surfaces of joints shall meet the following criteria:

(a) The total area of discontinuities (unbrazed areas, flux inclusions, etc.) shall not exceed 25% of the total area of any individual faying surface.

(*b*) The sum of the lengths of the discontinuities measured on any one line in the direction of the lap shall not exceed 25% of the lap.

(c) No discontinuity shall extend continuously from one edge of the joint to the other edge, irrespective of its direction.

QB-180 SECTIONING TESTS AND WORKMANSHIP COUPONS

QB-181 SECTIONING TEST SPECIMENS

The dimensions and configuration of the sectioning test specimens shall conform to the requirements of Figure QB-462.4. Each side of the specimen shall be polished and examined with at least a four-power magnifying glass. The sum of the length of unbrazed areas on either side, considered individually, shall not exceed 20% of the length of the joint overlap.

QB-182 WORKMANSHIP COUPONS

The dimensions and configuration of the workmanship coupon shall conform to the nearest approximation of the actual application. Some typical workmanship coupons are shown in Figure QB-462.5. Each side of the specimen shall be polished and examined with at least a four-power magnifying glass. The sum of the length of unbrazed areas on either side, considered individually, shall not exceed 20% of the length of the joint overlap.

ARTICLE XII BRAZING PROCEDURE QUALIFICATIONS

(19) **QB-200 GENERAL**

QB-200.1 Each organization shall prepare written Brazing Procedure Specifications, which are defined as follows.

(a) Brazing Procedure Specification (BPS). A BPS is a written qualified brazing procedure prepared to provide direction for making production brazes to Code requirements. The BPS or other documents may be used to provide direction to the brazer or brazing operator to assure compliance with the Code requirements.

(b) Contents of the BPS. The completed BPS shall describe all of the essential and nonessential variables for each brazing process used in the BPS. These variables are listed in QB-250 and are defined in Article XIV, Brazing Data.

The BPS shall reference the supporting Procedure Qualification Record(s) (PQR) described in QB-200.2. The organization may include any other information in the BPS that may be helpful in making a Code braze.

(c) Changes to the BPS. Changes may be made in the nonessential variables of a BPS to suit production requirements without requalification provided such changes are documented with respect to the essential and nonessential variables for each process. This may be by amendment to the BPS or by use of a new BPS.

Changes in essential variables require requalification of the BPS [new or additional PQRs to support the change in essential variable(s)].

(*d*) Format of the BPS. The information required to be in the BPS may be in any format, written or tabular, to fit the needs of each organization, as long as every essential and nonessential variable outlined in QB-250 is included or referenced.

Form QB-482 (see Nonmandatory Appendix B) has been provided as a guide for the BPS. It is only a guide and does not list all required data for all brazing processes.

QB-200.2 Each organization shall be required to prepare a procedure qualification record, which is defined as follows.

(a) Procedure Qualification Record (PQR). The PQR is a record of variables recorded during the brazing of the test coupons. It also contains the test results of the tested specimens. Recorded variables normally fall within a small range of the actual variables that will be used in production brazing.

(b) Contents of the PQR. The completed PQR shall document all essential variables of QB-250 for each brazing process used during the brazing of the test coupon. Nonessential or other variables used during the brazing of the test coupon may be recorded at the organization's option. All variables, if recorded, shall be the actual variables (including ranges) used during the brazing of the test coupon. If variables are not monitored during brazing, they shall not be recorded. It is not intended that the full range or the extreme of a given range of variables to be used in production be used during qualification unless required due to a specific essential variable.

The PQR shall be certified accurate by the organization. The organization may not subcontract the certification function. This certification is intended to be the organization's verification that the information in the PQR is a true record of the variables that were used during the brazing of the test coupon and that the resulting tensile, bend, peel, or section (as required) test results are in compliance with Section IX.

(c) Changes to the PQR. Changes to the PQR are not permitted, except as described below. It is a record of what happened during a particular brazing test. Editorial corrections or addenda to the PQR are permitted. An example of an editorial correction is an incorrect P-Number or F-Number that was assigned to a particular base material or filler metal. An example of an addendum would be a change resulting from a Code change. For example, Section IX may assign a new F-Number to a filler material or adopt a new filler material under an established F-Number. This may permit, depending on the particular construction Code requirements, an organization to use other filler metals that fall within that particular F-Number where, prior to the Code revision, the organization was limited to the particular filler metal classification that was used during qualification. Additional information can be incorporated into a PQR at a later date provided the information is substantiated as having been part of the original qualification condition by lab record or similar data.

All changes to a PQR require recertification (including date) by the organization.

(d) Format of the PQR. Form QB-483 (see Nonmandatory Appendix B) has been provided as a guide for the PQR. The information required to be in the PQR may be in any format, to fit the needs of each organization, as long as every essential variable, required by QB-250, is included. Also the type of tests, number of tests, and test

Copyright ASME International (BPVC)

results shall be listed in the PQR. Additional sketches or information may be attached or referenced to record the required variables.

(e) Availability of the PQR. The PQR shall be available for review but need not be made available to the brazer or brazing operator.

(f) Multiple BPSs With One PQR or Multiple PQRs With One BPS. Several BPSs may be prepared from the data on a single PQR (e.g., a vertical-upflow pipe PQR may support BPSs for the vertical-upflow and downflow positions on pipe within all other essential variables). A single BPS may cover several essential variable changes as long as a supporting PQR exists for each essential variable.

QB-200.3 To reduce the number of brazing procedure qualifications required, P-Numbers are assigned to base metals dependent on characteristics such as composition, brazability, and mechanical properties, where this can logically be done, and for ferrous and nonferrous metals.

The assignments do not imply that base metals may be indiscriminately substituted for a base metal which was used in the qualification test without consideration of the compatibility from the standpoint of metallurgical properties, postbraze heat treatment, design, mechanical properties, and service requirements.

QB-200.4 Dissimilar Base Metal Thicknesses. A BPS qualified on test coupons of equal thickness shall be applicable for production brazements between dissimilar base metal thicknesses provided the thickness of both base metals are within the qualified thickness range permitted by QB-451. A BPS qualified on test coupons of different thicknesses shall be applicable for production brazements between dissimilar base metal thicknesses provided the thickness of each base metal is within the qualified range of thickness (based on each test coupon thickness) permitted by QB-451.

QB-201 ORGANIZATIONAL RESPONSIBILITY

The organization shall certify that they have qualified each Brazing Procedure Specification, performed the procedure qualification test, and documented it with the necessary Procedure Qualification Record (PQR).

QB-202 TYPE OF TESTS REQUIRED

QB-202.1 Tests. The type and number of test specimens which shall be tested to qualify a brazing procedure are given in QB-451, and shall be removed in a manner similar to that shown in QB-463. If any test specimen required by QB-451 fails to meet the applicable acceptance criteria, the test coupon shall be considered as failed.

When it can be determined that the cause of failure is not related to brazing parameters, another test coupon may be brazed using identical brazing parameters. Alternatively, if adequate material of the original test coupon exists, additional test specimens may be removed as close as practicable to the original specimen location to replace the failed test specimens.

When it has been determined that the test failure was caused by an essential variable, a new test coupon may be brazed with appropriate changes to the variable(s) that were determined to cause the test failure. If the new test passes, the essential variables shall be documented on the PQR.

When it is determined that the test failure was caused by one or more brazing related factors other than essential variables, a new test coupon may be brazed with the appropriate changes to brazing related factors that were determined to cause the test failure. If the new test passes, the brazing related factors that were determined to cause the previous test failure shall be addressed by the organization to assure that the required properties are achieved in the production brazement.

QB-202.2 Base Metals. The procedure qualification shall encompass the thickness ranges to be used in production for the base metals to be joined or repaired. The range of thickness qualified is given in QB-451.

QB-203 LIMITS OF QUALIFIED FLOW POSITIONS (19) FOR PROCEDURES

(See Figures QB-461.1 and QB-461.2 and Table QB-461.3.)

QB-203.1 For plate, qualification in the flat-flow, vertical-upflow, or horizontal-flow position shall qualify for the vertical-downflow position. For pipe, qualification in the horizontal-flow or vertical-upflow position shall qualify for the vertical-downflow position.

Qualification in pipe shall qualify for plate, but not vice versa. Horizontal-flow in pipe shall also qualify for flatflow in plate.

QB-203.2 Special Flow Positions. An organization who does production brazing in a special orientation may make the tests for procedure qualification in this specific orientation. Such qualifications are valid only for the flow positions actually tested, except that an angular deviation of ±15 deg is permitted in the inclination of the braze plane, as defined in Figures QB-461.1 and QB-461.2.

QB-203.3 The brazing process must be compatible, and the brazing filler metals, such as defined in the specifications of Section II, Part C, must be suitable for their use in specific flow positions. A brazer or brazing operator making and passing the BPS qualification test is thereby qualified for the flow position tested (see QB-301.2).

QB-210 PREPARATION OF TEST COUPON

QB-211 BASE METAL AND FILLER METAL

The base metals and filler metals shall be one or more of those listed in the BPS. The dimensions of the test assembly shall be sufficient to provide the required test specimens.

The base metals may consist of either plate, pipe, or other product forms. Qualification in pipe also qualifies for plate brazing, but not vice versa.

QB-212 TYPE AND DIMENSION OF JOINTS

The test coupon shall be brazed using a type of joint design proposed in the BPS for use in construction.

QB-250 BRAZING VARIABLES

QB-251 GENERAL

QB-251.1 Types of Variables for Brazing Procedure Specification (BPS). Brazing variables (listed for each brazing process in Tables QB-252 through QB-257) are subdivided into essential and nonessential variables (QB-401).

QB-251.2 Essential Variables. Essential variables are those in which a change, as described in the specific variables, is considered to affect the mechanical properties of the brazement, and shall require requalification of the BPS.

QB-251.3 Nonessential Variables. Nonessential variables are those in which a change, as described in the specific variables, may be made in the BPS without requalification.

Table QB-252 Torch Brazing (TB)				
Paragraph	252.1 Essential Variables	252.2 Nonessential Variables		
QB-402 Base Metal	QB-402.1			
	QB-402.3			
QB-403 Brazing Filler Metal	QB-403.1			
	QB-403.2			
	QB-403.3			
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1	QB-406.3		
QB-407 Flow Position	QB-407.1			
QB-408 Joint Design	QB-408.2			
	QB-408.4			
QB-409 Postbraze Heat Treatment	QB-409.1			
QB-410 Technique		QB-410.1		
		QB-410.2		
		QB-410.3		
		QB-410.4		
		QB-410.5		

یک دو سه صنعت 123sanat.com

Table QB-253 Furnace Brazing (FB)				
Paragraph	253.1 Essential Variables	253.2 Nonessential Variables		
QB-402 Base Metal	QB-402.1			
	QB-402.3			
QB-403 Brazing Filler Metal	QB-403.1			
	QB-403.2			
	QB-403.3			
QB-404 Brazing Temperature	QB-404.1			
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1			
	QB-406.2			
QB-407 Flow Position	QB-407.1			
QB-408 Joint Design	QB-408.2			
	QB-408.4			
QB-409 Postbraze Heat Treatment	QB-409.1			
QB-410 Technique		QB-410.1		
		QB-410.2		
QB-411 Brazing Time		QB-411.1		

Table QB-254 Induction Brazing (IB)					
Paragraph	254.1 Essential Variables	254.2 Nonessential Variables			
2B-402 Base Metal	QB-402.1				
	QB-402.3				
2B-403 Brazing Filler Metal	QB-403.1				
	QB-403.2				
	QB-403.3				
B-404 Brazing Temperature	QB-404.1				
B-406 Brazing Flux, Gas, or Atmosphere	QB-406.1				
B-407 Flow Position	QB-407.1				
2B-408 Joint Design	QB-408.2				
	QB-408.4				
B-409 Postbraze Heat Treatment	QB-409.1				
QB-410 Technique		QB-410.1			
		QB-410.2			
B-411 Brazing Time		QB-411.1			

Paragraph	255.1 Essential Variables	255.2 Nonessential Variables
QB-402 Base Metal	QB-402.1	
	QB-402.3	
QB-403 Brazing Filler Metal	QB-403.1	
	QB-403.2	
	QB-403.3	
QB-404 Brazing Temperature	QB-404.1	
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1	
QB-407 Flow Position	QB-407.1	
QB-408 Joint Design	QB-408.2	
	QB-408.4	
QB-409 Postbraze Heat Treatment	QB-409.1	
QB-410 Technique		QB-410.1
		QB-410.2
QB-411 Brazing Time		0B-411.1

Paragraph	256.1 Essential Variables	256.2 Nonessential Variables
QB-402 Base Metal	QB-402.1	
	QB-402.3	
QB-403 Brazing Filler Metal	QB-403.1	
	QB-403.2	
	QB-403.3	
QB-404 Brazing Temperature	QB-404.1	
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1	
QB-407 Flow Position	QB-407.1	
QB-408 Joint Design	QB-408.2	
-	QB-408.4	
QB-409 Postbraze Heat Treatment	QB-409.1	
QB-410 Technique		QB-410.1
		QB-410.2
QB-411 Brazing Time		QB-411.1

یک دو سه صنعت 123sanat.com

 $(\pmb{19})$

Table QB-257 Dip Brazing — Molten Metal Bath (DB)					
Paragraph 257.1 Essential Variables 257.2 Nones					
QB-402 Base Metal	QB-402.1				
	QB-402.3				
QB-403 Brazing Filler Metal	QB-403.1				
	QB-403.2				
	QB-403.3				
QB-404 Brazing Temperature	QB-404.1				
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1				
QB-407 Flow Position	QB-407.1				
QB-408 Joint Design	QB-408.2				
	QB-408.4				
QB-409 Postbraze Heat Treatment	QB-409.1				
QB-410 Technique		QB-410.1			
		QB-410.2			
QB-411 Brazing Time		QB-411.1			

ARTICLE XIII BRAZING PERFORMANCE QUALIFICATIONS

QB-300 GENERAL

QB-300.1 This Article lists the brazing processes separately, with the essential variables which apply to brazer and brazing operator performance qualifications.

The brazer qualification is limited by the essential variables given for each brazing process. These variables are listed in QB-350, and are defined in Article XIV, Brazing Data. The brazing operator qualification is limited by the essential variables given in QB-350 for each brazing process.

QB-301 TESTS

QB-301.1 Intent of Tests. The performance qualification tests are intended to determine the ability of brazers and brazing operators to make sound braze joints.

QB-301.2 Qualification Tests. Each organization shall qualify each brazer or brazing operator for each brazing process to be used in production brazing. The performance qualification test shall be brazed in accordance with one of any of his qualified Brazing Procedure Specifications (BPS).

The brazer or brazing operator who prepares the BPS qualification test coupons is also qualified within the limits of the performance qualifications, listed in QB-304 for brazers and in QB-305 for brazing operators. He is qualified only for the positions tested in the procedure qualification in accordance with QB-407.

QB-301.3 Identification of Brazers and Brazing Operators. Each qualified brazer and brazing operator shall be assigned an identifying number, letter, or symbol by the organization, which shall be used to identify the work of that brazer or brazing operator.

QB-301.4 Record of Tests. The record of Brazer or Brazing Operator Performance Qualification (BPQ) tests shall include the essential variables (QB-350), the type of tests and the test results, and the ranges qualified in accordance with QB-452 for each brazer and brazing operator. A suggested form for these records is given in Form QB-484 (see Nonmandatory Appendix B).

QB-302 TYPE OF TEST REQUIRED

QB-302.1 Test Specimens. The type and number of test specimens required shall be in accordance with QB-452, and shall be removed in a manner similar to that shown in QB-463.

All test specimens shall meet the requirements prescribed in QB-170 or QB-180, as applicable. Tests for brazing operators shall meet the requirements of QB-305.

QB-302.2 Test Coupons in Pipe. For test coupons made in pipe, specimens shall be removed as shown in Figure QB-463.2(c) at approximately 180 deg apart.

QB-302.3 Combination of Base Metal Thicknesses. When joints are brazed between two base metals of different thicknesses, a performance qualification shall be made for the applicable combination of thicknesses, even though qualification tests have been made for each of the individual base metals brazed to itself. The range of thickness of each of the base metals shall be determined individually per QB-452.

QB-303 LIMITS OF QUALIFIED POSITIONS (19)

(See Figures QB-461.1 and QB-461.2 and Table QB-461.3.)

QB-303.1 For plate, qualification in the flat-flow, vertical-upflow, or horizontal-flow positions shall qualify for the vertical-downflow position.

QB-303.2 For pipe, qualification in either the horizontal-flow or vertical-upflow position shall qualify for the vertical-downflow position.

QB-303.3 Qualification in pipe shall qualify for plate, but not vice versa. Horizontal-flow in pipe shall qualify for flat-flow in plate.

QB-303.4 Special Positions. An organization who does production brazing in a special orientation may make the tests for performance qualification in this specific orientation. Such qualifications are valid only for the flow positions actually tested, except that an angular deviation of ±15 deg is permitted in the inclination of the braze plane, as defined in Figures QB-461.1 and QB-461.2.

QB-304 BRAZERS

Each brazer who brazes under the rules of this Code shall have passed the tests prescribed in QB-302 for performance qualifications.

A brazer qualified to braze in accordance with one qualified BPS is also qualified to braze in accordance with other qualified BPSs, using the same brazing process, within the limits of the essential variables of QB-350.

QB-305 BRAZING OPERATORS

The brazing operator who prepares brazing procedure qualification test specimens meeting requirements of QB-451 is thereby qualified. Alternatively, each brazing operator who brazes on vessels constructed under the rules of this Code shall be qualified for each combination of essential variables under which brazing is performed using semiautomatic or automatic processes (such as the resistance, induction, or furnace processes) as follows:

(*a*) A typical joint or workmanship coupon embodying the requirements of a qualified brazing procedure shall be brazed and sectioned. Typical joints are shown in Figure QB-462.5.

(b) In order to ensure that the operator can carry out the provisions of the brazing procedure, the test sections required in (a) shall meet the requirements of QB-452.

QB-310 QUALIFICATION TEST COUPONS

QB-310.1 Test Coupons. The test coupons may be plate, pipe, or other product forms. The dimensions of the test coupon and length of braze shall be sufficient to provide the required test specimens.

QB-310.2 Braze Joint. The dimensions of the braze joint at the test coupon used in making qualification tests shall be the same as those in the Brazing Procedure Specification (BPS).

QB-310.3 Base Metals. When a brazer or brazing operator is to be qualified, the test coupon shall be base metal of the P-Number or P-Numbers to be joined in production brazing.

QB-320 RETESTS AND RENEWAL OF QUALIFICATION

QB-321 RETESTS

A brazer or brazing operator who fails to meet the requirements for one or more of the test specimens prescribed in QB-452 may be retested under the following conditions.

QB-321.1 Immediate Retest. When an immediate retest is made, the brazer or brazing operator shall make two consecutive test coupons for each position which he has failed, all of which shall pass the test requirements.

QB-321.2 Further Training. When the brazer or brazing operator has had further training or practice, a complete retest shall be made for each position on which he failed to meet the requirements.

QB-322 RENEWAL OF QUALIFICATION

Renewal of qualification of a performance qualification is required

(*a*) when a brazer or brazing operator has not used the specific brazing process for a period of 6 months or more, or

(b) when there is a specific reason to question his ability to make brazes that meet the specification. Renewal of qualification for a specific brazing process under (a) may be made with specific brazing process by making only one test joint (plate or pipe) with all the essential variables used on any one of the brazer's or brazing operator's previous qualification test joints. This will reestablish the brazer's or brazing operator's qualification for all variables for which he had previously qualified with the specific brazing process.

QB-350 BRAZING VARIABLES FOR BRAZERS AND BRAZING OPERATORS

QB-351 GENERAL

A brazer or brazing operator shall be requalified whenever a change is made in one or more of the essential variables for each brazing process, as follows:

- (a) Torch Brazing (TB)
- (b) Furnace Brazing (FB)
- (c) Induction Brazing (IB)
- (d) Resistance Brazing (RB)
- (e) Dip Brazing (DB)

QB-351.1 Essential Variables — Manual, Semiautomatic, and Machine Brazing.

(a) QB-402 Base Metal

- (1) QB-402.2
- (2) QB-402.3
- (b) QB-403 Brazing Filler Metal
 - (1) QB-403.1
 - (2) QB-403.2
 - (3) QB-403.4
- (c) QB-407 Flow Position (1) QB-407.1
- (d) QB-408 Joint Design
 - (1) QB-408.1
 - (2) QB-408.3
- (e) QB-410 Technique
 - (1) QB-410.5

QB-351.2 Essential Variables — Automatic.

- (a) A change from automatic to machine brazing.
- (b) A change in brazing process.

ARTICLE XIV BRAZING DATA

QB-400 VARIABLES

QB-401 GENERAL

QB-401.1 Each brazing variable described in this Article is applicable as an essential or nonessential variable for procedure qualification when referenced in QB-250 for each specific process. Essential variables for performance qualification are referenced in QB-350 for each specific brazing process. A change from one brazing process to another brazing process is an essential variable and requires requalification.

QB-402 BASE METAL

QB-402.1 A change from a base metal listed under one P-Number in Table QW/QB-422 to any of the following:

(a) a metal listed under another P-Number

(b) any other base metal not listed in Table QW/QB-422

The brazing of dissimilar metals need not be requalified if each base metal involved is qualified individually for the same brazing filler metal, flux, atmosphere, and process. Similarly, the brazing of dissimilar metals qualifies for the individual base metal brazed to itself and for the same brazing filler metal, flux, atmosphere, and process, provided the requirements of OB-153.1(a) are met.

QB-402.2 A change from a base metal listed under one P-Number in Table QW/QB-422 to any of the following:

(a) a metal listed under another P-Number

(b) any other metal not listed in Table QW/QB-422

The brazing of dissimilar metals need not be requalified if each base metal involved is qualified individually for the same brazing filler metal, flux, atmosphere, and process. Similarly, the brazing of dissimilar metals qualifies for the individual base metal brazed to itself and for the same brazing filler metal, flux, atmosphere, and process.

QB-402.3 A change in base metal thickness beyond the range qualified in QB-451 for procedure qualification, or QB-452 for performance qualification.

QB-403 BRAZING FILLER METAL

QB-403.1 A change from one F-Number in Table QB-432 to any other F-Number, or to any other filler metal not listed in Table QB-432.

QB-403.2 A change in filler metal from one product form to another (for example, from preformed ring to paste).

QB-403.3 A change from mechanically fed or manually fed filler metal to preplaced filler metal and vice versa.

QB-403.4 A change from preplaced filler metal to mechanically fed or manually fed filler metal.

QB-404 BRAZING TEMPERATURE

QB-404.1 A change in brazing temperature to a value outside the range specified in the BPS.

QB-406 BRAZING FLUX, FUEL GAS, OR ATMOSPHERE

QB-406.1 The addition or deletion of brazing flux or a change in AWS classification of the flux. Nominal chemical composition or the trade name of the flux may be used as an alternative to the AWS classification.

QB-406.2 A change in the furnace atmosphere from one basic type to another type. For example

- (a) reducing to inert
- *(b)* carburizing to decarburizing
- (c) hydrogen to disassociated ammonia

QB-406.3 A change in the type of fuel gas(es).

QB-407 FLOW POSITIONS

(**19**)

QB-407.1 The addition of brazing positions other than those already qualified (see Table QB-461.3) shall require requalification if

(*a*) the brazing filler metal is preplaced or face fed from outside the joint in such a manner that major flow is required to complete the brazed joint, or

(b) the brazing filler metal is preplaced in a joint in such a manner that major flow does occur

QB-407.2 If the brazing filler metal is preplaced in a joint in such a manner that major flow does not occur, then the joint may be brazed in any position without requalification.

QB-408 JOINT DESIGN

QB-408.1 A change in the joint type, i.e., from a butt to a lap or socket, from that qualified. For lap or socket joints, an increase in lap length of more than 25% from

the overlap used on the brazer performance qualification test coupon (a decrease in overlap is permitted without requalification).

QB-408.2 A change in the joint clearances to a value outside the range specified in the BPS and as recorded in the PQR.

QB-408.3 A change in the joint clearances to a value outside the range specified in the BPS.

QB-408.4 A change in the joint type, e.g., from a butt to a lap or socket, from that qualified. For lap and socket joints, a decrease in overlap length from the overlap used on the procedure qualification test coupon (an increase in overlap is permitted without requalification).

(19) **QB-409 POSTBRAZE HEAT TREATMENT**

QB-409.1 A separate procedure qualification is required for each of the following:

(a) the addition or deletion of a postbraze heat treatment (PBHT)

(b) a change in the postbraze heat treatment temperature more than $\pm 25^{\circ}$ F ($\pm 14^{\circ}$ C) or a change in postbraze heat treatment time of the greater of 15 min or 10% of the postbraze heat treatment time recorded on the PQR

QB-410 TECHNIQUE

QB-410.1 A change in the method of preparing the base metal, such as mechanical cleaning, coating, plating, or surface treatment by chemical means.

QB-410.2 A change in the method of postbraze cleaning (for example, from chemical cleaning to cleaning by wire brushing or wiping with a wet rag).

QB-410.3 A change in the nature of the flame (for example, a change from neutral or slightly reducing).

QB-410.4 A change in the brazing tip sizes.

QB-410.5 A change from manual to machine or semiautomatic torch brazing, and vice versa.

QB-411 BRAZING TIME

QB-411.1 A change in the brazing time at temperature.

QB-420 P-NUMBERS

(See Part QW, Welding — QW-420.)

QB-430 F-NUMBERS

QB-431 GENERAL

The following F-Number grouping of brazing filler metals in Table QB-432 is based essentially on their usability characteristics, which fundamentally determine the ability of brazers and brazing operators to make satisfactory brazements with a given filler metal. This grouping is made to reduce the number of brazing procedure and performance qualifications, where this can logically be done. The grouping does not imply that filler metals within a group may be indiscriminately substituted for a filler metal which was used in the qualification test without consideration of the compatibility from the standpoint of metallurgical properties, design, mechanical properties, postbraze heat treatment, and service requirements.

> یک دو سه صنعت 123sanat.com

Table QB-432 F-Numbers Grouping of Brazing Filler Metals for Procedure and Performance Qualification SFA-5.8				
QB	F-No.	AWS Classification No.		
432.1	101	BAg-1		
		BAg-1a		
		BAg-8		
		BAg-8a		
		BAg-22		
		BAg-23		
		BVAg-0		
		BVAg-8		
		BVAg-8b		
		BVAg-30		

	Table QB-432 F-Numbers		
rouping of Brazing Filler Metals for Procedure and Performance Qualification SFA-5.8 (Cont'd)			
QB	F-No.	AWS Classification No.	
432.2	102	BAg-2	
152.2	102	BAg-2a	
		BAg-3	
		BAg-4	
		BAg-5	
		BAg-6	
		BAg-7	
		BAg-9	
		BAg-10	
		BAg-13	
		BAg-13a	
		BAg-18	
		BAg-19	
		BAg-19 BAg-20	
		BAg-20 BAg-21	
		BAg-21 BAg-24	
		BAg-24 BAg-26	
		BAg-20 BAg-27	
		BAg-27 BAg-28	
		BAg-28 BAg-33	
		BAg-34	
		BAg-35	
		BAg-36	
		BAg-37	
		BVAg-6b	
		BVAg-8	
		BVAg-8a	
		BVAg-18	
		BVAg-29	
		BVAg-31	
		BVAg-32	
432.3	103	BCuP-2	
		BCuP-3	
		BCuP-4	
		BCuP-5	
		BCuP-6	
		BCuP-7	
		BCuP-8	
		BCuP-9	
422.4	104		
432.4	104	BAISi-2	
		BAISi-3	
		BAISi-4	
		BAISI-5	
		BAISI-7	
		BAISi-9	
		BAlSi-11	
432.5	105	BCu-1	
		BCu-1a	
		BCu-2	
		BCu-3	
		BVCu-1a	
		BVCu-1b	
432.6	106	RBCuZn-A	
432.0	106	RBCuZn-A RBCuZn-B	
		RBCuZn-C	
		RBCuZn-D	

QB	F-No.	AWS Classification No.
432.7	107	BNi-1
		BNi-1a
		BNi-2
		BNi-3
		BNi-4
		BNi-5
		BNi-5a
		BNi-5b
		BNi-6
		BNi-7
		BNi-8
		BNi-9
		BNi-10
		BNi-11
		BNi-12
		BNi-13
432.8	108	BAu-1
		BAu-2
		BAu-3
		BAu-4
		BAu-5
		BAu-6
		BVAu-2
		BVAu-3
		BVAu-4
		BVAu-7
		BVAu-8
		BVAu-9
		BVAu-10
432.9	109	BMg-1
432.10	110	BCo-1
432.11	111	BVPd-1

QB-450 SPECIMENS

QB-451 PROCEDURE QUALIFICATION SPECIMENS

Table QB-451.1 Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints					
Thickness T of Test Coupon as	Range of Thickness of Materials Qualified by Test Plate or Pipe, in. (mm) Min. Max.		Type and Nur	nber of Test Specim First Surface Bend	ens Require Second Surface Bend
Brazed, in. (mm)			[Note (1)]	[Note (2)]	[Note (2]
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	2T	2	2	2
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	¹ / ₁₆ (1.5)	2T	2	2	2
Over $\frac{3}{8}$ (10)	$\frac{3}{16}(5)$	2T	2 [Note (3)]	2	2

NOTES:

(1) For specimen dimensions, see Figure QB-462.1(a) for plate specimens, or Figure QB-462.1(b) for pipe specimens. For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted; see Figure QB-462.1(e).

(2) For specimen dimensions, see Figure QB-462.2(a). For specimen removal, see Figure QB-463.1(a) for plate coupons, or Figure QB-463.1(e) for pipe coupons.

(3) See QB-151 for details on multiple specimens when coupon thicknesses are over 1 in. (25 mm).

Tension Tests	Ta and Longitudi	ble QB-451 nal Bend T		d Scarf Joints	
	Range of Thickness of		Type and Number of Test Specimens Require		
Thickness T of Test Coupon as	Materials Qualified by Test Plate or Pipe, in. (mm)		. Tension	First Surface Bend	Second Surface Bend
Brazed, in. (mm)	Min.	Max.	[Note (1)]	[Note (2)]	[Note (2)]
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	27	2	2	2
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	¹ / ₁₆ (1.5)	2T	2	2	2
Over $\frac{3}{8}$ (10)	$\frac{3}{16}(5)$	2T	2 [Note (3)]	2	2

NOTES:

(1) For specimen dimensions, see Figure QB-462.1(a) for plate specimens, or Figure QB-462.1(b) for pipe specimens. For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted; see Figure QB-462.1(e).

(2) For specimen dimensions, see Figures QB-462.2(b) and QB-463.1(b) for specimen removal.

(3) See QB-151 for details on multiple specimens when coupon thicknesses are over 1 in. (25 mm).

Table QB-451.3 Tension Tests and Peel Tests — LAP Joints						
	Range of Thickness of Materials Qualified by Test Plate or Pipe, in. (mm)		Type and Number of Te Specimens Required [Note			
Thickness <i>T</i> of Test Coupon as Brazed,			Tension [Note (2)]	Peel [Note (3)] and [Note (4)]		
in. (mm)						
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	2T	2	2		
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	¹ / ₁₆ (1.5)	2 <i>T</i>	2	2		
Over $\frac{3}{8}$ (10)	³ / ₁₆ (5)	2T	2	2		

NOTES:

(1) When materials of a representative geometry and thickness are not available to prepare butt or lap joint test coupons, workmanship coupons may be prepared and examined per QB-451.5 to establish the range of thickness of base metal qualified. When this is done, the properties of the joint shall be validated using butt or lap joint test coupons of any thickness.

(2) For specimen dimensions, see Figure QB-462.1(c). For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted; see Figure QB-462.1(e).

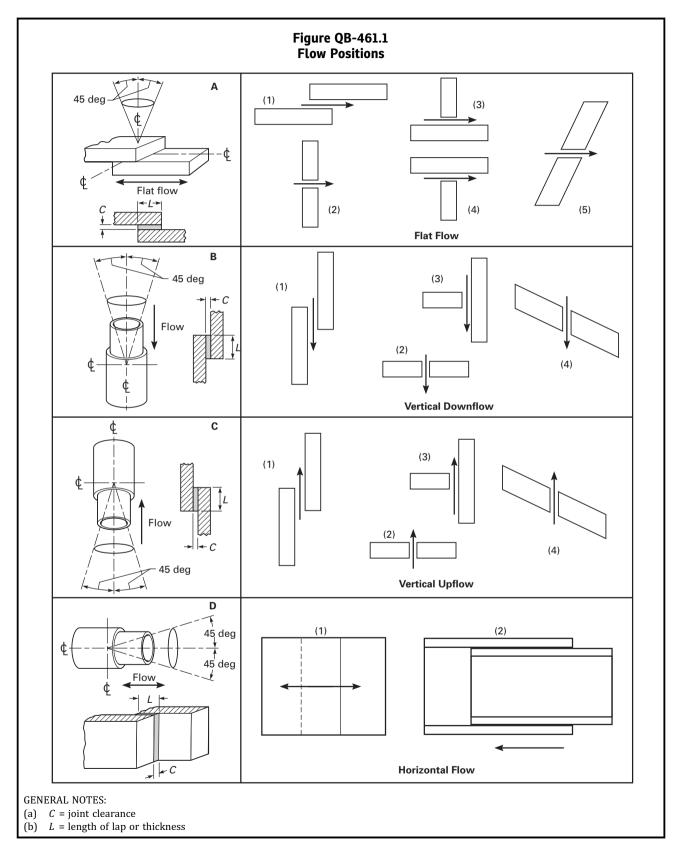
(3) For peel specimens, see Figure QB-462.3 for specimen dimensions, and Figure QB-463.1(d) for specimen removal.

(4) Sectioning tests may be substituted for peel tests. For section specimens, see Figure QB-462.4 for specimen dimensions, and Figure QB-463.1(c) for specimen removal.

Tensi	Tabl ion Tests and Se	e QB-451.4 ction Tests –	– Rabbet Joints	
	Range of Thickness of Materials Qualified by Test Plate or Pipe, in. (mm)		Type and Number of Test Specimens Required	
Thickness T of Test Coupon as Brazed, in. (mm)			_ Tension	Tension
	Min.	Max.	[Note (1)]	[Note (2)]
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	2T	2	2
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	¹ / ₁₆ (1.5)	2T	2	2
Over $\frac{3}{8}$ (10)	³ / ₁₆ (5)	2T	2	2

(1) For specimen dimensions, see Figure QB-462.1(c). For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted; see Figure QB-462.1(e).

(2) For specimen dimensions, see Figures QB-462.4 and QB-463.1(c) for specimen removal.

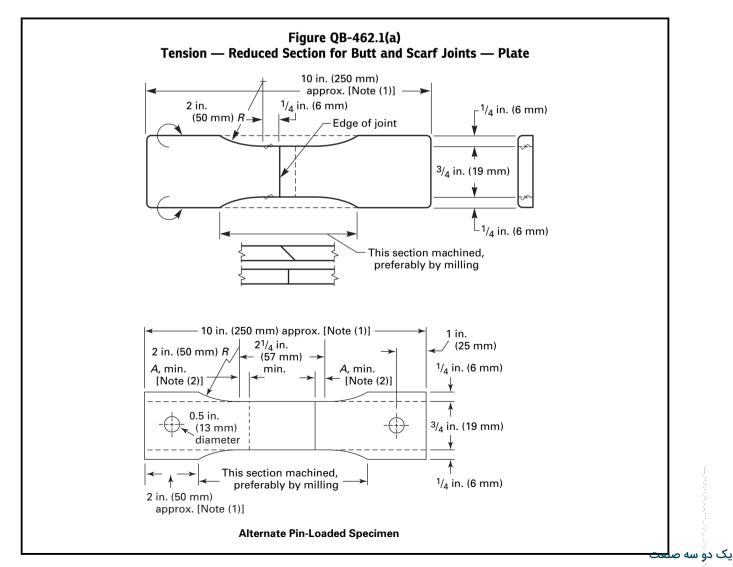

Table QB-451.5 Section Tests — Workmanship Coupon Joints					
Thickness <i>T</i> of Test Coupon as Brazed, in. (mm)	Range of Thick Qualified by Te in. (Type and Number o Test Specimens Required			
	Min.	Max.	Section, QB-462.5 [Note (1)]		
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	27	2		
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	$\frac{1}{16}$ (1.5)	2T	2		
Over $\frac{3}{8}$ (10)	³ / ₁₆ (5)	2 <i>T</i>	2		

(1) This test in itself does not constitute procedure qualification but must be validated by conductance of tests of butt or lap joints as appropriate. For joints connecting tension members, such as the stay or partition type in QB-462.5, the validation data may be based upon butt joints; for joints connecting members in shear, such as saddle or spud joints, the validation data may be based on lap joints.

Thickness <i>T</i> of Test Coupon as Brazed, in. (mm)	Qualified by Te	ness of Materials est Plate or Pipe,	Type and Number of Test Specimens Required Peel, QB-462.3 or section, QB-462.4 [Note (1)], [Note (2)], and [Note (3)]
	in. Min.	(mm) Max.	
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	2T	2
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	$\frac{1}{16}$ (1.5)	2T	2
Over ³ / ₈ (10)	³ / ₁₆ (5)	2T	2
specimens. (3) For specimen removal,	ons, see Figure QB-462.	3 for peel test specime or section specimens or	rength of the base metals). ns or Figure QB-462.4 for section Figure QB-463.2(b) for peel spece
specimens. (3) For specimen removal, mens from plate coupo	ons, see Figure QB-462. see Figure QB-463.2(a) f ns, or Figure QB-463.2(c)	3 for peel test specime for section specimens or for pipe coupons.	ns or Figure QB-462.4 for section Figure QB-463.2(b) for peel spec
specimens. (3) For specimen removal, mens from plate coupo S Thickness <i>T</i> of Test	ons, see Figure QB-462. see Figure QB-463.2(a) f ns, or Figure QB-463.2(c) Table ection Tests — Wor Range of Thick Qualified by Te	3 for peel test specime for section specimens or for pipe coupons.	ns or Figure QB-462.4 for section Figure QB-463.2(b) for peel spec
specimens. (3) For specimen removal, mens from plate coupo	ons, see Figure QB-462. see Figure QB-463.2(a) f ns, or Figure QB-463.2(c) Table ection Tests — Wor Range of Thick Qualified by Te	3 for peel test specime for section specimens or for pipe coupons. 2 QB-452.2 kmanship Specime ness of Materials st Plate or Pipe,	ns or Figure QB-462.4 for section Figure QB-463.2(b) for peel spect n Joints Type and Number of Test
specimens. (3) For specimen removal, mens from plate coupo S Thickness T of Test Coupon as Brazed, in. (mm) Less than ¹ / ₈ (3)	ons, see Figure QB-462. see Figure QB-463.2(a) f ns, or Figure QB-463.2(c) Table ection Tests — Wor Range of Thick Qualified by Te 	3 for peel test specime for section specimens or for pipe coupons. e QB-452.2 kmanship Specime ness of Materials st Plate or Pipe, (mm)	ns or Figure QB-462.4 for section Figure QB-463.2(b) for peel spect n Joints Type and Number of Test Specimens Required
specimens. (3) For specimen removal, mens from plate coupo Solution Thickness T of Test Coupon as Brazed,	ons, see Figure QB-462. see Figure QB-463.2(a) f ns, or Figure QB-463.2(c) Table ection Tests — Wor Range of Thick Qualified by Te Min.	3 for peel test specime for section specimens or for pipe coupons. e QB-452.2 kmanship Specime ness of Materials st Plate or Pipe, (mm) Max.	ns or Figure QB-462.4 for section Figure QB-463.2(b) for peel spect n Joints Type and Number of Test Specimens Required - Section, QB-462.5

QB-452 PERFORMANCE QUALIFICATION SPECIMENS

QB-460 GRAPHICS



123sanat.com

Table QB-461.3 Procedure and Performance Qualification Position Limitations (As Given in <mark>QB-203</mark> and <mark>QB-303</mark>)						
Coupon Type		Qualified Flow Position [Note (2)]				
	Test Flow Position [Note (1)]	Plate	Pipe			
Plate	Flat	Flat, vertical down	None			
	Vertical down	Vertical down	None			
	Vertical up	Vertical up, vertical down	None			
	Horizontal	Horizontal, vertical down	None			
Pipe	Vertical down	Vertical down	Vertical down			
	Vertical up	Vertical up, vertical down	Vertical up, vertical down			
	Horizontal	Flat, horizontal, vertical down	Horizontal, vertical down			

(2) Qualified brazing positions are shown in Figure QB-461.1.

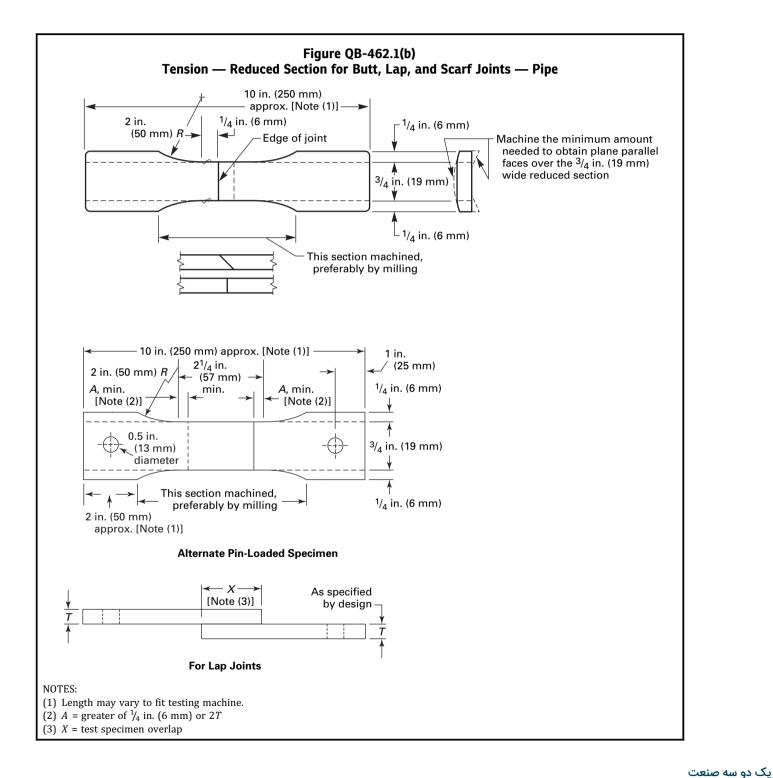
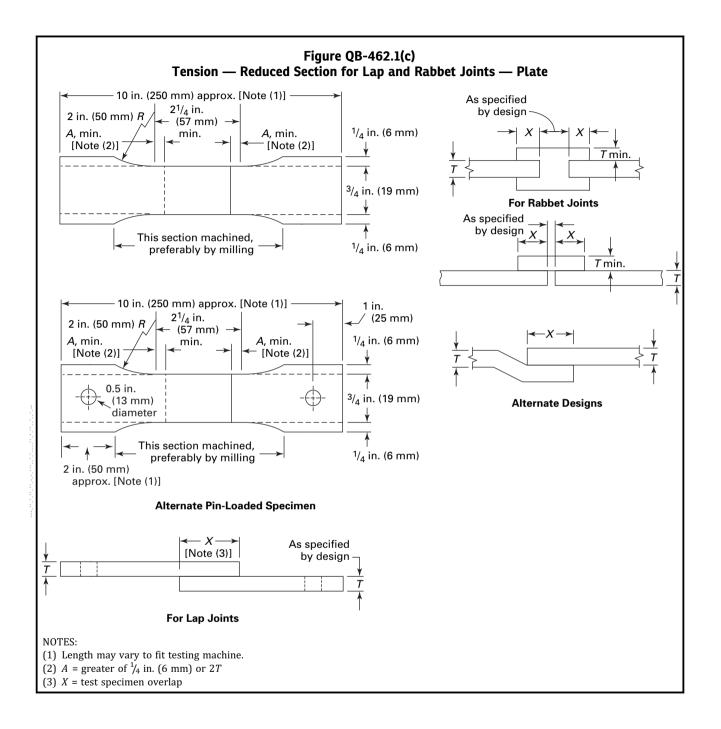
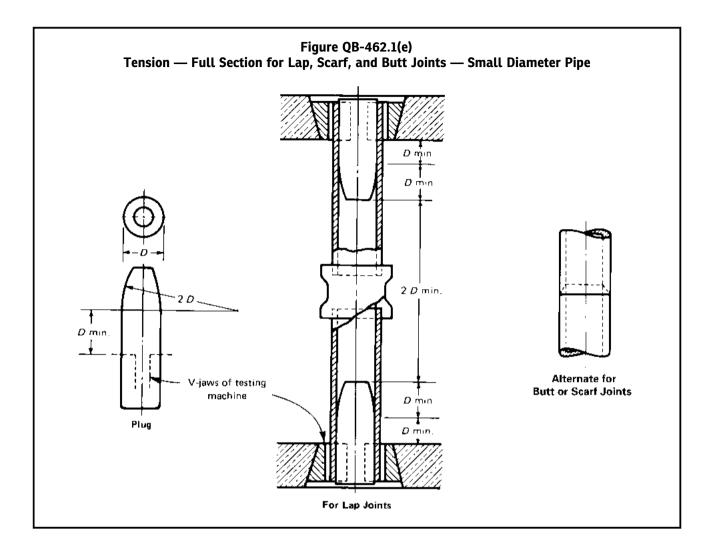
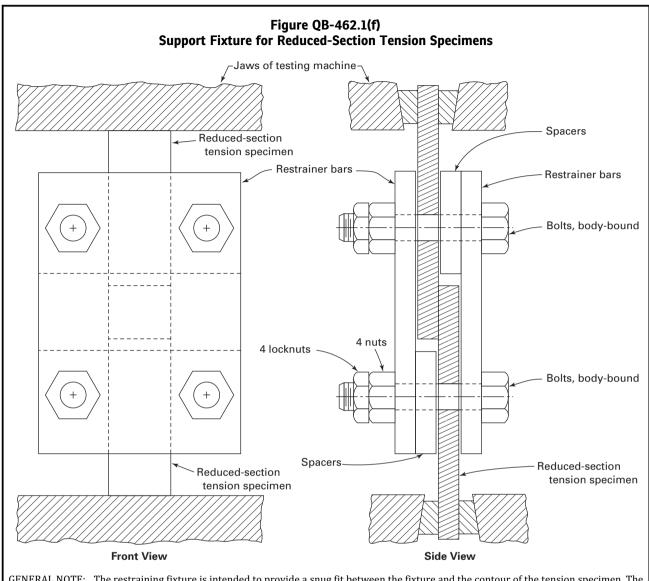
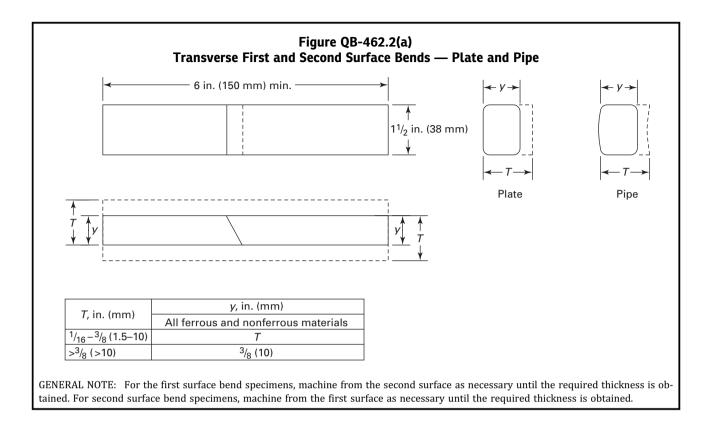

Copyright ASME International (BPVC)

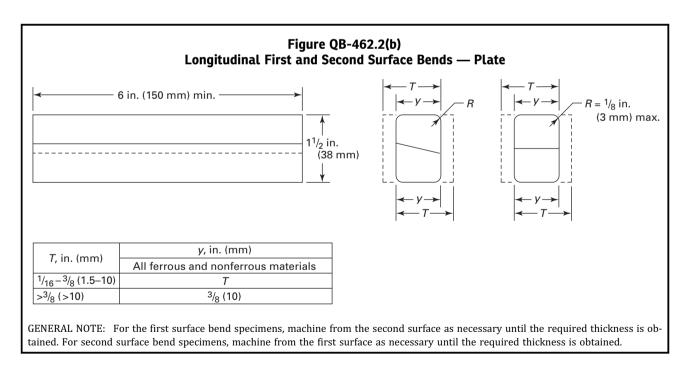
Figure QB-462.1(a) Tension — Reduced Section for Butt and Scarf Joints — Plate (Cont'd)

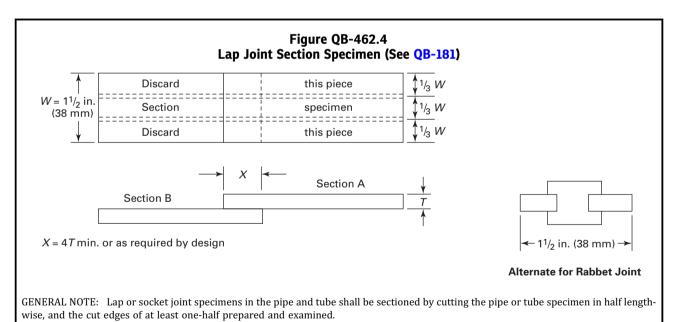

NOTES:


(1) Length may vary to fit testing machine.

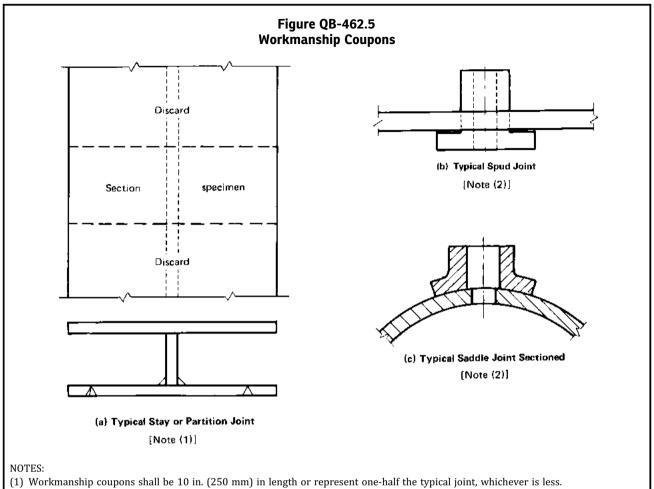

(2) $A = \text{greater of } \frac{1}{4} \text{ in. (6 mm) or } 2T$

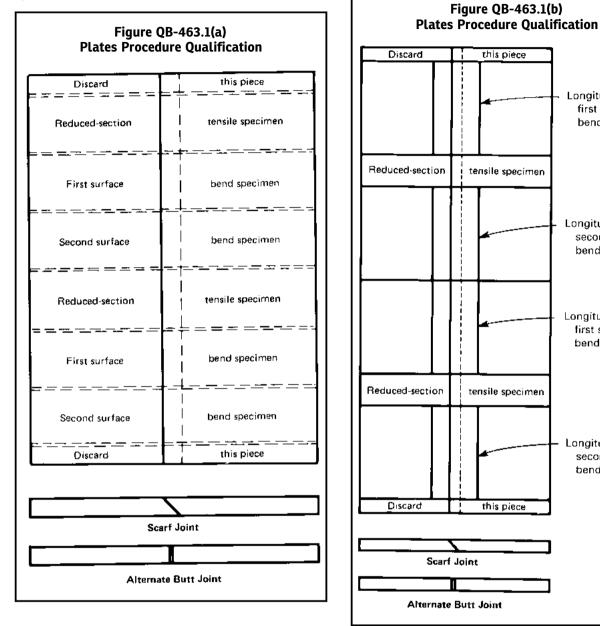

123sanat.com





GENERAL NOTE: The restraining fixture is intended to provide a snug fit between the fixture and the contour of the tension specimen. The fixture shall be tightened, but only to the point where a minimum of 0.001 in. (0.03 mm) clearance exists between the sides of the fixture and the tension specimen.




Copyright ASME International (BPVC)

(2) Circular coupons shall be sectioned in half, and one-half shall be used as the test specimen.

یک دو سه صنعت 123sanat.com

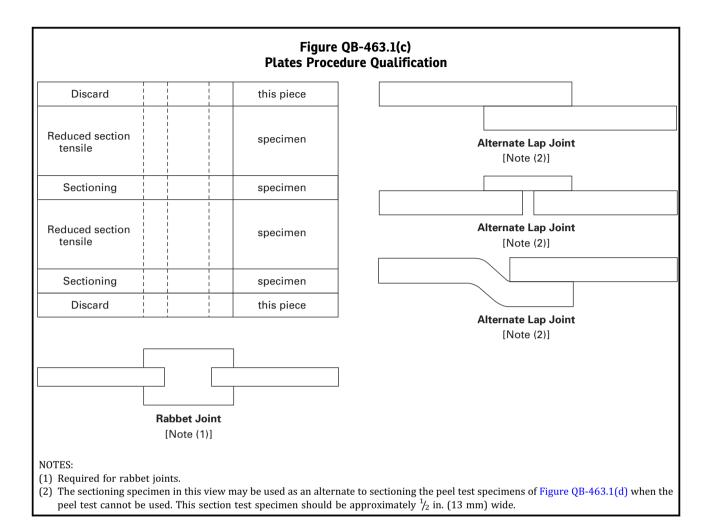
QB-463 **ORDER OF REMOVAL**

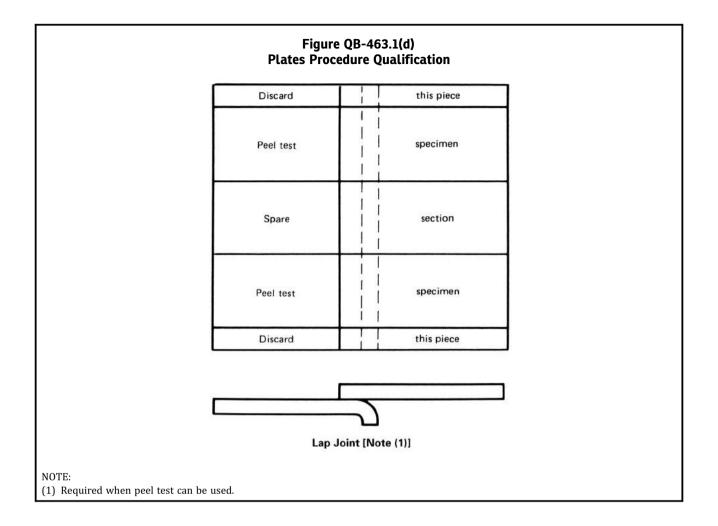
Longitudinal first surface

Longitudinal second surface

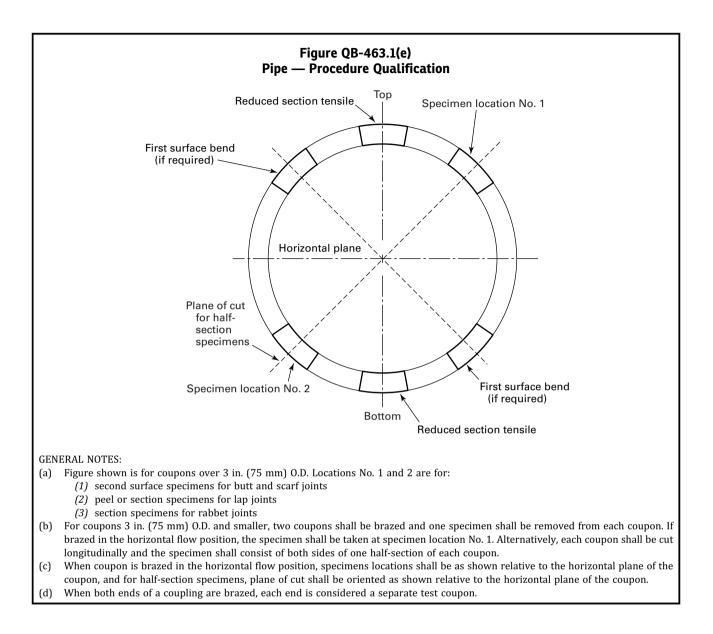
Longitudinal

Longitudinal

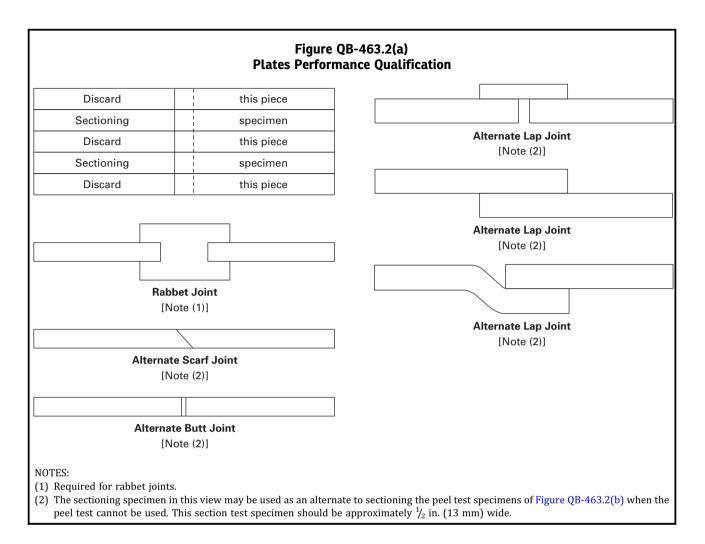

second surface bend specimen

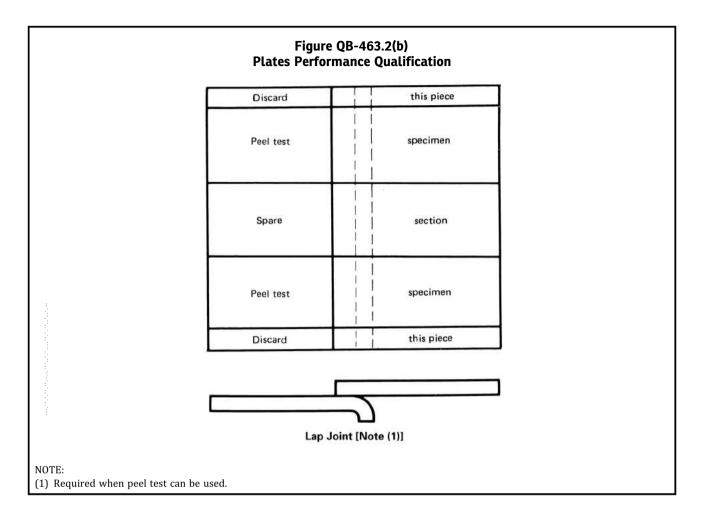

first surface

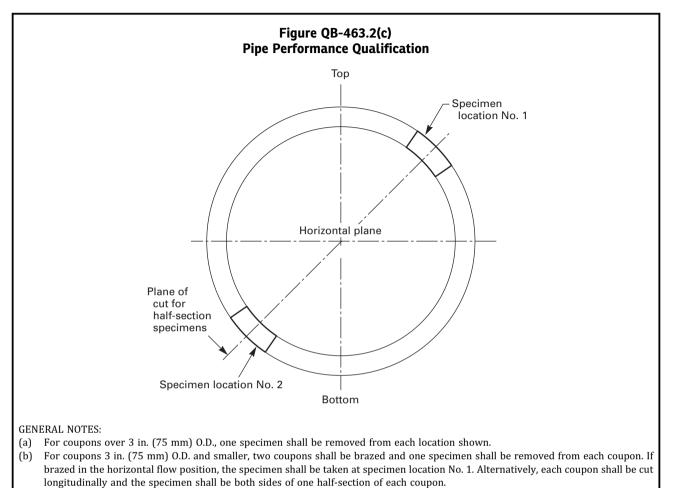
bend specimen


bend specimen

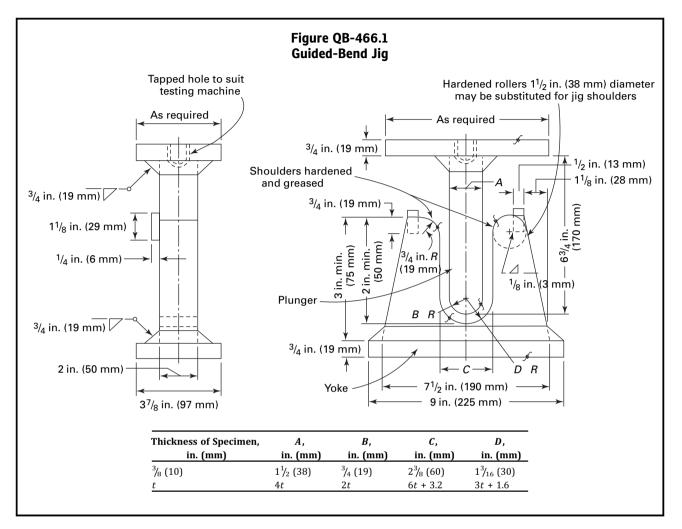
bend specimen

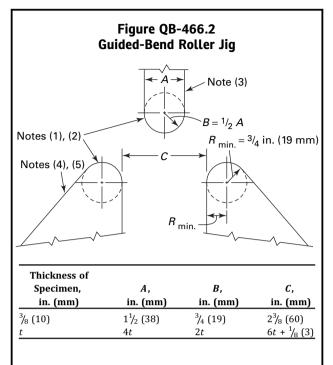



Copyright ASME International (BPVC)



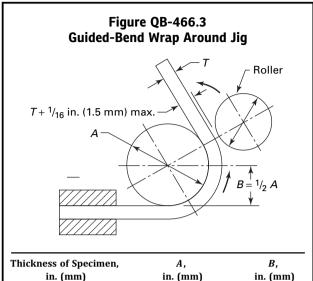
یک دو سه صنعت 123sanat.com


یک دو سه صنعت 123sanat.com



- (c) When the coupon is brazed in the horizontal flow position, specimen locations shall be as shown relative to the horizontal plane of the coupon. For half-section specimens, plane of cut shall be oriented as shown relative to the horizontal plane of the coupon.
- (d) When both ends of a coupling are brazed, each end is considered a separate test coupon.

QB-466 TEST JIGS



GENERAL NOTE: The braze joint in the case of a transverse bend specimen shall be completely within the bend portion of the specimen after testing.

NOTES:

- Either hardened and greased shoulders or hardened rollers free to rotate shall be used.
- (2) The shoulders of rollers shall have a minimum bearing surface of 2 in. (50 mm) for placement of the specimen. The rollers shall be high enough above the bottom of the jig so that the specimens will clear the rollers when the ram is in the low position.
- (3) The ram shall be fitted with an appropriate base and provision made for attachment to the testing machine, and shall be of a sufficiently rigid design to prevent deflection and misalignment while making the bend test. The body of the ram may be less than the dimensions shown in column *A*.
- (4) If desired, either the rollers or the roller supports may be made adjustable in the horizontal direction so that specimens of *t* thickness may be tested on the same jig.
- (5) The roller supports shall be fitted with an appropriate base designed to safeguard against deflection or misalignment and equipped with means for maintaining the rollers centered midpoint and aligned with respect to the ram.

in. (mm)	in. (mm)	in. (mm		
³ / ₈ (10)	1 ¹ / ₂ (38)	³ / ₄ (19)		
t	4 <i>t</i>	2t		

GENERAL NOTES:

- (a) Dimensions not shown are the option of the designer. The essential consideration is to have adequate rigidity so that the jig parts will not spring.
- (b) The specimen shall be firmly clamped on one end so that there is no sliding of the specimen during the bending operation.
- (c) Test specimens shall be removed from the jig when the outer roll has been removed 180 deg from the starting point.

PART QF PLASTIC FUSING

ARTICLE XXI PLASTIC FUSING GENERAL REQUIREMENTS

(19) **QF-100 SCOPE**

The rules in this Part apply to the preparation and qualification of the fusing procedure specification (FPS), and the performance qualification of fusing operators.

QF-101 FUSING PROCEDURE SPECIFICATION

A fusing procedure specification used by an organization that will have responsible operational control of production fusing shall be an FPS that has been qualified by that organization in accordance with Article XXII, or it shall be a standard fusing procedure specification (SFPS or MEFPS) as defined in QF-201.2.

The fusing procedure specification (FPS, SFPS, or MEFPS) specifies the "variables" (including ranges, if any) under which fusing must be performed. The fusing procedure specification (FPS, SFPS, or MEFPS) shall address the applicable fusing process variables, both essential and nonessential, as provided in Article XXII for production fusing.

QF-102 FUSING PERFORMANCE QUALIFICATION (FPQ)

Fusing operator performance qualification is intended to verify the ability of the fusing operator to produce a sound fused joint when following an FPS, SFPS, or MEFPS. The fusing operator performance qualification record (FPQ) documents the performance test of the fusing operator, and the results of the required mechanical tests.

QF-103 RESPONSIBILITY

QF-103.1 Fusing. Each organization shall conduct the tests required in this Section to qualify the FPS and the performance of the fusing operators who apply these procedures. Alternatively, an organization may use an SFPS or MEFPS under the provisions of QF-201.2. The organization shall perform and document the tests required by this Article to qualify the performance of fusing operators for fusing operations.

QF-103.2 Records. Each organization shall maintain a record of the results of the mechanical testing performed to satisfy the requirements for FPS and fusing operator performance qualifications.

QF-110 FUSED JOINT ORIENTATION

Orientation categories for fused joints are illustrated in Figure QF-461.1.

QF-120 TEST POSITIONS

Fused joints may be made in test coupons oriented in any of the positions shown in Figure QF-461.2.

QF-130 DATA ACQUISITION AND EVALUATION

(**19**)

QF-131 DATA ACQUISITION RECORD REQUIREMENTS

The fusing variables listed in QF-131.1, QF-131.2, and QF-131.3 shall be recorded for each fused test joint.

QF-131.1 Butt- and Sidewall-Fusing Procedures.

(*a*) heater surface temperature immediately before inserting the heater plate

(b) gauge pressure during the initial heat cycle

(c) gauge pressure and elapsed time during the heatsoak cycle

(d) heater removal (dwell) time

(e) gauge pressure and elapsed time during the fusing and cool cycle

- *(f)* drag pressure when applicable
- (g) joint configuration
- (h) pipe diameter and wall thickness

(*i*) type of polyethylene (PE) material (specification and classification) and manufacturer

(*j*) FPS or SFPS used, operator identification, time, date, and fusing machine identification

QF-131.2 Electrofusion Procedures

- (a) date
- (b) ambient temperature
- (c) material temperature
- (d) pipe diameter and wall thickness
- (e) the FPS or MEFPS used
- *(f)* nominal fusion time
- (g) adjusted fusion time
- (h) termination code
- (i) fitting description
- (*j*) fitting manufacturer
- (k) elapsed time for fusion and cooling
- (l) manual or barcode entry
- (*m*) lot number for fitting
- (n) operator identification
- (o) operator verification of scraping and cleaning
- (p) fit-up gap
- (q) fusion number
- (r) fusion energy
- (s) fusion processor serial number
- (t) voltage
- (*u*) preheat voltage and time, if applicable

QF-131.3 Manual Butt-Fusing Procedure.

(*a*) heater surface temperature immediately before inserting the heater plate

(b) verification that heating pressure was reduced to zero after initial indication of melt

(c) elapsed time during the heat soak cycle

- (d) heater removal (dwell) time
- (e) elapsed time during the fusing/cool cycle
- (f) joint configuration
- (g) pipe diameter and wall thickness

(*h*) type of polyethylene (PE) material (specification and classification) and manufacturer

(i) FPS used, operator identification, time, date, and fusing machine identification

(19) **QF-132 DATA ACQUISITION RECORD REVIEW**

The data acquisition record for each fused test joint shall be compared to the FPS after completion. QF-485 provides a suggested format to document the data acquisition record review. The reviewer shall verify that the conditions listed in QF-132.1, QF-132.2, and QF-132.3 are met.

QF-132.1 Butt- and Sidewall-Fusing Qualification.

(*a*) All data required by QF-131 were recorded.

(b) Interfacial fusing pressure was within the FPS or SFPS range.

(c) Heater surface temperature recorded was within the FPS or SFPS range.

(*d*) Fusing pressure applied during the fusing and cool cycle was correctly calculated to include the drag pressure, is within the FPS or SFPS range for the applicable size (e.g., pipe diameter), and agrees with the recorded hydraulic fusing pressure.

(e) Fusing pressure was reduced to a value less than or equal to the drag pressure at the beginning of the heat soak cycle.

(f) Fusing machine was opened at the end of the heat soak cycle, the heater was removed, and the pipe joint ends brought together at the fusing pressure within the time frame specified by the FPS or SFPS.

(g) Cooling time at fusing pressure met the minimum time specified by the FPS or SFPS.

If the recorded data is outside the limits of the FPS or SFPS, the joint is unacceptable.

QF-132.2 Electrofusion Qualification.

(a) All data required by QF-131 were correctly recorded.

(b) Voltage was within the FPS or MEFPS range.

(c) Nominal fusion time was within the FPS or MEFPS range.

(d) Absence of any electrical fault during fusing operation.

QF-132.3 Manual Butt-Fusing Qualification.

(*a*) All data required by QF-131 were recorded.

(b) Heater surface temperature recorded was within the FPS range.

(c) Fusing machine was opened at the end of the heat soak cycle, the heater was removed, and the pipe joint ends were brought together at the fusing pressure within the time frame specified by the FPS.

(*d*) Cooling time at butt-fusing pressure met the minimum time specified by the FPS.

If the recorded data are outside the limits of the FPS, the joint is unacceptable.

QF-140 EXAMINATIONS AND TESTS

Results of all required examinations and tests shall be recorded on the Fusing Procedure Qualification Record (PQR) or Fusing Operator Performance Qualification (FPQ).

QF-141 VISUAL EXAMINATION

(a) Butt Fusion. All fused joints shall receive a visual examination of all accessible surfaces of the fused joint.

(b) Sidewall Fusion and Electrofusion. Test joints shall be visually examined upon completion of the test coupon, and when sectioned for evaluation.

QF-141.1 Visual Acceptance Criteria.

(a) Butt and Sidewall Fusion. See Figure QF-462(a) for evaluation examples.

(1) There shall be no evidence of cracks or incomplete fusing.

(2) Joints shall exhibit proper fused bead configuration.

(3) Variations in upset bead heights on opposite sides of the cleavage and around the circumference of fused pipe joints are acceptable.

(19)

(4) The apex of the cleavage between the upset beads of butt-fused joints shall remain above the base material surface.

(5) For sidewall-fused joints, there shall be three beads: a melt bead around the saddle base, a main (header) pipe melt bead, and a bead on the main (header) from the edge of the heating tool. The saddle and main (header) melt beads should be rounded and of a size recommended by the fitting manufacturer. The heater bead should be visible all around the fitting base but may be separate from the main (header) pipe melt bead, depending on the shape of the heater [see Figure QF-462(b)].

(6) Fused joints shall not display visible angular misalignment, and for butt-fused joints, outside diameter mismatch shall be less than 10% of the nominal wall thickness.

(7) The data record for the FPS or fusing operator performance qualification test shall be reviewed and compared to the FPS or SFPS to verify observance of the specified variables applied when completing the fused test joint.

(b) Electrofusion Assemblies

(1) There shall be no visible evidence on external and accessible internal surfaces of cracks, excess internal (I.D.) melt caused by overheating, fitting malfunction, or incomplete fusion. Maximum fit-up gap, or maximum misalignment and out-of-roundness, shall be within FPS or MEFPS limits.

(2) The data record for the FPS or fusing operator performance qualification test shall be reviewed and compared to the FPS or MEFPS to verify observance of the specified variables applied when completing the fused test joint.

(c) Sectioned Electrofusion Joints. Voids due to trapped air or shrinkage during the cooling process are acceptable only if round or elliptical in shape with no sharp corners, and provided they meet the following requirements [see Figure QF-468, illustrations (a) and (b)].

(1) Individual voids shall not exceed 10% of the fusion zone length.

(2) Multiple voids shall not exceed a combined total of 20% of the fusion zone length.

(3) When voids are detected, additional sections or examinations shall be made to verify that the void does not follow a diametric path connecting with the pressurecontaining area of the joint. [See Figure QF-466, illustration (c).]

QF-142 PRESSURE TESTS

(19) **QF-142.1 Elevated Temperature Sustained Pressure Tests — Butt or Sidewall Fusing.** These tests assess the resistance to slow crack growth of the fused joint.

QF-142.1.1 Test Coupons.

(*a*) Fusion joint test coupons shall be made with minimum of NPS 8 (DN 200) DR 11 pipe or the maximum size to be fused, whichever is less. NOTE: Dimension Ratio (DR) = Outside Diameter ÷ Minimum Thickness.

(*b*) The completed test coupons shall contain pipe on either side of the butt or sidewall joint with a minimum length of 1.5 times the joint (header) outside diameter or 12 in. (300 mm), whichever is greater, from the fused joint to free-end closures on the ends of the assembly.

(c) The testing shall be performed in accordance with ASTM D3035 or ASTM F714 for pipe, or ASTM F905 for saddle fittings, as applicable.

(*d*) Manual butt fusion joint test coupons shall be made with a maximum of NPS 6 (DN 150) DR 11 pipe or the maximum size to be fused, whichever is less.

QF-142.1.2 Test Conditions.

(a) Test Temperature. All tests shall be conducted at $176^{\circ}F \pm 4^{\circ}F$ ($80^{\circ}C \pm 2^{\circ}C$).

(*b*) *Test Pressure.* The assemblies are to be subjected to pipe fiber stresses as follows:

(1) PE2708 material: 580 psi (4.0 MPa) for 1,000 hr or 670 psi (4.6 MPa) for 170 hr

(2) PE3608 material: 580 psi (4.0 MPa) for 1,000 hr or 670 psi (4.6 MPa) for 170 hr

(3) PE4710 material: 660 psi (4.5 MPa) for 1,000 hr or 750 psi (5.2 MPa) for 200 hr

QF-142.1.3 Test Procedure. Elevated temperature sustained pressure tests shall be performed in accordance with ASTM D3035 or ASTM F714 for pipe, or ASTM F905 for saddle fittings.

QF-142.1.4 Acceptance Criteria. Any failures within the specified time periods shall be of the pipe, independent of the joint. With one ductile pipe failure, the average time before failure for all three specimens shall not be less than the specified time. If more than one ductile pipe failure occurs at the higher pressure, the pressure of the test may be reduced and repeated until 1,000-hr results are obtained. Any brittle failures shall necessitate new tests using different pipe.

QF-142.2 Elevated Temperature Sustained Pressure Test — Electrofusion. These tests assess the resistance to slow crack growth at points of stress concentration due to electrofusion fitting design.

QF-142.2.1 Test Coupons. Four test coupons shall be prepared and conditioned in accordance with ASTM F1055. Pipe material PE designation shall not be less than the electrofusion fitting.

QF-142.2.2 Test Conditions. The assemblies are to be subjected to pipe fiber stresses as follows:

(a) Temperature. All tests shall be conducted at $176^{\circ}F \pm 4^{\circ}F (80^{\circ}C \pm 2^{\circ}C)$.

(*b*) *Test Pressure*. The assemblies are to be subjected to pipe fiber stresses as follows:

(1) PE2708 pipe material: 580 psi (4.0 MPa) for 1,000 hr or 670 psi (4.6 MPa) for 170 hr

(2) PE3608 pipe material: 580 psi (4.0 MPa) for 1,000 hr or 670 psi (4.6 MPa) for 170 hr

(3) PE4710 pipe material: 660 psi (4.5 MPa) for 1,000 hr or 750 psi (5.2 MPa) for 200 hr

QF-142.2.3 Test Procedure. Elevated temperature sustained pressure testing shall be performed in accordance with ASTM F1055.

QF-142.2.4 Acceptance Criteria. Any failures within the specified time periods shall be of the pipe, independent of the fitting or joint, and shall be of a "brittle" type pipe failure, not "ductile." If ductile pipe failure occurs at the higher pressure, the pressure of the test may be reduced and repeated until either 1,000-hr results are obtained or pipe brittle failures are achieved.

(19) **QF-142.3 Minimum Hydraulic Burst Pressure.** This test assesses the short-term burst capacity of the fused joint in order to identify any fundamental weaknesses in the integrity of the assembly. This test shall be performed in accordance with ASTM D1599.

QF-142.3.1 Test Coupons.

(*a*) *Electrofusion.* Four burst test coupons shall be prepared and conditioned in accordance with ASTM F1055. Pipe material PE classification shall not be less than the electrofusion fitting.

(*b*) *Butt Fusing.* Four burst test coupons shall be prepared and conditioned in accordance with the hydrostatic burst test requirements of ASTM D3035.

QF-142.3.2 Test Conditions.

(a) Test Temperature. The test shall be performed at $73^{\circ}F \pm 4^{\circ}F (23^{\circ}C \pm 2^{\circ}C)$.

(b) Test Pressure. The minimum hydraulic burst pressure of the test coupon shall not be less than that required to produce the following fiber stress in the pipe:

(1) PE2708 pipe materials: 2,520 psi (17.4 MPa)

(2) PE3608 pipe materials: 2,520 psi (17.4 MPa)

(3) PE4710 pipe materials: 2,900 psi (20 MPa)

QF-142.3.3 Test Procedure. The coupons shall be tested in accordance with ASTM D1599.

QF-142.3.4 Acceptance Criteria. The assembly shall not fail in the electrofusion fitting or fused joint.

QF-143 BEND TESTS

These tests are designed to impart bending stresses to a fused plastic specimen to evaluate the soundness of the fused joint.

(19) QF-143.1 Reverse-Bend Test (RBT)

This test is for butt or sidewall fusion joints of PE pipe with a wall thickness approximately 1 in. (25 mm) or less, but may be used for thicker pipe.

QF-143.1.1 Test Specimens. Reverse-bend test specimens shall be cut to a minimum width of 1.5 times the test coupon thickness for testing and removed as shown in Figure QF-463, illustration (a) or (c).

QF-143.1.2 Test Conditions — Test Temperature.

The reverse bend test shall be conducted at a temperature between 60°F to 80°F (16°C to 27°C).

QF-143.1.3 Test Procedure.

(*a*) One test specimen shall be bent to place the outside surface of the joint in tension. For butt fusion, an additional test specimen shall be bent to place the inside surface of the joint in tension.

(*b*) The bending process shall ensure the ends of the specimens are brought into contact with one another.

(c) Testing shall be performed in accordance with ASTM F2620, Appendix X4.

QF-143.2 Guided Butt Fusion Side-Bend Test (19) (GSBT)

This test is limited to butt fusion joints of PE pipe with a wall thickness greater than 1 in. (25 mm).

QF-143.2.1 Test Specimens.

(*a*) Test specimens shall be removed from the fused test coupon with the upset bead remaining on the outside and inside surfaces. A strip having the full thickness of the test coupon and measuring approximately 1 in. (25 mm) wide and 18 in. (450 mm) long shall be removed along the longitudinal axis of the test coupon, with the joint located in the approximate center of the strip. See Figure QF-463, illustration (b).

(b) Plane or machine the width to 0.25 in. \pm 0.02 in. (6.4 mm \pm 0.5 mm) with a smooth finish on both sides. See Figure QF-463, illustration (c).

QF-143.2.2 Test Conditions.

(a) Test Temperature. Conduct the GSBT at 60°F to 80°F (16°C to 27°C).

(b) Test Speed. The elapsed time of the test shall be between 30 sec and 60 sec.

QF-143.2.3 Guided Side-Bend Test Procedure.

QF-143.2.3.1 Jigs. Test specimens shall be bent in a test jig consisting of a fixed member with two support mandrels to support the specimen while force is applied. The hydraulic ram, used to supply the bending force, is also attached to the jig and has a ram attached to the end of the cylinder. See Figure QF-463, illustration (d).

QF-143.2.3.2 Bend Procedure. Position the sidebend test specimen with the butt fusion joint in the center of the jig between the support mandrels. Position the ram in the center of the fusion bead on the test specimen. Move the ram slowly until it makes contact with the test specimen and is positioned in line with the fusion bead. Begin to apply the bending force and deflect the side-bend test specimen. The test is complete when the test specimen is bent to a maximum included angle of 90 deg as shown in Figure QF-463, illustration (d) or until failure occurs.

(10)

The convex surface of the specimen shall be visually examined after testing, with the specimen either in or removed from the text fixture. Due to specimen springback, examination immediately after removal from the fixture is recommended.

QF-143.2.3.3 Acceptance Criteria. The test specimen shall not break or exhibit cracking or fractures on the convex (outer) surface at the fusion interface during this test.

QF-143.3 Electrofusion Bend Test. This test is used to assess the integrity of electrofusion couplings and fittings. It is used for couplings and fittings NPS 12 (DN 300) and greater.

QF-143.3.1 Test Specimens.

(a) Socket Fittings (Full Wrap). Test coupons shall be prepared and conditioned, with four specimens cut from each half of the fitting and machined to $\frac{1}{16}$ in. (1.5 mm) width in accordance with ASTM F1055. See Figure QF-467, illustration (a).

(b) Saddles (Not Full Wrap). The stack and bottom half of the pipe should be removed. The saddle shall be cut in half in the transverse direction and then each half cut again in the longitudinal direction as shown in Figure QF-467, illustration (c). Specimen slices shall be removed at all four cut edges and machined to $\frac{1}{16}$ in. (1.5 mm) width through the fusion base of the saddle fitting. Two diagonal quarters shall be used for the transverse specimens, and the two remaining diagonal quarters shall be used for the longitudinal specimens. See Figure QF-467, illustration (c).

QF-143.3.2 Test Conditions — Test Temperature. The test shall be performed at $73^{\circ}F \pm 4^{\circ}F$ ($23^{\circ}C \pm 2^{\circ}C$), unless otherwise specified.

QF-143.3.3 Test Procedure.

(*a*) The cross-section of the machined specimens shall be inspected for visual discontinuities.

(b) Each $\frac{1}{16}$ in. (1.5 mm) wide specimen shall be placed in a clamp such that the bond line between the fitting and the pipe is located at the plane of bending. The entire length of the bond is to be flexed 90 deg along the plane of bending — four times in both directions. See Figure QF-467, illustration (b).

QF-143.3.4 Acceptance Criteria.

(*a*) The cross-section of the machined specimens shall meet the criteria of QF-141.1.

(b) Separation of the specimen along the fusion line constitutes failure of the specimen. Minor separation at the outer limits of the fusion heat source and voids between the wires are acceptable as long as the voids do not exceed the limits of QF-141.1. Ductile failure in the pipe, fitting, or the wire insulation material is acceptable as long as the bond interface remains intact.

QF-144 TENSILE TESTS

QF-144.1 High-Speed Tensile Impact Test (HSTIT). This test method is designed to impart tensile impact energy to a butt-fused polyethylene (PE) pipe specimen to evaluate its ductility.

QF-144.1.1 Test Specimens.

(*a*) Test specimens shall be removed from the buttfused test coupon with the upset bead remaining on the outside diameter and inside diameter surfaces. Specimens for test coupon thicknesses less than or equal to 2 in. (50 mm) shall include the full wall thickness of the fused joint. Specimens for test coupon thicknesses 2 in. (50 mm) and greater may be cut into approximately equal strips between 1 in. (25 mm) and 2.5 in. (64 mm) wide for testing with each segment tested individually such that the full cross section is tested.

(*b*) Test specimens shall be prepared by machining to achieve the dimensions given in Figure QF-464, with the upset beads remaining intact.

(c) A smooth surface free of visible flaws, scratches, or imperfections shall remain on all faces of the reduced area with no notches, gouges, or undercuts exceeding the dimensional tolerances given in ASTM F2634. Marks left by coarse machining operations shall be removed, and the surfaces shall be smoothed with abrasive paper (600 grit or finer) with the sanding strokes applied parallel to the longitudinal axis of the test specimen.

(*d*) Mark the test specimens in the area outside the hole with the applicable specimen identification using a permanent indelible marker of a contrasting color, or an etching tool.

(e) Condition the test specimens at $73^{\circ}F \pm 4^{\circ}F$ (23°C $\pm 2^{\circ}C$) for not less than 1 hr just prior to conducting the test.

QF-144.1.2 Test Conditions.

(a) Test Temperature. Conduct the high speed impact test at a temperature of $73^{\circ}F \pm 4^{\circ}F$ ($23^{\circ}C \pm 2^{\circ}C$) unless otherwise specified.

(b) Test Speed. The speed of testing shall be in accordance with Table QF-144.2 with a testing speed tolerance of +0.5 in./sec to -1 in./sec (+13 mm/s to -25 mm/s).

Table QF-144.2 Testing Speed Requirements

Wall Thickness	Testing Speed
≤ 1.25 in. (32 mm)	6 in./sec (150 mm/s)
> 1.25 in. (32 mm)	4 in./sec (100 mm/s)
;	, (, ,

QF-144.1.3 Test Procedure

(*a*) Set up the machine and set the speed of testing to the rate specified in QF-144.1.2(b).

(*b*) Pin each specimen in the clevis tooling of the testing machine, aligning the long axis of the specimen and the tooling with the pulling direction of the test machine.

(c) Testing shall be performed in accordance with ASTM F2634.

(*d*) Evaluate the test specimen fracture to determine the mode of failure, and note the results in the test record and on the PQR.

QF-144.1.4 Test Record. The HSTIT shall be documented by preparing a test record that includes the following information:

(a) testing speed applied

(b) testing temperature observed

(c) specimen dimension verification

(d) test machine calibration data

(e) test specimen identification

(f) test date

(g) test operator identification

(*h*) testing failure mode and acceptance or rejection

(i) test equipment identification

QF-144.1.5 Acceptance Criteria. Failure mode shall be ductile, with no evidence of brittle failure at the fusion interface. See Figure QF-465, illustrations (a) through (d), for evaluation examples.

QF-144.2 Electrofusion Axial Load Resistance Test. This test assesses the ability of a socket-type electrofusion joint to transmit axial loads.

QF-144.2.1 Test Specimens.

(*a*) Except as permitted in (b), tensile test coupons and specimens shall be prepared and conditioned in accordance with ASTM F1055. Tensile tests shall be made on a complete electrofusion test assembly, not on specimen straps cut from the coupon.

(b) When equipment to conduct full scale tensile tests on test coupons larger than NPS 8 (DN 200) is not available, testing for resistance to axial loads shall be conducted through one peel test plus one short-term hydrostatic pressure test for each material temperature.

(1) Peel Test. Four specimens shall be cut at approximately 90-deg intervals from each test coupon and prepared as shown in Figure QF-469, illustration (a).

(2) Short-Term Hydrostatic Test. To ensure axial forces are exerted only on the fusion joint, test coupons shall be constructed using flanged or capped pipe segments such that essentially no exposed (unreinforced) pipe protrudes outside of the socket. See Figure QF-470.

QF-144.2.2 Test Conditions.

(a) Test Temperature. The tests shall be performed at $73^{\circ}F \pm 4^{\circ}F (23^{\circ}C \pm 2^{\circ}C)$.

(b) Peel Test Speed. Peel test load shall be applied at a rate of 0.2 in./min (5 mm/min).

QF-144.2.3 Test Procedure.

(a) Tensile Test. Testing shall be performed in accordance with ASTM F1055, using the test apparatus described in ASTM D638.

(*b*) *Peel Test*. Specimens shall be subjected to a tensile load as shown in Figure QF-469, illustration (b) until failure as shown in Figure QF-469, illustration (c).

(c) Short-Term Hydrostatic Test.

(1) Test coupons constructed to QF-144.2.1(b)(2) shall be filled with water.

(2) The test coupon shall be pressurized using the apparatus described in ASTM D1599 to the pressure shown in Table QF-144.2.3 at a rate sufficient to achieve the full test pressure within 60 sec.

(3) The test coupon shall remain under the full test pressure for a period of not less than 5 min.

QF-144.2.4 Acceptance Criteria.

(a) Tensile Test. Test coupons less than or equal to NPS 8 (DN 200) shall not fail in the pipe or fitting when subjected to a tensile stress that causes the pipe to yield to an elongation of 25% or greater, or causes the pipe to break outside the joint area. Yielding shall be measured only in the pipe, independent of the fitting or joint.

(b) Peel Test. Specimens for sizes larger than NPS 8 (DN 200) shall not separate in the fusion interface in a brittle manner. Ductile failure between wires, tearing through the coupling wall or pipe wall, and up to 15% separation at the outer limits of the heat source are permitted [see Figure QF-469, illustration (c) for examples].

(c) Short-Term Hydrostatic Test. Test coupons for sizes larger than NPS 8 (DN 200) shall not rupture or break through the fitting or fusion interface.

QF-145 Crush and Impact Resistance Tests (19)

Crush tests and impact resistance tests assess the integrity of electrofusion and sidewall fusion joints.

QF-145.1 Crush Test. Crush tests are used to evaluate socket-type (full-wrap) or saddle-type (not full wrap) electrofusion joints. These are required for pipe sizes less than NPS 12 (DN 300), and may be used as an alternative to the electrofusion bend test for pipe sizes NPS 12 (DN 300) and greater.

QF-145.1.1 Test Specimens.

(a) Socket Type. Socket-type joint crush test coupons shall be prepared and conditioned, and specimens removed by cutting in half longitudinally at the fusion zones in accordance with ASTM F1055. See Figure QF-466, illustration (a).

(b) Saddle Type. Saddle-type crush test coupons shall be prepared, conditioned and tested in accordance with ASTM F1055. See Figure QF-466, illustration (b).

Table QF-144.2.3			
Pipe Material	Test Pressure		
PE2708	630 psig (4.3 MPa)		
PE3608	725 psig (5.0 MPa		
PE4710	725 psig (5.0 MPa		

QF-145.1.2 Test Conditions — Test Temperature. The test shall be performed at $73^{\circ}F \pm 4^{\circ}F$ ($23^{\circ}C \pm 2^{\circ}C$), unless otherwise specified.

QF-145.1.3 Test Procedure.

(a) Socket Type. Crush testing shall be performed on each end half by clamping at a distance of $1^{1}/_{4}$ in. (32 mm) from the outermost wires and closing the jaws until the inner walls of the pipe meet in accordance with ASTM F1055. See Figure QF-466, illustration (b).

(b) Saddle Type. Crush testing shall be performed by placing the jaws of a vice or hydraulic press within $\frac{1}{2}$ in. (13 mm) of the edges of the saddle and tightening until the inner walls of the pipe meet, in accordance with ASTM F1055. See Figure QF-466, illustration (c).

QF-145.1.4 Acceptance Criteria. Separation of the fitting from the pipe at the fusion interface constitutes a failure of the test, except that minor separation at the outer limits of the fusion heat source up to 15% of the fusion length is acceptable. Ductile failure in the pipe, fitting, or the wire insulation material, is acceptable as long as the bond interface remains intact.

QF-145.2 Impact Resistance Test. Impact tests are used to evaluate saddle-type branch connection joints.

QF-145.2.1 Test Specimens. Impact test speci- (19) mens shall be prepared and conditioned in accordance with ASTM F1055 for electrofusion or ASTM F905 for sidewall fusion.

QF-145.2.2 Test Conditions — Test Temperature. The test shall be performed at $73^{\circ}F \pm 4^{\circ}F (23^{\circ}C \pm 2^{\circ}C)$.

QF-145.2.3 Test Specimens. The joint branch connection shall be impacted in a direction parallel to the axis of the pipe with a force sufficient to break the body or other portion of the specimen. The test device and method of testing shall be in accordance with ASTM F905.

QF-145.2.4 Acceptance Criteria. Breakage shall (19) initiate outside of the joint area without failure of the joint. For electrofusion saddles, separation in the fusion interface greater than 15% of the fusion length at the outer limits of the fusion heat source constitutes failure of the test.

ARTICLE XXII FUSING PROCEDURE QUALIFICATIONS

QF-200 GENERAL

Each organization shall prepare written Fusing Procedure Specifications (FPS) or Standard Fusing Specifications (SFPS or MEFPS) as defined in QF-201 to provide direction to the fusing operator for making production fused joints.

(19) **QF-201 PROCEDURE QUALIFICATION**

QF-201.1 Fusing Procedure Specification (FPS)

(a) Fusing Procedure Specification (FPS). A FPS is a written fusing procedure that is qualified by an organization in accordance with the rules of this Section.

(b) Contents of the FPS. The completed FPS shall address all of the essential and nonessential variables for each fusing process used in the FPS. The essential and nonessential variables for fusing are outlined in Table QF-254 for butt fusion, Table QF-255 for electrofusion, and Table QF-256 for manual butt fusion. The organization may include any other information in the FPS that may be helpful in making a fused joint.

(c) Changes. Changes in the documented essential variables require requalification of the FPS.

QF-201.2 Standard Fusing Procedure Specifications

(a) Standard Fusing Procedure Specification (SFPS)

(1) Prerequisites. An SFPS is a fusing procedure specification that contains acceptable polyethylene (PE) fusing variables based on standard industry practice and testing as defined in ASTM F2620. An SFPS may be used for production fusing by organizations without further qualification.

(2) Contents of the SFPS. The SFPS shall address all of the essential and nonessential variables listed in Table QF-254, Table QF-256, or Table QF-257. In addition, the SFPS shall include all of the conditions listed in QF-221.1. The organization may include any additional information in the SFPS that may be helpful in making a fused joint.

(3) Changes. Changes in the essential variables or conditions of an SFPS beyond the limits specified in QF-221.1, QF-221.2, Table QF-254, Table QF-256, or Table QF-257 shall require the qualification of an FPS.

(b) Manufacturer Qualified Electrofusion Procedure Specification (MEFPS)

(1) Prerequisites. An MEFPS is an electrofusion procedure that has been qualified by an electrofusion fitting manufacturer, based on standard industry practice in accordance with the Plastics Pipe Institute (PPI), Technical Note TN-34 and ASTM F1290, for the electrofusion fitting manufacturer's specific electrofusion joint design, and qualified by the electrofusion fitting manufacturer in accordance with ASTM F1055 to define the ranges for the essential variables identified in Table QF-255. An MEFPS may be used for production by organizations fusing the same electrofusion fitting manufacturer's qualified fittings without further qualification.

(2) Contents of the MEFPS. The MEFPS shall address all essential and nonessential variables listed in Table QF-255. In addition, the MEFPS shall include all of the conditions listed in QF-222.1. The manufacturer or contractor may include any additional information in the MEFPS that may be helpful in making a fused joint.

(3) Changes. Changes in the essential variables or conditions of an MEFPS beyond the limits specified in QF-222.1 or Table QF-255 shall require the qualification of an FPS.

QF-201.3 Format of the FPS, SFPS, or MEFPS. The information required to be included in the FPS, SFPS, or MEFPS may be in any format, written or tabular, to fit the needs of each organization, provided all essential and nonessential variables outlined in QF-250, and the parameters specified in QF-220 as applicable, are addressed. Forms QF-482(a), QF-482(b), and QF-483(c) have been provided as suggested formats for preparing the FPS, SFPS, or MEFPS.

QF-201.5 Each organization who qualifies their own FPS shall prepare a procedure qualification record (PQR) that is defined as follows:

(a) Procedure Qualification Record (PQR). A record of the range of essential variables documented during the fusing of the test coupon(s) and the results of the required visual and mechanical tests performed.

(b) Contents of the PQR. The completed PQR shall document the ranges for all essential variables listed in QF-250 during the fusing of the test coupon(s). Nonessential variables observed during the fusing of the test coupon may be recorded at the organization's option.

The PQR shall be certified by the organization to be a true and accurate record of the variables recorded during the fusing of the test coupon(s) and the required examinations and tests specified in QF-140.

(c) Changes to the PQR. Changes to the PQR are not permitted except for documented editorial corrections or those utilizing addenda. An organization may be permitted to fuse materials other than those used in the FPS qualification, when the alternative materials are assigned to a material grouping in QF-420 whose fusing properties are considered essentially identical. Additional information may be incorporated into a PQR at a later date, provided the information is substantiated as having been associated with the original qualification conditions by lab records or similar documented evidence. All changes to a PQR require recertification (including date) by the organization.

(d) Format of the PQR. The information required to be in the PQR may be in any format, written or tabular, to fit the needs of each organization, provided all essential variables outlined in QF-250 are included. The types and number of tests, and their results shall be reported on the PQR. Forms QF-483(a), QF-483(b), and QF-483(c) have been provided as suggested formats for preparing the PQR. When required, additional sketches or information may be attached or referenced to record the required variables.

(e) Availability of the PQR. PQRs supporting an FPS to be used in production fusing operations shall be available for review.

(f) Multiple FPSs With One PQR or Multiple PQRs With One FPS. Several FPSs may be prepared from the qualification test data recorded on a single PQR. A single FPS may encompass the range of qualified essential variables represented by multiple PQRs supporting the qualified combination and range of essential variables.

QF-202 TYPE OF TESTS REQUIRED

(19) QF-202.1 Mechanical Tests

QF-202.1.1 *High-Speed Tensile Impact Test (HSTIT).* Specimens shall be prepared for butt fusion joints in accordance with Figure QF-464 and tested in accordance with QF-144.1.1. The minimum number of specimens required to be tested shall be as follows:

(a) for pipe specimens less than 4 NPS (DN 100): not less than two specimens removed from fused pipe test coupons at intervals of approximately 180 deg apart

(b) for pipe specimens 4 NPS (DN 100) and greater: not less than four specimens removed from fused pipe test coupons at intervals approximately 90 deg apart

(c) other product forms: not less than two specimens removed from fused test coupons

QF-202.1.2 Elevated temperature sustained pressure tests for butt fusing, sidewall fusing, and electrofusion shall be conducted in accordance with QF-142.1 or QF-142.2, as applicable.

QF-202.1.3 Minimum hydraulic burst pressure tests for electrofusion or butt-fusing joints shall be performed in accordance with QF-142.3.

QF-202.1.4 Bend tests shall be performed in accordance with **QF-143.3** for electrofusion joints.

QF-202.1.5 Electrofusion axial load resistance tests (tensile or peel plus short-term hydrostatic) shall be performed in accordance with QF-144.2.

QF-202.1.6 Electrofusion crush tests shall be performed in accordance with **QF-145.1**.

QF-202.1.7 Electrofusion and sidewall fusion impact resistance tests shall be performed in accordance with **QF-145.2**.

QF-202.1.8 If any test specimen required by **QF-202.1** fails to meet the applicable acceptance criteria, the test coupon shall be considered unacceptable.

(*a*) When it can be determined that the cause of failure is not related to incorrectly selected or applied fusing variables, additional test specimens may be removed as close as practicable to the original specimen location to replace the failed test specimens. If sufficient material is not available, another test coupon may be fused utilizing the original fusing parameters.

(b) When it has been determined that the test failure was caused by one or more incorrectly selected or applied essential variable(s), a new test coupon may be fused with appropriate changes to the variable(s) that were determined to be the cause for test failure.

(c) When it is determined that the test failure was caused by one or more fusing conditions other than essential variables, a new set of test coupons may be fused with the appropriate changes to the fusing conditions that were determined to be the cause for test failure. If the new test passes, the fusing conditions that were determined to be the cause for the previous test failure shall be addressed by the organization to ensure that the required properties are achieved in all fused production joints.

QF-202.2 Testing Procedure to Qualify the FPS (19) QF-202.2.1 Polyethylene Butt and Sidewall Fusing

(a) Butt Fusing

(1) For pipe having a wall thickness less than or equal to 2 in. (50 mm), one set of test coupons shall be prepared using any thickness of pipe less than or equal to 2 in. (50 mm) but not less than one-half the thickness of the pipe to be fused in production.

(2) For pipe having wall thickness greater than 2 in. (50 mm), one set of test coupons shall be prepared using pipe of at least 2 in. (50 mm) thickness but not less than one-half the maximum thickness to be fused in production.

(3) Butt-fusing joint coupons shall be prepared in accordance with the FPS using the following combinations of heater temperature ranges and interfacial pressure ranges:

(-a) high heater surface temperature and high interfacial pressure, five joints (-*b*) high heater surface temperature and low interfacial pressure, five joints

(-c) low heater surface temperature and high interfacial pressure, five joints

(-*d*) low heater surface temperature and low interfacial pressure, five joints

(4) Each fused joint shall be subject to visual examination per QF-141.

(5) Two fused joints of each combination shall be evaluated using the elevated temperature sustained pressure tests for pipe specified in QF-142.1.

(6) Three fused joints of each combination described in (3) shall be evaluated using the high speed tensile impact test (HSTIT) specified in QF-144.1.

(b) Sidewall Fusing

(1) Sidewall-fusing coupons shall be prepared for each design of saddle-fitting base in accordance with the FPS using the specified heater temperatures and pressures. Successful testing shall qualify the FPS for actual heater temperature applied $\pm 10^{\circ}$ F ($\pm 5.5^{\circ}$ C) and for actual gage pressures applied $\pm 10\%$.

(2) Two fused joints for each design of saddle-fitting base shall be evaluated using the elevated temperature sustained pressure tests specified in QF-142.1.

(3) Two fused joints for each design of saddle-fitting base shall be evaluated by the sidewall fusion impact resistance test specified in QF-145.2.

QF-202.2.2 Polyethylene Electrofusion

(*a*) Fittings shall be selected at random in the quantities shown in Table QF-202.2.2, along with pipe segments needed for making the fused coupons, and all material shall be prepared and conditioned for a minimum of 16 hr immediately prior to fusing, as follows:

(1) half at the lowest material temperature to be fused in production, and half at the highest material temperature to be fused in production

(2) two low-temperature coupons fused in the lowtemperature environment and two high-temperature coupons fused in the high-temperature environment are required for each of the following tests, which shall be performed at the temperatures specified in QF-100 for each test:

(-a) QF-202.1.2

(-b) QF-202.1.3

(-*c*) either QF-202.1.4 or QF-202.1.6

(-*d*) for socket connections QF-202.1.5

(-e) for saddle connections, QF-202.1.7 when required by contract documents

(*b*) Failure of one of the four specimens tested in each test is cause for failure. Alternatively, four additional specimens may be produced at the failed specimen's joining temperature and retested. Failure of any of these four additional specimens constitutes failure of the test.

	Electrofusion P		able QI e Quali			Coupoi	ıs Requ	uired			
		≤NF	ket PS 8 200)		PS 12		S 12 300)		S 12 300) e (1)]	≥NP (≥DN	
Test Procedure	Reference	Low	High	Low	High	Low	High	Low	High	Low	High
Elevated temperature sustained pressure test	QF-202.1.2/ QF-142.1	2	2	2	2	2	2	2	2	2	2
Minimum hydraulic quick burst pressure test	QF-202.1.3/ QF-142.2	2	2	2	2	2	2	2	2	2	2
Joint integrity crush test [Note (3)]	QF-202.1.6/ QF-145.1	2	2	2	2			2	2		
Electrofusion bend [Note (3)]	QF-202.1.4/ QF-143.3					2	2			2	2
Electrofusion axial load resistance-tensile	QF-202.1.5/ QF-144.2	2	2								
Peel test	QF-202.1.5/ QF-144.2.1(b)(1)			1	1	1	1				
Short-term hydrostatic	QF-202.1.5/ QF-144.2.1(b)(2)			1	1	1	1				
Impact resistance [Note (4)]	QF-202.1.7/ QF-145.2							2	2		

NOTES:

(1) Size listed is that of the branch connection.

(2) Fitting manufacturer should be consulted prior to fusing outside of their recommended temperature range.

(3) It is permissible to use specimens tested for the short-term hydrostatic test or minimum hydraulic quick-burst pressure test provided neither the joint area nor the pipe segment needed for crushing was a part of the failure mode in the quick-burst pressure test.(4) An impact resistance test is only required when specified in contract documents.

QF-202.2.3 Polyethylene Manual Butt Fusion.

(*a*) Manual butt fusion joints are limited to NPS 6 (DN 150) and smaller.

(*b*) Joint coupons shall be prepared in accordance with the FPS using the following combinations of heater temperature ranges:

(1) highest heater surface temperature, five joints

(2) lowest heater surface temperature, five joints

(c) When the FPS requires verification of pressure by torque, then the high pressure (verified by torque) and the low pressure (verified by torque) shall be tested at each temperature extreme.

(*d*) Each fused joint shall be subject to visual examination per QF-141.

(e) The fused joints shall be tested using the hydraulic burst pressure test for pipe specified in QF-142.3.

(f) Failure of any test joint is cause for test failure.

QF-203 LIMITS OF QUALIFIED POSITIONS FOR PROCEDURES

Unless otherwise specified by the fusing variables (QF-250), a procedure qualified in any position shown in Figure QF-461.2 qualifies for all positions. A fusing operator making and passing the FPS qualification test is qualified only for the position tested when position is an essential variable for operator qualification. (See QF-301.2).

QF-220 STANDARD FUSING PROCEDURE SPECIFICATIONS

QF-221 STANDARD BUTT-FUSING PROCEDURE SPECIFICATION (SFPS)

QF-221.1 Pipe Butt Fusing of Polyethylene. When (19) the fusing procedure is limited to the following conditions, procedure qualification testing is not required. If

the organization deviates from the conditions listed below, procedure qualification testing in accordance with QF-202.2 is required.

(*a*) The pipe material is limited to PE 2708, PE 3608, and PE 4710 (see QF-403.1).

(b) The axis of the pipe is limited to the horizontal position ± 45 deg (see QF-404.1).

(c) The pipe ends shall be faced to establish clean, parallel mating surfaces that are perpendicular to the pipe centerline on each pipe end, except for mitered joints. When the ends are brought together at the drag pressure, there shall be no visible gap.

(*d*) For mitered butt fusion joints, the pipe faces shall be at the specific angle to produce the mitered joint. When the ends are brought together at the drag pressure, there shall be no visible gap.

(e) The external surfaces of the pipe are aligned to within 10% of the pipe wall thickness (see QF-402.2).

(f) Applied pressure during fusing shall meet one of the following requirements:

(1) For hydraulic butt fusing, the drag pressure shall be measured and recorded. The theoretical fusing pressure shall be calculated so that an interfacial pressure of 60 psi to 90 psi (0.41 MPa to 0.62 MPa) is applied to the pipe ends. The butt-fusing gauge pressure set on the fusing machine shall be the theoretical fusing pressure plus drag pressure (see QF-405.2).

(2) For manual butt fusing requiring torque verification, the drag torque shall be measured and recorded. The theoretical applied fusing torque shall be calculated so that an interfacial pressure of 60 psi to 90 psi (0.41 MPa to 0.62 MPa) is applied to the pipe ends. The torque applied during the fusing process shall be the theoretical applied fusing torque plus the measured drag torque. (3) For manual butt fusing not requiring torque verification, minimum bead size (see Figure QF-221.1) shall be used rather than torque or pressure measurements to verify that proper pressure is applied during fusing.

(g) The heater surface temperature shall be 400°F to 450°F (200°C to 230°C) (see QF-405.1).


(*h*) The initial heating shall begin by inserting the heater into the gap between the pipe ends and applying the fusing pressure until an indication of melt is observed around the circumference of the pipe. When observed, the pressure shall be reduced to drag pressure and the fixture shall be locked in position so that no outside force is applied to the joint during the heat soak cycle.

(*i*) The ends shall be held in place until the minimum bead size is formed between the heater faces and the pipe ends, as shown in Figure QF-221.1. For 14 NPS (DN 350) and larger pipe sizes, the minimum heat soak time of 4.5 min per inch (25 mm) of pipe wall thickness shall be obtained) (see QF-405.3).

(*j*) After the proper bead size is formed, the machine shall be opened and the heater removed. The pipe end surfaces shall be smooth, flat, and free of contamination. The pipe ends shall be brought together and the fusing pressure reapplied.

(*k*) The maximum time from separating the pipe ends from the heater until the pipe ends are pushed together shall not exceed the time given in Table QF-221.2 (see QF-405.4).

(*l*) The fusing pressure shall be maintained until the joint has cooled, after which the pipe may be removed from the joining machine. The minimum cool time at the fusing pressure shall be 11 min per inch (26 sec per millimeter) of pipe wall thickness of the thicker member (see QF-405.5).

(19) **QF-221.2 Sidewall Fusing of Polyethylene.** When the fusing procedure is limited to the following conditions, procedure qualification testing is not required. If the organization deviates from the conditions listed below, procedure qualification testing in accordance with OF-202.2.1(b) is required.

(*a*) The pipe material is limited to PE 2708, PE 3608, and PE 4710.

(*b*) The sidewall-fusing tool shall be centered on and secured to the header, and adequately supported.

(c) The mating surfaces of the header and saddle fitting shall be abraded with a 50- to 60-grit utility cloth or scraped approximately 0.007 in. (0.178 mm) deep with a nonsmearing scraping device to remove oxidation and contamination. After abrading or scraping, the surfaces shall be cleaned of all dust and residue with a dry, lintfree, nonsynthetic cloth.

(*d*) The heater shall be brought to 500° F (260° C) $\pm 10^{\circ}$ F (5.5° C) and centered on the header beneath the saddle fitting, which shall be immediately pressed against the heater with a heat-fusing force equal to an interfacial pressure of 60 psi (0.414 MPa) $\pm 10\%$, unless otherwise specified by the manufacturer of the fitting. When an indication of melt appears on the header at the apex of the saddle,

the pressure shall be reduced to a heat soak pressure equal to drag pressure, unless otherwise specified by the manufacturer of the saddle fitting.

(e) The heat soak pressure shall be maintained until a melt bead of approximately $\frac{1}{16}$ in. (1.5 mm) is visible around the circumference of the fitting, unless a heating time is specified by the saddle fitting manufacturer.

(f) After the proper bead size is formed (or heating time is achieved), the heater shall be removed, the fusion surfaces of the header and saddle fitting shall be uniform and free of contamination, and the fitting shall be pressed against the header within the heater plate removal time specified in Table QF-221.2 and at a fusing force equal to an interfacial pressure of 30 psi (0.2 MPa) \pm 10%.

(g) The fusing force shall be maintained for a minimum of 5 min for saddle fittings with branch connections $1^{1}/_{4}$ in. (32 mm) and smaller and for a minimum of 10 min for branch connections $1^{1}/_{2}$ in. (36 mm) and larger, after which the pressure may be reduced and the fusing tool removed.

(*h*) The assembly should cool a minimum of an additional 30 min before the plug is cut out of the header or external forces are applied near the joint.

	Maximum Heater Plate
Pipe Wall Thickness, in. (mm)	Removal Time, sec
Field Applica	tions
0.17 to 0.36 (4 to 9)	8
> 0.36 to 0.55 (> 9 to 14)	10
> 0.55 to 1.18 (> 14 to 30)	15
> 1.18 to 2.5 (> 30 to 64)	20
> 2.5 to 4.5 (> 64 to 114)	25
> 4.5 (> 114)	30
Fabrication	Shop
1.18 to 2.5 (30 to 64)	40
> 2.5 to 4.5 (> 64 to 114)	50
> 4.5 (> 114)	60

(19)

QF-222 MANUFACTURER QUALIFIED FUSING PROCEDURE SPECIFICATION (MEFPS)

QF-222.1 Electrofusion of Polyethylene. When the fusing procedure is limited to the following conditions, additional procedure qualification testing is not required. If the organization deviates from the conditions listed below, procedure qualification testing in accordance with QF-202.2 is required:

(*a*) The pipe and fitting material is limited to PE 2708, PE 3608, and PE 4710 in the combinations shown in Table QF-222.1, unless otherwise qualified by the fitting manufacturer (see QF-403.1).

(*b*) The pipe ends shall be cleaned with water to remove dirt, mud, and other debris prior to scraping.

(c) For socket-type connections, the pipe ends shall be cut perpendicular $\pm 5^{\circ}$ to the pipe centerline on each pipe end and fully inserted into the center of the fitting.

(*d*) Immediately before electrofusion, the external surfaces of the pipe shall be scraped with a non-smearing scraping device to cleanly remove approximately 0.01 in. (0.25 mm) of material from the outer surface of the pipe, such that a complete layer of material is removed from the surfaces to be fused (see QF-407.3).

(e) In the event of touching or recontamination of the pipe after scraping, 70% (minimum) isopropyl alcohol shall be used with a clean lint-free cloth for cleaning (see QF-407.3).

(f) For socket-type connections, the pipe shall be marked with a non-petroleum-base marker for the proper insertion depth before installing the electrofusion fitting, and the fitting shall be installed on the pipe end to the marked depth taking care to avoid recontamination of the clean fusion surfaces.

(*g*) The fitting shall be connected to the electrofusion control box with the prescribed leads.

(*h*) The values for fusing energy voltage, nominal fusing time, and cooling period qualified by the electrofusion fitting manufacturer based on permitted material temperature range, shall be entered into the processor before energizing the coils (see QF-405.5, QF-405.6, QF-405.7, and QF-405.8).

(*i*) The power supply/generator and any extension cords shall meet the electrofusion fitting manufacturer's specified requirements (see QF-406.3).

(*j*) Upon completion of energizing the coils, the leads may be disconnected. No movement of the fused assembly shall be permitted until the end of the fitting manufacturer's prescribed cooling period. (See QF-405.5.)

Table QF-222.1	
Electrofusion Material Combination	ons

Pipe	Fitting
PE 2708	PE 2708
PE 3608	PE 4710
PE 4710	PE 4710

QF-250 FUSING VARIABLES

QF-251 TYPES OF VARIABLES FOR FUSING PROCEDURE SPECIFICATIONS

These variables (listed for each fusing process in Tables QF-254 and QF-255) are categorized as essential or nonessential variables. The "Brief of Variables" listed in the tables are for reference only. See the complete variable description in Article XXIV, QF-400.

QF-252 ESSENTIAL VARIABLES

Essential variables are those that will affect the mechanical properties of the fused joint, if changed, and require requalification of the FPS, SFPS, or MEFPS when any change exceeds the specified limits of the values recorded in the FPS for that variable.

QF-253 NONESSENTIAL VARIABLES

Nonessential variables are those that will not affect the mechanical properties of the fused joint, if changed, and do not require requalification of the FPS, SFPS, or MEFPS when changed.

		Polyethylene Pipe Butt Fu	sing	
Paragraph		Brief of Variables	Essential	Nonessential
QF-402	.1	ϕ Joint type	Х	
Joints	.2	ϕ Pipe surface alignment	Х	
05.402	.1	ϕ PE	Х	
QF-403 Material	.3	ϕ Wall thickness	Х	
	.4	ϕ Cross-sectional area		Х
QF-404 Position	.1	ϕ Position	Х	
	.1	ϕ Heater surface temperature	Х	
	.2	ϕ Interfacial pressure	Х	
QF-405	.3	Decrease in melt bead width	Х	
Thermal Conditions	.4	Increase in heater removal time	Х	
Gonarcions	.5	Decrease in cool-down time	Х	
	.9	ϕ Initial heating pressure	Х	
QF-406 Equipment	.1	ϕ Fusing machine manufacturer		Х
QF-407 Technique	.1	ϕ Shop to field, or vice versa		Х

		Table QF-255 Fusing Variables Procedure Sp Polyethylene Electrofus	ecification sion	
Paragraj	oh	Brief of Variables	Essential	Nonessential
QF-402	.3	ϕ Joint design	Х	
Joints	.4	ϕ Fit-up gap	Х	
QF-403 Material	.1	ϕ PE Pipe	Х	
	.4	ϕ Pipe wall thickness		Х
	.5	ϕ Fitting manufacturer	Х	
	.6	ϕ Pipe diameter	Х	
	.5	ϕ Cool-down time	Х	
QF-405	.6	ϕ Fusion voltage	Х	
Thermal	.7	ϕ Nominal fusion time	Х	
	.8	ϕ Material temperature range	Х	
	.2	ϕ Power supply		Х
QF-406	.3	ϕ Power cord	Х	
Equipment	.4	ϕ Processor		Х
	.5	ϕ Saddle clamp	Х	
QF-407	.2	ϕ Cleaning agent		Х
Technique	.3	ϕ Scraping device	Х	

(**19**)

	Mar	Table QF-256 Iual Butt-Fusing Variables Procedu Polyethylene Pipe Manual But		
Paragra	ph	Brief of Variables	Essential	Nonessential
QF-402	.1	ϕ Joint type	Х	
Joints	.2	ϕ Pipe surface alignment	Х	
	.1	ϕ PE	Х	
QF-403 Material	.3	ϕ Wall thickness	Х	
	.4	ϕ Cross-sectional area		Х
QF-404 Position	.1	ϕ Position	Х	
	.1	ϕ Heater surface temperature	Х	
QF-405	.3	Decrease in melt bead width	Х	
Thermal Conditions	.4	Increase in heater removal time	Х	
conditions	.5	Decrease in cool-down time	Х	
QF-406	.1	ϕ Fusing machine manufacturer	Х	
Equipment	.6	± Torque measurement	Х	
QF-407 Technique	.1	ϕ Shop to field or vice versa		х

(**19**)

r

Table QF-257 Fusing Variables Procedure Specification Polyethylene Sidewall Fusing

Paragraj	ph	Brief of Variables	Essential	Nonessential
QF-402 Joints	.6	ϕ Fitting manufacturer	Х	
QF-403	.1	ϕ PE pipe	Х	
Material	.8	ϕ Header pipe diameter	Х	
.1		ϕ Heater temperature	Х	
QF-405 Thermal Conditions	.2	ϕ Interfacial pressure	Х	
	.3	ϕ Melt bead size or time	Х	
	.4	ϕ Heater plate removal time	Х	
conditions	.5	ϕ Cool-down time	Х	
.9		ϕ Initial heating pressure	Х	
QF-406 Equipment	.1	ϕ Fusing machine manufacturer	Х	
QF-407	.2	ϕ Cleaning agent or method	Х	
Technique	.4	ϕ Abrasion method	Х	

ARTICLE XXIII PLASTIC FUSING PERFORMANCE QUALIFICATIONS

QF-300 GENERAL

This Article lists the essential variables that apply to fusing operator performance qualifications. The fusing operator qualification is limited by the essential variables given for the fusing process. These variables are outlined in QF-360.

QF-301 TESTS

QF-301.1 Intent of Tests. The fusing operator performance qualification tests are intended to determine the ability of fusing operators to make sound fused joints when following a qualified FPS, SFPS, or MEFPS.

QF-301.2 Qualification Tests. Each organization shall qualify each fusing operator for the fusing process (es) to be used in production. The performance qualification tests shall be completed using a qualified FPS, SFPS, or MEFPS. A fusing operator qualified for fusing in accordance with one qualified FPS, SFPS, or MEFPS is also qualified for fusing in accordance with other qualified FPSs, SFPSs, or MEFPSs within the limits of the fusing operator essential performance variables given in Table QF-362. Visual and mechanical examination requirements are described in QF-302. Retests and renewal of qualification are given in QF-320.

The fusing operator responsible for fusing any FPS qualification test coupons successfully qualifying the FPS is also qualified as a fusing operator within the limits of the essential performance qualification variables given in Table QF-362.

QF-301.3 Identification of Fusing Operators. Each qualified fusing operator shall be assigned an identifying number, letter, or symbol by the organization, which shall be used to identify production fused joints completed by the fusing operator.

(19) **QF-301.4 Record of Tests.** The record of fusing operator performance qualification (FPQ) tests shall include the qualified ranges of essential performance variables, the type of tests performed, and test results for each fusing operator. Suggested forms for these records are given in Forms QF-484(a), QF-484(b), and QF-484(c).

QF-302 TYPE OF TEST REQUIRED

QF-302.1 Visual Examination. For test coupons, all surfaces shall be examined visually per QF-141 before cutting specimens. Test coupons shall be visually examined per QF-141 over the entire circumference.

QF-302.2 Mechanical Tests.

(**19**)

(*a*) One butt fusion coupon shall be prepared, from which two test specimens shall be removed from the fused test joint at intervals of approximately 180 deg. Each specimen shall be tested by one of the following methods:

(1) Reverse-Bend Test. Test specimens shall be removed as shown in Figure QF-463, illustration (a), and tested in accordance with QF-143.1.

(2) Guided Side-Bend Test. Test specimens shall be removed as shown in Figure QF-463, illustration (b), and prepared and tested in accordance with QF-143.2.

(3) High-Speed Tensile Impact Test (HSTIT). Test specimens shall be removed, prepared, and tested in accordance with QF-144.

(b) One electrofusion coupon shall be prepared, from which either of the following tests may be performed at ambient temperature between 60° F to 80° F (16° C to 27° C):

(1) Electrofusion Bend Test. Four electrofusion bend test specimens shall be removed in accordance with QF-143.3.1 and tested in accordance with QF-143.3.3 and QF-143.3.4.

(2) Crush Test. Test specimens shall be prepared in accordance with QF-145.1.1 and tested in accordance with QF-145.1.3 and QF-145.1.4.

(c) One sidewall fusion coupon shall be prepared, from which the following test shall be performed at ambient temperature between 60° F to 80° F (16° C to 27° C):

(1) Reverse-Bend Test. One test specimen including fusion samples from two edges of the fused saddle shall be removed in accordance with Figure QF-463, illustration (e), and tested in accordance with QF-143.1.

QF-303 LIMITS OF QUALIFIED POSITIONS AND DIAMETERS (SEE QF-461)

QF-303.1 Pipe Positions.

(*a*) Fusing operators who pass the required tests for butt fusing in the test positions shown in Figures QF-461.1 and QF-461.2 shall be qualified for fusing within the following limits:

(1) The 5G test position qualifies for the horizontal position ± 45 deg.

(2) Test positions other than 5G qualify for the orientation tested ± 20 deg.

(*b*) Electrofusion operators who pass the required tests for fusing in any test position qualify for all positions.

QF-303.2 Pipe Diameters. Pipe sizes within the ranges listed in Table QF-452.3 shall be used for test coupons to qualify within the ranges listed in Table QF-452.3.

QF-305 FUSING OPERATORS

Each fusing operator shall have passed the visual and mechanical examinations and tests prescribed in QF-301 and QF-302.

QF-305.1 Testing. Qualification testing shall be performed on test coupons in accordance with QF-311 and the following requirements:

(*a*) The data required by QF-130 shall be recorded for each fusing machine operator.

(*b*) The supervisor conducting the test shall observe the making of the fused joint and verify that the FPS, SFPS, or MEFPS was followed.

QF-305.2 Examination. Test coupons fused in accordance with **QF-305.1** shall be evaluated as follows:

(*a*) The completed joint shall be visually examined in accordance with QF-302.1.

(b) After the joint is complete, the data required by QF-130 shall be reviewed for compliance with the requirements of the FPS, SFPS, or MEFPS used for the qualification test.

(*c*) Test specimens shall be removed and tested and in accordance with QF-302.2.

QF-310 QUALIFICATION TEST COUPONS

QF-311 TEST COUPONS

(*a*) The test coupons shall consist of fusing one pipe joint assembly in at least one of the positions shown in Figure QF-461.2.

(*b*) Test coupons may be produced at any ambient temperature within the range permitted by the FPS, SFPS, or MEFPS.

QF-320 RETESTS AND RENEWAL OF QUALIFICATION

QF-321 RETESTS

A fusing operator who fails one or more of the tests prescribed in QF-302, as applicable, may be retested under the following conditions.

QF-321.1 Immediate Retest Using Visual Examination. When the qualification coupon has failed the visual examination of QF-302.1, retests shall be accepted by visual examination before conducting the mechanical testing.

When an immediate retest is made, the fusing operator shall make two consecutive test coupons. If both additional coupons pass the visual examination requirements, the examiner shall select one of the acceptable test coupons for specimen removal to facilitate conducting the required mechanical testing. **QF-321.2** Immediate Retest Using Mechanical Testing. When the qualification coupon has failed the mechanical testing of QF-302.2, and an immediate retest is conducted, the fusing operator shall make two consecutive test coupons. If both additional coupons pass the mechanical test requirements, the fusing machine operator is qualified.

QF-321.3 Further Training. When the fusing operator has undergone additional training or completed additional fusing practice joints, a new test shall be made for each fusion test joint that failed to meet the requirements.

QF-322 EXPIRATION AND RENEWAL OF QUALIFICATION

QF-322.1 Expiration of Qualification. The performance qualification of a fusing operator shall be affected when one of the following conditions occurs:

(*a*) When a fusing operator has not completed a fused joint using a qualified FPS, SFPS, or MEFPS for a time period of 6 months or more, their qualification shall expire.

(*b*) When there is a specific reason to question the ability of the fusing operator to make fused joints meeting the requirements of this Section, the qualifications of the fusing operator shall be revoked.

QF-322.2 Renewal of Qualification

(*a*) Performance qualifications that have expired under the provisions of QF-322.1(a) may be renewed by having the fusing operator fuse a single test coupon and subjecting the test coupon to the testing required by QF-302. A successful test shall renew all of the fusing operator's previous qualifications for that fusing process.

(*b*) Fusing operators whose qualifications have been revoked under the provisions of QF-322.1(b) may be requalified by fusing a test coupon representative of the planned production work. The fused test coupon shall be tested as required by QF-302. A successful test shall restore the fusing operator's qualification within the qualified range of essential performance variables listed in Table QF-362.

QF-360 ESSENTIAL VARIABLES FOR PERFORMANCE QUALIFICATION OF FUSING OPERATORS

QF-361 GENERAL

A fusing operator shall be requalified whenever a change is made in one or more of the essential variables listed in Table QF-362.

	Op	es Applicable to Fusing perators		
Paragraph Brief of Variables				
	(a)	Butt Fusing		
QF-403	.1	ϕ Pipe material		
Material	.2	ϕ Pipe diameter		
QF-404 Position	.1	+ Position		
QF-406 Equipment	.1	ϕ Equipment manufacture		
	(b) E	lectrofusion		
QF-402 Joint Type	.1	ϕ Socket to saddle & vice versa		
QF-403	.1	ϕ Pipe material		
Material	.2	ϕ Pipe diameter		
	(c) Sid	lewall Fusion		
QF-403	.1	ϕ Pipe material		
Material	.7	ϕ Header diameter		
QF-406	.1	$\phi \ \ $		
Equipment	.7	ϕ Type of sidewall-fusing ϕ machine		

ARTICLE XXIV PLASTIC FUSING DATA

QF-400 VARIABLES

QF-401 GENERAL

Each fusing variable described in this Article is applicable for procedure qualification when referenced in QF-250 for each specific fusing process. Essential variables for performance qualification are referenced in QF-360 for each specific fusing process. A change from one fusing process to another fusing process requires requalification (e.g., a change from butt fusing to electrofusion).

QF-401.1 Fusing Data. The fusing data includes the fusing variables grouped as joints, pipe material, position, thermal conditions, equipment, and technique.

QF-402 JOINTS

QF-402.1 A change in the type of joint from that qualified, except that a square butt joint qualifies a mitered joint.

QF-402.2 A change in the pipe O.D. surface misalignment of more than 10% of the wall thickness of the thinner member to be fused.

QF-402.3 Any change in the design of an electrofusion joint that causes a change in any other essential variable of Table QF-254. The configuration of a fitting may change without impacting those variables, e.g., from a 90-deg elbow to a 45-deg elbow; or from an NPS 2 × NPS 8 (DN 50 × DN 200) saddle connection to an NPS 3 × NPS 8 (DN 80 × DN 200) saddle connection.

QF-402.4 An increase in the maximum radial fit-up gap qualified. This variable may be expressed in terms of maximum misalignment and out-of-roundness.

QF-402.5 A change from socket-type (full wrap) joint to saddle-type (partial wrap) joint, and vice versa.

(19) **QF-402.6** A change in manufacturer of the sidewall fitting.

QF-403 MATERIAL

QF-403.1 A change to any pipe material other than those listed in Table QF-422.

QF-403.2 A change in the pipe diameter beyond the range qualified in Table QF-452.3.

QF-403.3 A change in the pipe wall thickness beyond the range qualified. See QF-202.2.1.

QF-403.4 A change in the thickness or cross-sectional area to be fused beyond the range specified.

QF-403.5 A change in fitting manufacturer.

QF-403.6 A change in nominal pipe (header) diameter.

QF-403.7 A change in header diameter beyond the (19) range qualified. Qualification of a saddle design on two diameters qualifies for all diameters in between.

QF-404 POSITION

QF-404.1 The addition of other fusing positions beyond that qualified. See QF-303.1.

QF-405 THERMAL CONDITIONS

(**19**)

QF-405.1 A change in the heater surface temperature to a value beyond the range qualified in accordance with **QF-202.2.1**.

QF-405.2 A change in the interfacial pressure to a value beyond the range qualified in accordance with QF-202.2.1.

QF-405.3 A decrease in melt bead size or time from that qualified.

QF-405.4 An increase in heater plate removal time from that qualified.

QF-405.5 A decrease in the cool time at pressure from that qualified.

QF-405.6 A change in fusion voltage.

QF-405.7 A change in the nominal fusion time.

QF-405.8 A change in material fusing temperature beyond the range qualified.

QF-405.9 A change in initial heating pressure beyond the range qualified in accordance with QF-202.2.1.

QF-406 EQUIPMENT

QF-406.1 A change in the fusing machine manufacturer.

QF-406.2 A reduction in power source KVA.

QF-406.3 A change in power cord material, length, or diameter that reduces current at the coil to below the minimum qualified.

QF-406.4 A change in the manufacturer or model number of the processor.

QF-406.5 A change in the type of saddle clamp.

- (19) **QF-406.6** An addition or deletion of a torque wrench to measure applied pressure.
- (19) **QF-406.7** A change in type of sidewall-fusing machine from manual to hydraulic or vice versa.

QF-407 TECHNIQUE

QF-407.1 A change in fabrication location from the fabrication shop to field applications or vice versa.

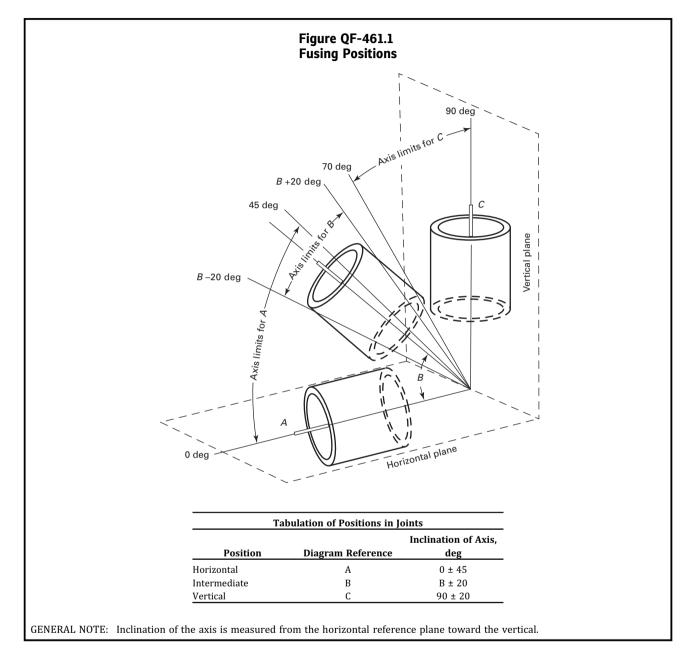
QF-407.2 A change in the type or reduction in concentration of joint cleaning agent or solution.

QF-407.3 A change from a clean peeling scraping tool to any other type of tool.

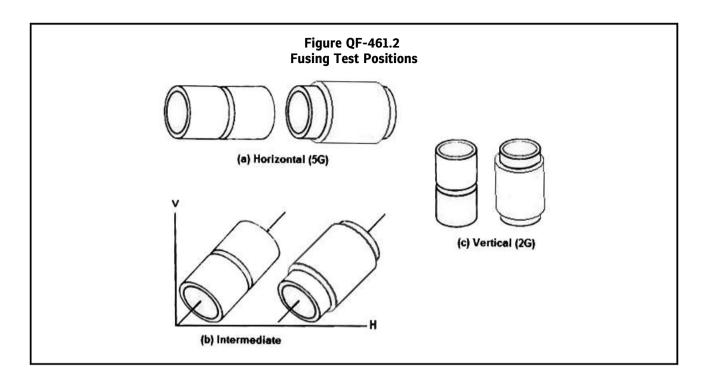
QF-407.4 A change from a clean peeling scraping tool (19) or 50- to 60-grit utility cloth to any other type of abrasion method.

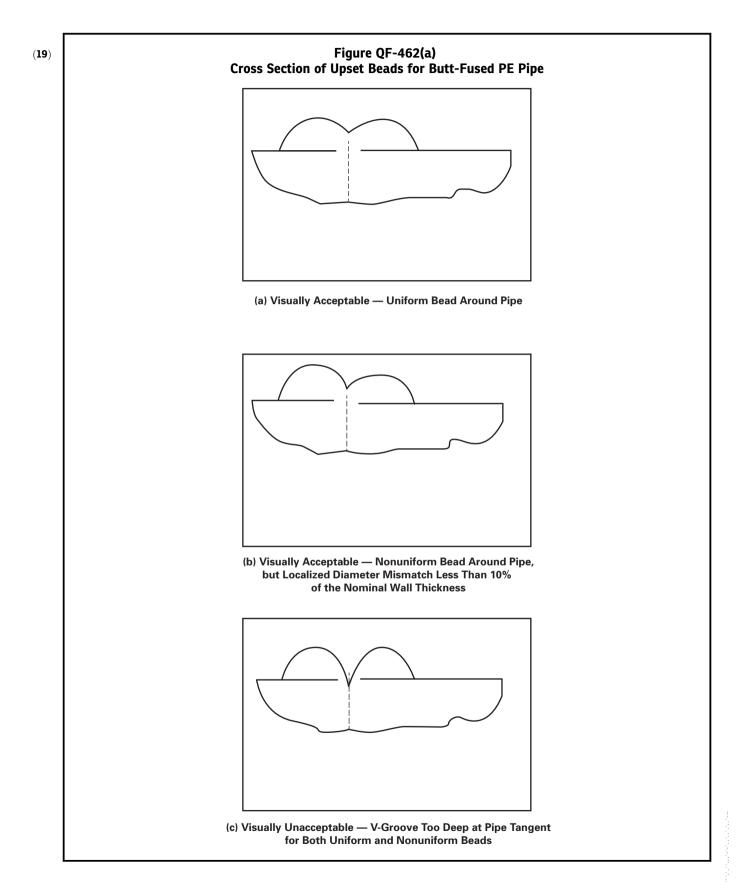
QF-420 MATERIAL GROUPINGS

High-density polyethylene pipe listed in Table QF-422 may be fused in accordance with Section IX.

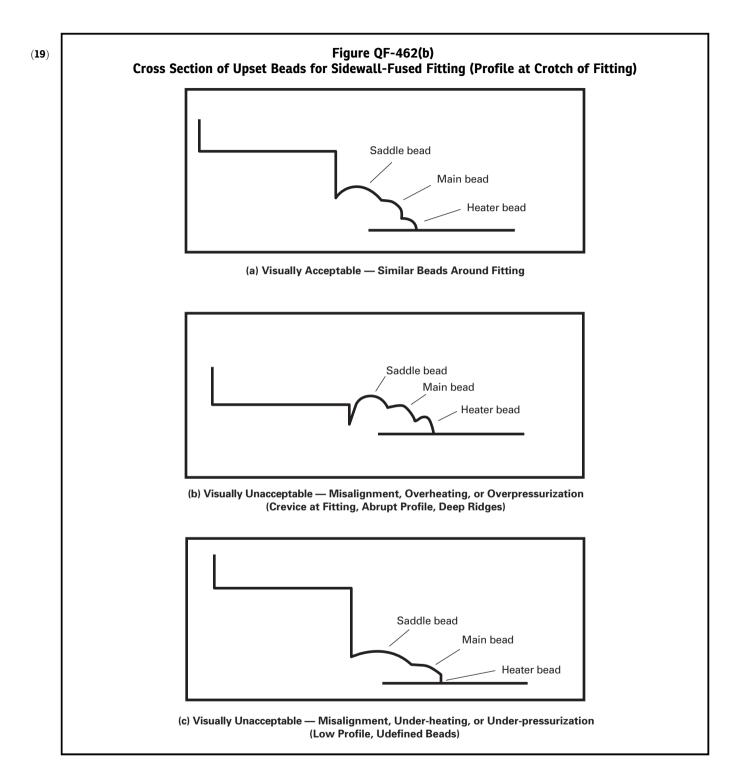

Table QF-422 Material Grouping		
Specification	Classification	Product Form
D3035	PE 2708	
	PE 3608	Pipe
F714	PE 4710	
D3261	PE 2708	
	PE 3608	Fittings
	PE 4710	

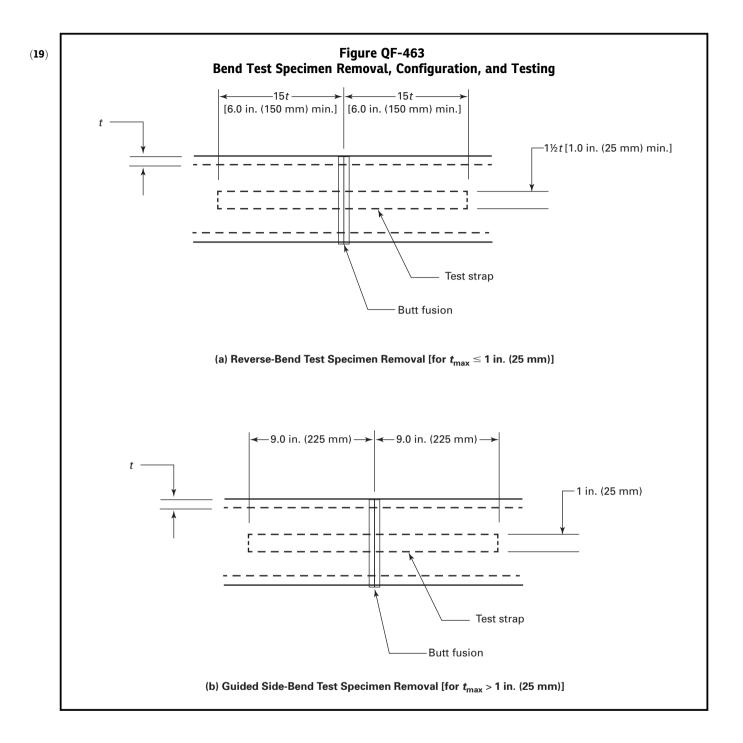
QF-450 PIPE FUSING LIMITS

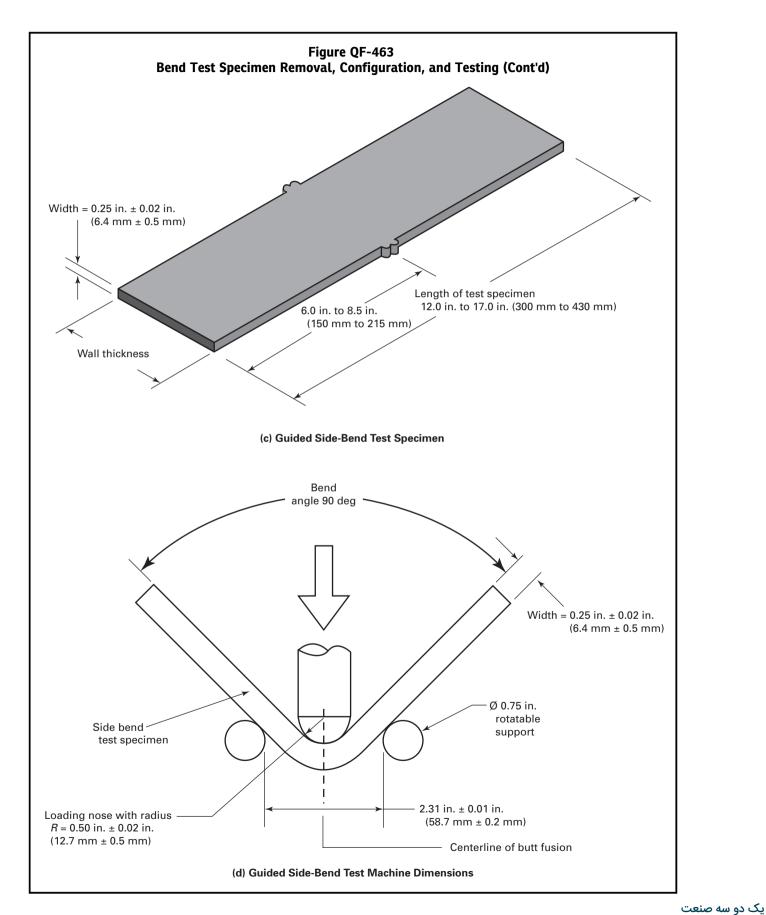

	Table QF-452.3 using Diameter Limi	ts
	Size Qualified — IPS [in. (mm)]	
Size of Test Coupon — IPS [in. (mm)]	Minimum	Maximum
	(a) Butt Fusing	
Less than 6 [6.625 (168)] 6 to less than 8 [6.625 (168) to less than 8.625 (219)] 8 to 20 [8.625 (219) to 20 (508)] Greater than 20 [greater than 20 (508)]	None None 8 [8.625 (219)] Greater than 20 [greater than 20 (508)]	Size tested Less than 8 [less than 8.625 (219)] 20 [20 (508)] Unlimited
	(b) Electrofusion	1
Less than 14 [14 (356)] 14 to 24 [14 (356) to 24 (610)] Larger than 24 [24 (610)]	None 14 [14 (356)] 24 [24 (610)]	Less than 14 [14 (356)] 24 [24 (610)] Unlimited
(0	:) Manual Butt Fusion	
Less than or equal to 6 [6.625 (168)]	None	Size tested

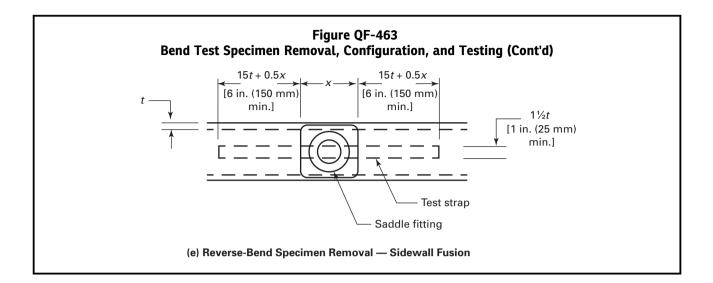

QF-460 GRAPHICS

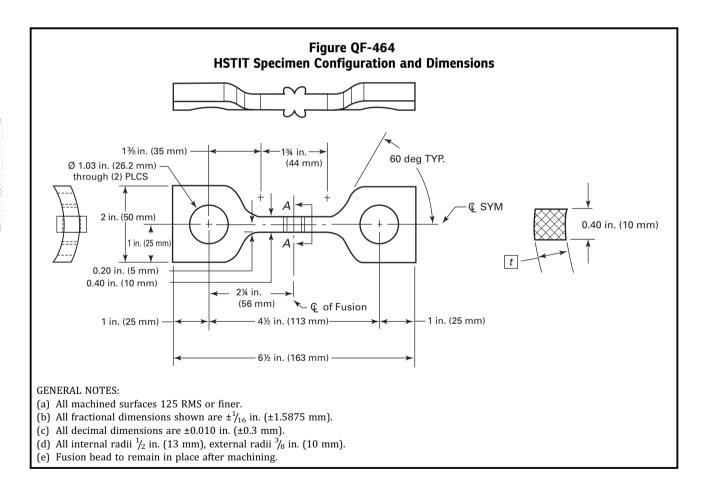
QF-461 POSITIONS

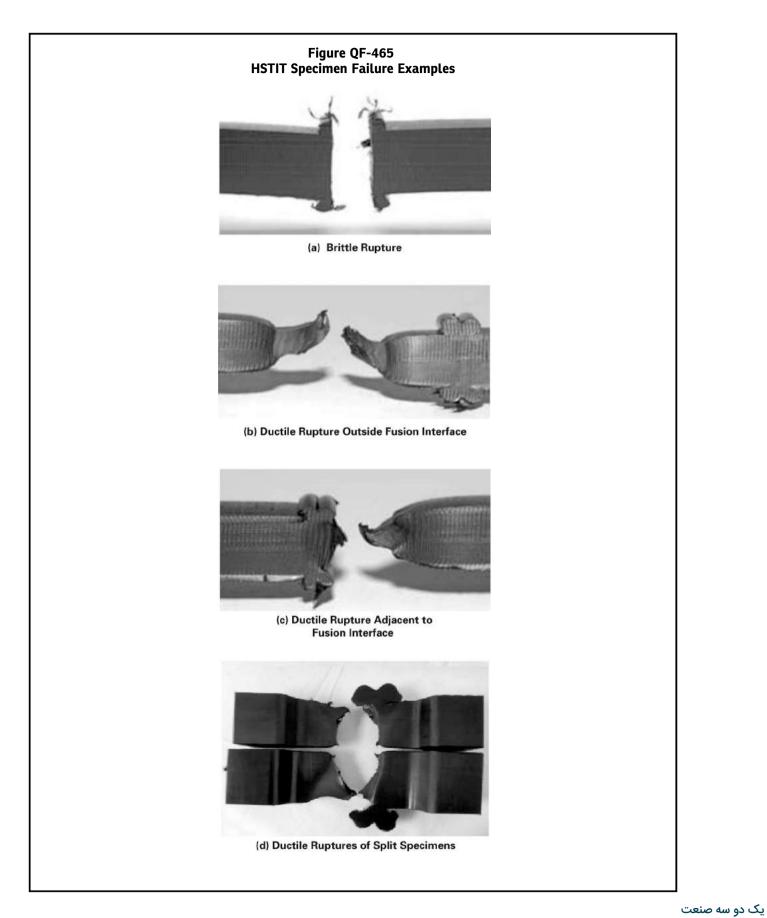


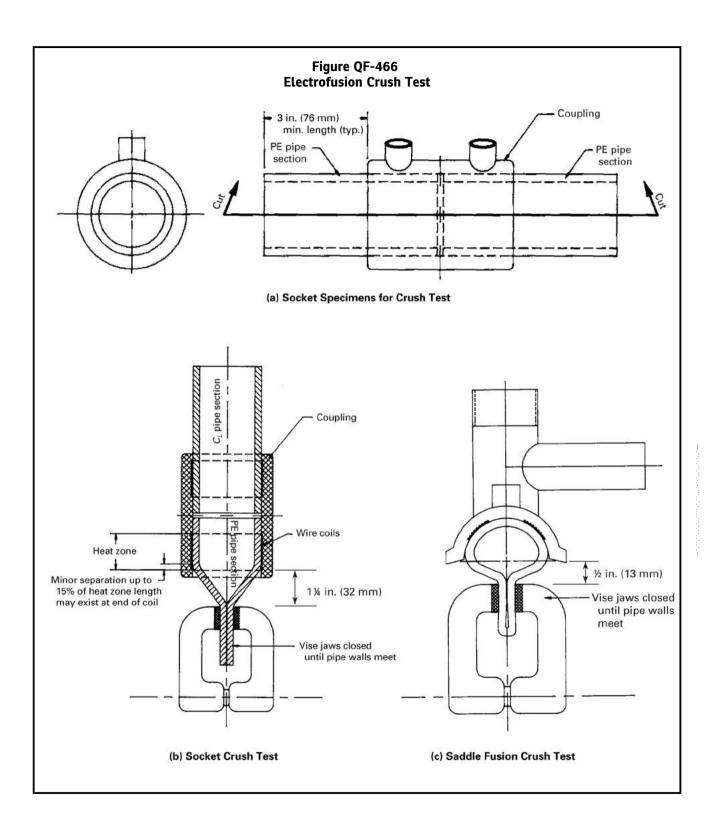

یک دو سه صنعت 123sanat.com

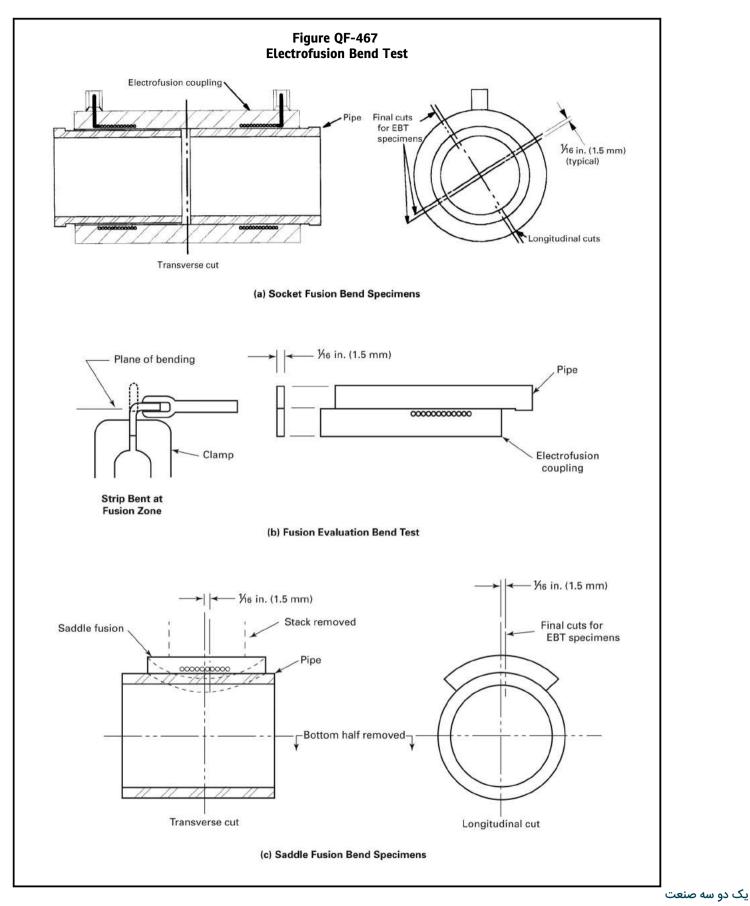


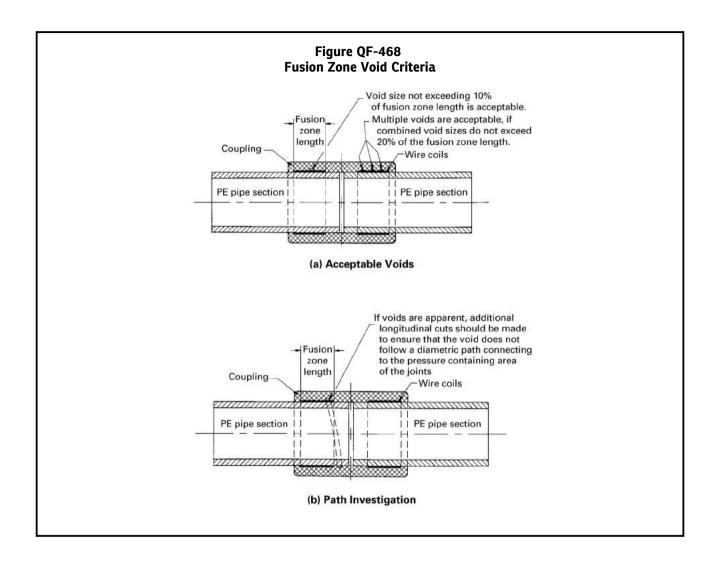


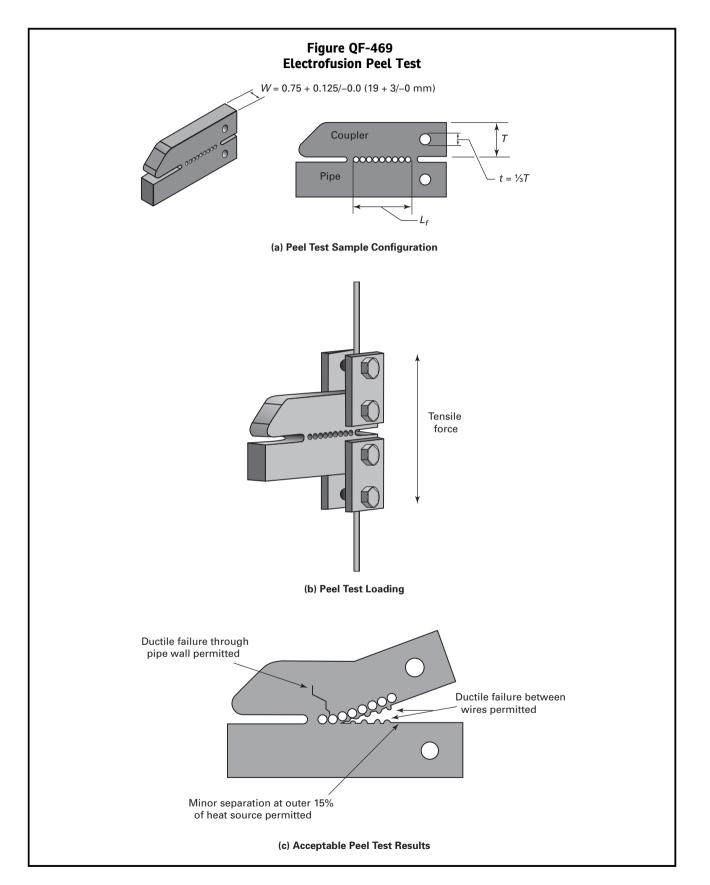

یک دو سه صنعت 123sanat.com

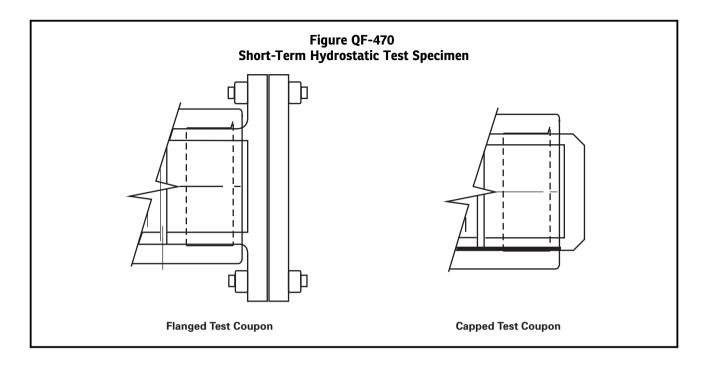





Copyright ASME International (BPVC)




123sanat.com


یک دو سه صنعت

یک دو سه صنعت 123sanat.com

QF-480 FORMS

Company Name	Ву
Fusing Procedure Specification No	Date
Revision No Date	
FPS Qualification 🗌 By testing 🗌 SFPS	If qualified by testing, supporting PQR No.(s)
Fusing Process Type	
	Dataile
Joints (QF-402) Joint Type	Details
Pipe End Preparation	
Miter Joint Angle	
Pipe Surface Alignment	
Sketches, production drawings, weld symbols, or	
should show the general arrangement of the parts	s to be fused. Where
applicable, the details of the joint groove may be	specified.
Sketches may be attached to illustrate joint design	ı.
Materials (QF-403)	
Specification Classification	to Specification Classification
Pipe Size (Diameter) Pipe Wal	I Thickness Cross-Sectional Area
Other	
Position (QF-404)	
Thermal Conditions (QF-405)	
Heater Surface Temperature Range	
Fusing Interfacial Pressure Range	
Drag Pressure Range	Butt-Fusing Pressure Range
Melt Bead Size Range	Heater Plate Removal Time Range
Cool-Down Time at Butt-Fusing Pressure Range	·
Equipment (QF-406)	
Fusing Machine Manufacturer	
Data Acquisition Used 🗌 Yes 📄 No	Data Acquisition Machine Manufacturer
Hydraulic Extension Hose Length	
Technique (QF-407)	
Location Eabrication Shop	Field

Company Name	Ву		
Fusing Procedure Specification No		Date	
Revision No	Date		
PS qualification By testing MEFPS	If qualified by	testing, supporting PC	ΩR No.(s)
Joints (QF-402)		Det	ails
Joint Design			
Pipe End Cut max. out-of-square			
Maximum Fit-up Gap			
Max. Axial Misalignment			
Max. out-of-roundness			
Sketches, production drawings, joint symbols, or w should show the general arrangement of the parts t Where applicable, the details of the joint groove ma	to be fused.		
Materials (QF-403)			
Fitting SpecificationClassification	to Pipe Sp	ecification	_Classification
Fitting ManufacturerPipe Size	(diameter)	Pipe Wall Thi	ckness
Thermal Conditions (QF-405)			
Minimum material & fusing temperature	_°F (°C) Maximum	material and fusing te	mperature°F (°0
Nominal fusion time at minimum temp	Nominal f	usion time at maximur	n temp
Minimum cool down time at min. temp	Minimum	cool down time at max	k. temp
Fusion Voltage			
Other			
Equipment (QF-406)			
Minimum Power Supply(KVA) F	Processor Manufactu	urer	Model
Power Cord: MaterialMax. length	ft (m) Mir	n. Gage	Min. Amps
Saddle Clamp Type	N/A		
Other			
Technique (QF-407)			
Technique (QF-407) Pre-scrape cleaning fluid Ρ	ost-scrape cleaning	agent	
		0	

FORM QF-482(c) SUGGESTED FORMAT FOR SIDEWALL-FUSING PROCEDURE SPECIFICATION (FPS or SFPS)
(See QF-201.3, Section IX, ASME Boiler and Pressure Vessel Code)

	Ву
using Procedure Specification No	Date
Revision NoDa	te
PS qualification By testing SFPS If	qualified by testing, supporting PQR No.(s)
Joints (QF-402)	Details
Joint Design	
Header size range	
Fitting Manufacturer	
Branch connection (diameter) range	
Sketches, production drawings, joint symbols, or written d should show the general arrangement of the parts to be fu Where applicable, the details of the joint groove may be sp	sed.
Materials (QF-403)	
Fitting SpecificationClassification	_to Header SpecificationClassification
Thermal Conditions (QF-405)	
Heater temperature°F (°C)	Heating initial interfacial pressure
Heating soak interfacial pressure	Melt bead size or time at heat soak
Heater plate removal time	Fusing interfacial pressure
Cool-down time at fusing pressure	
Equipment (QF-406)	
Fusing Machine Manufacturer	Model
Other	
Technique (QF-407)	
Abrasion device Post-ab	rasion cleaning method
Other	
7/19)	

FORM QF-483(a) SUGGESTED FORMAT FOR BUTT-FUSING PROCEDURE QUALIFICATION RECORDS (PQ [See QF-201.5(d), Section IX, ASME Boiler and Pressure Vessel Code]							
Date							
nment							
paration of Test Coupon							
Equipment (QF-406)							
Fusing Machine Manufacturer							
Data Acquisition Used 🗌 Yes 🗌 No							
Data Acquisition System Manufacturer							
Hydraulic Extension Hose Length							
Technique (QF-407)							
Location 🗌 Fabrication Shop 🗌 Field							
Other							
—							

ーー・トレック ひかい たいさん しんしゅう たんしん

یک دو سه صنعت 123sanat.com

FORM QF-483(a) (Back)

PQR No. _____

Visual Examination (QF-141)

Elevated Temperature Sustained Pressure Tests (QF-142)

Joint No.	Heater Temperature	Interfacial Pressure	Result

Joint No.	Heater Temperature	Interfacial Pressure	Result

High-Speed Tensile Impact Tests (QF-144)

loint No.	Spec. No.	Heater Temperature	Interfacial Pressure	Type of Failure		Joint No.	Spec. No.	Heater Temperature	Interfacial Pressure	Type of Failure	Location of Failur
	Attach	additional she	eet(s) for hig	h-speed	tensile test ir	npact tes	t data fo	or pipe larger th	nan NPS 4 (I	ON 100).	
				-					0.		
								n No	-		
Test	s Condu	icted By				Labo	oratory T	est No			

Date ___

_____ Certified By _____

Organization _____

(Detail of record of tests are illustrative only and may be modified to conform to the type and number of tests required by the Code.)

(07/15)

	ALIFICATION RECORDS (PQR) tion IX, ASME Boiler and Pressure Vessel Code] Page 1 or
Company Name	
	Date
FPS No	
Fusing Process: Electrofusion Socket-type	Electrofusion Saddle-type
Joints (QF-402)	Coupon Detail
Joint Design	
Manufacturer	
Model No	
Fit-up gap - See below	
Material (QF-403)	Equipment (QF-406)
Fitting SpecificationClassification	
Pipe Specification Classification	
Pipe Size (diameter)	
Pipe Wall Thickness	
Fitting Manufacturer	Saddle clamp
Other	Technique (QF-407)
	Scraping Device
	Cleaning Agent
Low Temperature Coupons:	I
Joint Number:	
Temperature (QF-405.8)	
Fit-up Gap (QF-402.4)	
Pipe alignment	
Pipe out-of-round	
Fusion Voltage (QF-405.6)	
Fusion Time (QF-405.7)	
Cool-down time (QF-405.5)	
High Temperature Coupons:	
Joint Number:	
Temperature (QF-405.8)	
Fit-up Gap (QF-402.4)	
Pipe alignment	
Pipe out-of-round	
Fusion Voltage (QF-405.6)	
Fusion Time (QF-405.7)	
Cool-down time (QF-405.5)	

	Page 2 of 3							
FORM QF-483(b) PQR No.								
Visual Examination (QF-141)								
Elevated Temperature Sustained Pressure Test (QF-142.1)								
Low Temperature Coupons High Temperature Coupons								
Failure Failure								
Joint Pressure Fitting Joint Pipe (Ductile) Accept Joint Pressure Fitting Joint Pipe (Duct	ile) Accept							
Minimum Hydraulic Quick Burst Test (QF-142.2)								
Low Temperature Coupons High Temperature Coupons	1							
Failure Failure Failure Joint Pressure Fitting Joint Accept Joint Pressure Fitting Joint	Accept							
Joint Integrity Test (QF-145)								
Low Temperature Coupons — Crush Test (QF-145.1) High Temperature Coupons — Crush Test	: (QF-145.1)							
Joint Specimen Bond Fitting Pipe Wire Accept Joint Specimen Bond Fitting Pipe W	ire Accept							
2* 2* 1 1 1 1 1 1								
2* 2* 2*								
*Two specimens required for socket-type joints.								
Low Temperature Coupons — Bend Test (QF-143.3) High Temperature Coupons — Bend Test	st (QF-143.3)							
Visual Failure Ductile Visual Failure Ductile								
Joint Specimen Accept Bond Fitting Pipe Wire Accept Joint Specimen Accept Bond Fitting Pipe 1<	e Wire Accept							
3 3								
3 3								
(07/19)								

													Page 3 o	
					FORM (2F-483(b)			P	QR No.			
		El	ectrofu	sion A	Axial Load	Resistan	ce Te	st (QF-'	144.2)					
Low Temp	erature Coup	on Tensil	e Test	QF-14	4.2(a)]	Hig	h Ter	mperati	ire Coupo	n Tensi	e Test	[QF-144	.2(a)]	
Pipe Failure					Pipe Failure									
Joint I	Elongation	Pipe Br	eak Accept			Join	t	Elon	gation	Pipe I	Break	A	Accept	
I	Low Tempe Peel Test [Q		•						gh Tempe el Test [Q		•			
	Failure	Du	ctile Tea	ars					Failure	1	Ductile 1	ears		
Joint Specime	en Brittle Se	p Wire	Fitting	Pipe	Accept	Joint	Spe	ecimen 1	Brittle Se	p Wir	e Fittin	g Pipe	Accept	
2								2 3			-			
4								3						
Short-Te	rm Hydrostat		F-144.2	2.1(b)(2)]		Shor	t-Term	Hydrostat		QF-144	.2.1(b)(2	2)]	
Joint	Failure It Fitting Fusion Interface Accept		Accept	Failure Joint Fitting Fusion Interface					Accep					
					<u> </u>									
1 a.u. T .u.	ture Coupon	Impact Re	esistan	*Only	when req	uired by	contr	ract	e Coupon	Impact	Resista	ince (QF	-145.2.4	
Low Tempera	Failure Bond Separation >15% Accept			Failure Joint Bond Separation >15%					Accept					
Low Tempera			%		Accept	Join	t						Accept	
			%		Accept	Join	t		•				Accept	
			%		Accept	Join	t						Accept	
		iration >15		ditiona	Accept al sheet(s)			on as ree						
Joint	Bond Sepa	Atta	ach add		al sheet(s)	for expla	natio		quired.			p No		
Joint	Bond Sepa	Atta	ach add		al sheet(s)	for expla	natio ion N	lo	quired.		_Stam			
Joint using Operator ests Conducted Ve certify that	Bond Sepa	Atta	ach add	rd are	al sheet(s)	for expla dentificat aboratory	natio ion N y Tes the t	lo t No.(s) est joir	quired.	prepareo	_Stam			
	Bond Sepa	Atta	ach add	rd are	al sheet(s)	for expla dentificat aboratory and that Boiler an	natio ion N y Tes the t d Pre	lo t No.(s) est joir essure \	quired.	prepared le.	_Stam	d, and	tested i	
Joint	Bond Sepa	Atta	ach add	rd are	al sheet(s)	for expla dentificat aboratory	natio ion N y Tes the t	lo t No.(s) est joir	quired.	prepareo	_Stam			

Company Name	
Procedure Qualification Record No	Date
PS No	
using Process(es)	
Joints (QF-402)	
Fitting Manufactur	rer
Material (QF-403)	Equipment (QF-406)
Fitting SpecificationClassification	
to Header Specification Classification	
Branch Size (Diameter)	
Header Size (Diameter)	
Fitting Projected Base Area/Cross-Sectional Area	, , ,
Other	_
	Technique (QF-407)
Position (QF-404)	Location 🗌 Fabrication Shop 🗌 Field
Position of Header	
Position of Branch	Abrasion Method
Other	
Thermal Conditions (QF-405)	
Heater Surface Temperature	- Other
Drag Pressure	
Heating Initial Interfacial Pressure	
Time at Pressure	-
Heat Soak Interfacial Pressure	-
Melt Bead Size or Time	-
Heater Plate Removal Time	-
Fusing Pressure	
Cool-Down Time at Fusing Pressure	

(**19**)

			FORM QF-4	83(c) (Back)		Р	PQR No
			Visual Examin	ation (QF-14	1)		
	Elevat	ed Tem	perature Susta	ined Pressu	re Tes	ts (QF-142)	
	Jc	oint	Heater Temperature	Interfacia Pressure	al	Result	
		 In	npact Resistand	ce Tests (QF	-145)		
	Joint No.	Spec. No.	Heater Temperature	Interfacial Pressure	Type o Failur		
		1	Ot	her	1		
Fusing Operator's Name							
Tests Conducted By							
We certify that the statemer in accordance with the requ			tion IX of the A	SME Boiler	and Pr	essure Vessel	Code.
				Organizatio	י		
Date				Certified B	у		
(Detail of record of tests a required by the Code.)	re illustr	ative on	ly and may be	modified to	confo	rm to the type	and number of tests

	FORM	PEF	RFORMANCE Q	T FOR BUTT-FUSING UALIFICATIONS (FPC	(ב	AIOK
=		(See QF-301.4, S	ection IX, ASN	IE Boiler and Pressur	e Vessel Code)	
	Fusing Machine Opera	tor's Name		Identification	No	
	_	_	_	n (Information Only)		
	Type of Test:			-		
	-					
				to Specification		
	Pipe Size (Diameter) _		Pipe Wall Th	nickness		
		Те	sting Conditions	and Qualification Limit	'S	
	Fusir	ng Variables (QF-36	0)	Actual Value	s Ra	nge Qualified
	Pipe Materia	I				
	Pipe Size (Di	ameter)				
	Pipe Position	1				
	Fusing Mach	ine Manufacturer				
			RE	SULTS		
	Visual Examinati	on of Completed Jo	oint [QF-305.2(a)]			
	Examination of I	Data Acquisition Ou	tput [QF-305.2(b)]		
			Bend Te	sts (ΩF-302.2)		
	Specimen No.	Type of Bend	Result	Specimen No.	Type of Bend	Result
					Company	
	Bend Specim	ens Evaluated By		(1 /	
		ens Evaluated By ests Conducted By_		Laboratory	Test No	
		ests Conducted By_			7 Test No	
	Mechanical T Fusing Super	ests Conducted By_ vised By				
	Mechanical T Fusing Super	ests Conducted By_ vised By		Laboratory		
	Mechanical T Fusing Super Data Acquisit We certify th	ests Conducted By_ vised By ion Output Examine at the statements ir	ed By	Laboratory	coupons were pret	pared, fused, and
	Mechanical T Fusing Super Data Acquisit We certify th	ests Conducted By_ vised By ion Output Examine at the statements ir	ed By	Laboratory	coupons were pret	pared, fused, and
	Mechanical T Fusing Super Data Acquisit We certify th	ests Conducted By_ vised By ion Output Examine at the statements ir	ed By	Laboratory	coupons were pret	pared, fused, and
	Mechanical T Fusing Super Data Acquisit We certify th	ests Conducted By_ vised By ion Output Examine at the statements ir	ed By this record are o quirements of Se	Laboratory	coupons were prepoiler and Pressure V	pared, fused, and Vessel Code.
	Mechanical T Fusing Super Data Acquisit We certify th tested in acc	ests Conducted By_ vised By ion Output Examine at the statements ir	ed By this record are of quirements of Se Org	Laboratory	coupons were prepoiler and Pressure V	pared, fused, and Vessel Code.

		•	RMANCE (QUALIFICA	ATION (FPQ)	N FUSING OPERATOR	
Electrofusior	n Fusing Operator's	Name		Ider	ntification No.		
		Tes	t Descriptio	n (Informat	tion Only)		
Type of test:	Or	iginal Qualificati	on	Rec	qualification_		
Identification	n of FPS or MEFPS F	ollowed					
Date Coupon	n Was Fused						
Fitting Specif	fication	Classificat	ion to	Pipe Specif	fication	Classification	
Pipe Size (dia	ameter)		Pi	pe Wall Thi	ckness		
·				d Qualificat			
_		Ū.				. .	
	sing Variables (QF-3	860)		Actu	ial Value	Range Qualifi	ed
	cket or Saddle						
	e Material						
Pip	e Diameter						
Visual exami	nation of complete	d joint [QF-305.2		ESULTS			
		output [QF-305.	(a)] 2(b)] oint Integri	ty Test (QF-			
	of data acquisition	output [QF-305.] J	(a)] 2(b)] oint Integri	ty Test (QF-	143.3)		
	of data acquisition	output [QF-305. J Bend Test (QI	(a)] 2(b)] oint Integri	ty Test (QF-] C	143.3)		
	of data acquisition Type of test:	output [QF-305. J Bend Test (QI Failure	(a)] 2(b)] oint Integri F-143.3)	ty Test (QF-] C Ductile	143.3) Crush Test (QF	-145.1)	
	of data acquisition Type of test:	output [QF-305. J Bend Test (QI Failure	(a)] 2(b)] oint Integri F-143.3)	ty Test (QF-] C Ductile	143.3) Crush Test (QF	-145.1)	
	of data acquisition Type of test:	output [QF-305. J Bend Test (QI Failure	(a)] 2(b)] oint Integri F-143.3)	ty Test (QF-] C Ductile	143.3) Crush Test (QF	-145.1)	
Examination	of data acquisition Type of test: Specimen	output [QF-305. J Bend Test (QI Failure Bond Area	(a)] oint Integri E-143.3) Fitting	ty Test (QF-] C Ductile Pipe	143.3) Crush Test (QF Wire	-145.1)	
Examination Test specime	of data acquisition Type of test: Specimen ens evaluated by	output [QF-305.] J Bend Test (QI Failure Bond Area	(a)] oint Integri =-143.3) Fitting	ty Test (QF-] C Ductile Pipe	143.3) Crush Test (QF Wire	-145.1)	
Examination Test specime Mechanical t	of data acquisition Type of test: Specimen ens evaluated by ests conducted by	output [QF-305. J Bend Test (QI Failure Bond Area	(a)] oint Integri E-143.3) Fitting	ty Test (QF- Ductile Pipe	143.3) Crush Test (QF Wire	-145.1)	
Examination Test specime Mechanical t Fusing super	of data acquisition Type of test: Specimen one evaluated by_ rests conducted by_	output [QF-305. J Bend Test (Ql Failure Bond Area	(a)] oint Integri E-143.3) Fitting	ty Test (QF- Ductile Pipe Con Con Lab	npany	-145.1)	
Examination Test specime Mechanical t Fusing super Data acquisit We certify the	of data acquisition Type of test: Specimen ens evaluated by_ rests conducted by_ rvised by	output [QF-305.] J Bend Test (Ql Failure Bond Area d by h this record are	(a)] oint Integri =-143.3) Fitting	ty Test (QF- Ductile Pipe Con Lab that the test	143.3) Crush Test (QF Wire	-145.1)	
Examination Test specime Mechanical t Fusing super Data acquisit We certify the tested in acco	of data acquisition Type of test: Specimen Specimen ens evaluated by rvised by tion output reviewe at the statements in	output [QF-305.] J Bend Test (QI Failure Bond Area d by h this record are quirements of S	(a)] oint Integri =-143.3) Fitting correct and ection IX of	ty Test (QF- Ductile Pipe Con Con Lab that the test the ASME	143.3) Crush Test (QF Wire	-145.1)	

یک دو سه صنعت 123sanat.com

	(See Ur-301.4, 5		E Boiler and Pressur	e vessei Code)	
Fusing Machine Ope	rator's Name		Identification	No	
	_		n (Information Only)		
Type of Test:	0	ation 🗌 Req			
			to Header Specifica		
			Size (Diameter)		
			Position		
	Те	sting Conditions	and Qualification Limit	s	
Fusi	ng Variables (QF-360	0)	Actual Value	s Ra	ange Qualified
Pipe Materia	al				
Fusing Mac	nine Type (Manual o	r Hydraulic)			
Fusing Mac	nine Manufacturer				
Visual Examinat	ion of Completed Io		SULTS		
		oint [QF-305.2(a)]			
		bint [QF-305.2(a)] tput [QF-305.2(b)]			
Examination of	Data Acquisition Out	bint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes	ts (QF-302.2)		
		bint [QF-305.2(a)] tput [QF-305.2(b)]			Result
Examination of	Data Acquisition Out	bint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes	ts (QF-302.2)		Result
Examination of	Data Acquisition Out	bint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes	ts (QF-302.2)		Result
Examination of Specimen No.	Data Acquisition Out	bint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes Result	ts (QF-302.2)	Type of Bend	Result
Examination of Specimen No. Mechanical T Fusing Supe	Data Acquisition Out	bint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes Result	ts (QF-302.2) Specimen No. Laboratory	Type of Bend	
Examination of Specimen No. Mechanical T Fusing Supe	Data Acquisition Out	bint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes Result	ts (QF-302.2) Specimen No. Laboratory	Type of Bend	
Examination of Specimen No. Mechanical T Fusing Supe Data Acquisi	Data Acquisition Out	oint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes Result	ts (QF-302.2) Specimen No. Laboratory	Type of Bend	
Examination of Specimen No. Mechanical T Fusing Supe Data Acquisi We certify th	Data Acquisition Out	bint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes Result ed By	ts (QF-302.2) Specimen No. Laboratory	Type of Bend	pared, fused, and
Examination of Specimen No. Mechanical T Fusing Supe Data Acquisi We certify th	Data Acquisition Out	bint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes Result ed By	ts (QF-302.2) Specimen No. Laboratory Correct and that the test	Type of Bend	pared, fused, and
Examination of Specimen No. Mechanical T Fusing Supe Data Acquisi We certify th	Data Acquisition Out	oint [QF-305.2(a)] tput [QF-305.2(b)] Bend Tes Result ed By of this record are c quirements of Se	ts (QF-302.2) Specimen No. Laboratory Correct and that the test	Type of Bend	bared, fused, and Vessel Code.

(**19**)

	R PLASTIC PIPE FUSING DATA ACQUISITION LOG REVIEW ASME Boiler and Pressure Vessel Code)
Job Information	Job Number
Fusing Machine Operator Name	Fusing Machine Operator Identification
FPS or SFPS Used	_ Date Time
Fusing Machine Identification Fusing	ng Machine ManufacturerJoint Number
Pipe SpecificationClassification	to Specification Classification
Pipe Size (Diameter) Pipe Wall Thickne	ess Joint Configuration
FU	ISING VARIABLES
Heater Surface Temperature Wi	thin Qualification Range 🗌 Yes 🗌 No
Interfacial Fusing Pressure Within	Qualification Range 🗌 Yes 🗌 No
Drag Pressure	
Butt-Fusing Pressure: Within Qualific	ation Range 🗌 Yes 🗌 No
Calculated Value Recorded Hydr	aulic-Fusing Pressure Acceptable 🗌 Yes 🗌 No
Butt-Fusing Pressure Drop to Less Than Drag Pressure	e? 🗌 Yes 🔲 No
Gauge Pressure During Initial Heat Cycle	Elapsed Time During Initial Heat Cycle
Gauge Pressure During Heat-Soak Cycle	Elapsed Time During Heat-Soak Cycle
Gauge Pressure During Fusing and Cool Cycle	
Elapsed Time During Fusing and Cool Cycle	Within Qualification Range 🗌 Yes 🗌 No
Melt Bead Size Within Qualit	fication Range 🗌 Yes 🗌 No
Heater Plate Removal Time Within Qua	
	nal Probe
Data Acquisition System Manufacturer	
Review of the Recorded Pressure vs. Time Diagram Acceptable 🗌 Yes 🗌 No	
Data Acquisition Acceptable 🛛 Yes 🗌 M	No
Examiner name	Examiner signature
Date	
(07/19)	

Copyright ASME International (BPVC)

QF-490 DEFINITIONS

QF-491 GENERAL

Terms relating to fusing used in Section IX are listed in QG-109. Other common terms relating to fusing are defined in ASTM F412, Standard Terminology Relating to Plastic Piping Systems.

QF-492 DEFINITIONS

Definitions relocated to QG-109.

NONMANDATORY APPENDIX B WELDING AND BRAZING FORMS

B-100 FORMS

This Nonmandatory Appendix illustrates sample formats for Welding and Brazing Procedure Specifications, Procedure Qualification Records, and Performance Qualification.

B-101 WELDING

Forms QW-484A and QW-484B is a suggested format for Welding Procedure Specifications (WPS); Form QW-483 is a suggested format for Procedure Qualification Records (PQR). These forms are for the shielded metal-arc (SMAW), submerged-arc (SAW), gas metal-arc (GMAW), and gas tungsten-arc (GTAW) welding processes, or a combination of these processes.

Forms for other welding processes may follow the general format of Forms QW-482 and QW-483, as applicable. Forms QW-484A and QW-484B are suggested formats for Welder or Welding Operator Performance Qualification (WPQ) for groove or fillet welds.

Form QW-485 is a suggested format for Demonstration of Standard Welding Procedure Specifications.

B-102 BRAZING

Form QB-482 is a suggested format for Brazing Procedure Specifications (BPS); Form QB-483 is a suggested format for Procedure Qualifications Records (PQR). These forms are for torch brazing (TB), furnace brazing (FB), induction brazing (IB), resistance brazing (RB), and dip brazing (DB) processes.

Forms for other brazing processes may follow the general format of Forms OB-482 and OB-483, as applicable.

Form QB-484 is a suggested format for Brazer or Brazing Operator Performance Qualification (BPQ).

Velding Procedure Specification No Date Date Supporting POR No.(s) Revision No Date	Irganization Name		By		
Revision No Date Type(s)					
CAtomate Manual, Machine, et Semi-Automate: Joint Design	•				
CAdomate Manual, Machine, or Semi-Automate: Joint Design	(olding Process(es)		$T_{\rm MDO}(c)$		
Joint Design			Type(s)	(Automatic, Manual, Machine, or Semi-Automatic)	
Backing: Yes No Backing Material (Type) (Refer to both backing and retainers) Image: Image	JOINTS (QW-402)			Details	
Backing: Yes					
Backing Material (Type	Root Spacing				
Image: Image	Backing: Yes No				
□ Normetallic □ Other Sketches, Production Drawings, Weld Symbols, or Written Description should show the general arrangement of the parts to be welded. Where applicable, the details of weld groove may be specified. Sketches may be attached to illustrate joint design, weld layers, and beed sequence (e.g., for toughness procedures, for multiple process procedures, etc.) "BASE METALS (OW-403) P-No Group No to P-No Group No OR Specification and type, grade, or UNS Number to Specification and type, grade, or UNS Number Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Fillet Maximum Pass Thickness ≤ 1/2 in. (13 mm) (Yes) (No) Ofter FFILER METALS (OW-404) 1 2 Spec. No. (SFA) ANS 0. (Class) FNo Size of Filler Metals Supplemental Filler Metal Supplemental Filler Metal Weld Metal Groove Fillet Supplemental Filler Metal Supplemental Filler Metal Filler Filler Electrode-Flux (Class) Flux Trade Name Consumable Insert Electoode-Flux (Class) Flux Trade Name Consumable Insert	Backing Material (Type)(Refer to both backing a	and retainers)			
□ Nonmetallic □ Other Sketches, Production Drawings, Weld Symbols, or Written Description should show the general arrangement of the parts to be welded. Where applicable, the details of weld groove may be specified. Sketches may be attached to illustrate joint design, weld layers, and bead sequence (e.g., for toughness procedures, for multiple process procedures, etc.) *BASE METALS (QW-403) P-No Group No to P-No Group No OR Specification and type, grade, or UNS Number OR Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove (Yes) (Ne) Other Other Other FILLER METALS (QW-404) 1 2 Spec. No. (SFA) AWS No. (Class) F.No ANS Filter Metals Groove Filter Metals Groove Filter Metals Groove Filter Metals Groove Filter Metals Deposited Thickness: Groove Filter Metals Groove Groove Groove Filter Metals Groove	Metal Nonfusing Metal				
Sketches, Production Drawings, Weld Symbols, or Written Description should show the general arrangement of the parts to be welded. Where applicable, the details of weld groove may be specified. Sketches may be attached to illustrate joint design, weld layers, and bead sequence (e.g., for toughness procedures, for multiple process procedures, etc.) *BASE METALS (0W-403) P-No Group No to P-No Group No OR Specification and type, grade, or UNS Number OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness ≤ 1/ ₂ in. (13 mm) (Yes) (No) Other *FILLER METALS (0W-404) 1 2 Spec. No. (SFA) ANNO ANNO Size of Filler Metals Filler Metals Supplemental Filler Metal Groove Filler Metals Supplemental Filler Metals Filler Metals Filler Metals Filler Metals Filler Metals Supplemental Filler Metals Filler Metals Filler Metals Filler Metals Supplemental Filler Metals Filler Metal Metals Filler Metals = Filler Metals Groove Filler Metal = Filler Metal Consumable Insert Filler Trade Name Consumable Insert					
should show the general arrangement of the parts to be welded. Where applicable, the details of weld groove may be specified. Sketches may be attached to illustrate joint design, weld layers, and bead sequence (e.g., for toughness procedures, for multiple process procedures, etc.) *BASE METALS (OW-403) P-No Group No to P-No Group No Group No OR Specification and type, grade, or UNS Number to Specification and type, grade, or UNS Number OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop (No) OR Base Metal: Groove Fillet Maximum Pass Thickness = 1/2 in. (13 mm) (Yes) (No) Other Other Fillet HetalS (OW-404) 1 2 Spec. No. (SFA) ANS No. (Class) Fillet HetalS Intervention of the parts of the p		Writton Description			
applicable, the details of weld groove may be specified. Sketches may be attached to illustrate joint design, weld layers, and bead sequence (e.g., for toughness procedures, etc.) *BASE METALS (QW-403) P-No Group No to P-No Group No Group No.					
Sketches may be attached to illustrate joint design, weld layers, and bead sequence (e.g., for toughness procedures, for multiple process procedures, etc.) BASE METALS (QW-403) P-No Group No to P-No Group No OR Specification and type, grade, or UNS Number to Specification and type, grade, or UNS Number OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Base Metal: Groove Thickness S = 1/2 in. (13 mm) (Yes) (No) Other FILLER METALS (QW-404) 1 2 Spec. No. (SFA) AWS No. (Class) F-No F-No Size of Filler Metals Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Deposited Thickness: Groove Fillet Flit Tide Name Consumable Insert	· · ·				
bead sequence (e.g., for toughness procedures, for multiple process procedures, etc.) BASE METALS (QW-403) P-No Group No to P-No Group No OR Specification and type, grade, or UNS Number to Specification and type, grade, or UNS Number OR Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Fillet Maximum Pass Thickness ≤ ½ in. (13 mm) (Yes) (No) Other FILLER METALS (QW-404) 1 2 Spec. No. (SFA) ANS No. (Class) Filler Metals Filler Metals Filler Metal Supplemental Filler Metal Used Metal Deposited Thickness: Groove Fillet Electrode-Flux (Class) Flux Trade Name	applicable, the details of weld groove may be specif	ied.			
bead sequence (e.g., for toughness procedures, for multiple process procedures, etc.) BASE METALS (QW-403) P-No Group No to P-No Group No OR Specification and type, grade, or UNS Number to Specification and type, grade, or UNS Number OR Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Fillet Maximum Pass Thickness ≤ ½ in. (13 mm) (Yes) (No) Other FFLLER METALS (QW-404) 1 2 Spec. No. (SFA) ANS No. (Class) Filler Metals Filler Metals Filler Metal Supplemental Filler Metal UNANG METALS (Class) Filler Metal ADD Supplemental Filler Metal Filler Metal ADD Supplemental Filler Metal ADD					
Procedures, etc.) *BASE METALS (QW-403) P-No Group No Group No OR Specification and type, grade, or UNS Number OR Chem. Analysis and Mech. Prop	, , , , , ,	. , .			
**BASE METALS (QW-403) P-No		r multiple process			
P-No	procedures, etc.)				
P-No.					
OR Specification and type, grade, or UNS Number or OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove Maximum Pass Thickness ≤ 1/2 in. (13 mm) (Yes) Other *FILLER METALS (QW-404) 1 2 Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weid Metal Deposited Thickness: Groove Fillet Electrode-Filux (Class) Fillet Xppe Fillet Xppe					
Specification and type, grade, or UNS Number		to	P-No	Group No	
to Specification and type, grade, or UNS Number					
to Specification and type, grade, or UNS Number	Specification and type, grade, or UNS Number				
OR Chem. Analysis and Mech. Prop					
Chem. Analysis and Mech. Prop	to Specification and type, grade, or UNS Number				
to Chem. Analysis and Mech. Prop					
Thickness Range:	OR				
Base Metal: Groove	OR Chem. Analysis and Mech. Prop				
Maximum Pass Thickness $\leq 1/_2$ in. (13 mm) (Yes) (No) Other (No) 1 2 *FILLER METALS (QW-404) 1 2 Spec. No. (SFA) 1 2 AWS No. (Class) - - F-No. - - A-No. - - Size of Filler Metals - - Filler Metal Product Form - - Supplemental Filler Metal - - Weld Metal - - Deposited Thickness: - - Groove - - - Fillet - - - Electrode-Flux (Class) - - - Flux Type - - - - Flux Trade Name - - - - Consumable Insert - - - -	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop				
Other 1 2 *FILLER METALS (QW-404) 1 2 Spec. No. (SFA)	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range:				
*FILLER METALS (QW-404) 1 2 Spec. No. (SFA)	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove		Fillet -		
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Deposited Thickness: Groove Fillet Electrode-Flux (Class) Flux Type Flux Trade Name Consumable Insert	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove		Fillet -		
Spec. No. (SFA) AWS No. (Class) F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Deposited Thickness: Groove Fillet Electrode-Flux (Class) Flux Type Flux Trade Name Consumable Insert	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/2$ in. (13 mm)	(Yes)	Fillet - (No)		
AWS No. (Class)	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/2$ in. (13 mm) Other	(Yes)	Fillet - (No)		
F-No. A-No. Size of Filler Metals Filler Metal Product Form Supplemental Filler Metal Weld Metal Deposited Thickness: Groove Fillet Electrode-Flux (Class) Flux Type Flux Trade Name Consumable Insert	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/_2$ in. (13 mm) Other FILLER METALS (QW-404)	(Yes)	Fillet - (No)		
A-No.	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness ≤ 1/2 in. (13 mm) Other *FILLER METALS (QW-404) Spec. No. (SFA)	(Yes) 1	Fillet - (No)		
Size of Filler Metals	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness ≤ 1/2 in. (13 mm) Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class)	(Yes) 1	Fillet - (No)		
Filler Metal Product Form	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/_2$ in. (13 mm) Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No	(Yes) 1	Fillet - (No)		
Supplemental Filler Metal	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/_2$ in. (13 mm) Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No A-No	(Yes) 1	Fillet - (No)		
Weld Metal Deposited Thickness: Groove Fillet Electrode-Flux (Class) Flux Type Flux Trade Name Consumable Insert	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/_2$ in. (13 mm) Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No A-No	(Yes) 1	Fillet - (No)		
Deposited Thickness:	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/_2$ in. (13 mm) Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No A-No Size of Filler Metals	(Yes) 1	Fillet - (No)		
Groove	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/_2$ in. (13 mm) Other *FILLER METALS (QW-404) Spec. No. (SFA) AWS No. (Class) F-No A-No Size of Filler Metals Filler Metal Product Form	(Yes) 1	Fillet - (No)		
Groove	OR Chem. Analysis and Mech. Prop	(Yes) 1	Fillet - (No)		
Fillet	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/_2$ in. (13 mm) Other	(Yes) 1	Fillet - (No)		
Electrode-Flux (Class)	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/_2$ in. (13 mm) Other	(Yes) 1	Fillet - (No)		
Flux Type	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/2$ in. (13 mm) Other	(Yes) 1	Fillet - (No)		
Flux Trade Name Consumable Insert	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/2$ in. (13 mm) Other	(Yes) 1	Fillet - (No)		
Consumable Insert	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/2$ in. (13 mm) Other	(Yes) 1	Fillet - (No)		
	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/2$ in. (13 mm) Other	(Yes) 1	Fillet - (No)		
Other	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/2$ in. (13 mm) Other	(Yes) 1	Fillet - (No)		
	OR Chem. Analysis and Mech. Prop to Chem. Analysis and Mech. Prop Thickness Range: Base Metal: Groove Maximum Pass Thickness $\leq 1/2$ in. (13 mm) Other	(Yes) 1	Fillet - (No)		

یک دو سه صنعت 123sanat.com

324

POSITIO							WPS	No		Rev
	NS (QW-405)					POSTWELI	D HEAT TRE	ATMENT (Q)	N-407)	
	n(s) of Groov						ure Range _			
	g Progressior									
	n(s) of Fillet _					Other				
Other _						GAS (QW-4	108)			
	T (QW-406)							Р	ercent Comp	osition
	t Temperature	e Minimum					C	Gas(es)	(Mixtur	
	ss Temperatu									
	t Maintenanc					Shielding				
Other _						Trailing				
(Contin	uous or speci	ial heating, w	here applical	ole, should be	e specified)	Backing Other				
ELECTRI	ICAL CHARAC	CTERISTICS (QW-409)							
		Filler	Metal							Other (e.g., Remarks, Com
Weld Pass(es)	Process	Classifi- cation	Diameter	Current Type and Polarity	Amps (Range)	Wire Feed Speed (Range)	Energy or Power (Range)	Volts (Range)	Travel Speed (Range)	Addition, Technique, Torch Angle, etc.)
	s and volts, o									L
Pulsing	g Current					Heat Input (n	nax.)			
Tungste	en Electrode	Size and Typ	e							
							gsten, 2% Thori	ated, etc.)		
	of Metal Trans	sfer for GMA	W (FCAW) _			(Spray Arc	, Short-Circuitin	g Arc, etc.)		
Mode c										
Mode o Other))								
Other TECHNIC	QUE (QW-410									
Other TECHNIC String o	or Weave Bea	ad								
Other TECHNIC String c Orifice,		ad as Cup Size								
Other TECHNIC String c Orifice, Initial a	or Weave Bea Nozzle, or G Ind Interpass d of Back Gou	adas Cup Size Cleaning (Br	ushing, Grin	ding, etc.)						
Other TECHNIC String o Orifice, Initial a Method Oscillat	or Weave Bea Nozzle, or G Ind Interpass d of Back Gou	adas Cup Size Cleaning (Br uging	ushing, Grin	ding, etc.)						
Other TECHNIC String c Orifice, Initial a Method Oscillat Contact	or Weave Bea Nozzle, or G Ind Interpass d of Back Gou tion	adas Cup Size Cleaning (Br uging rk Distance _	ushing, Grin	ding, etc.)						
Other TECHNIC String of Orifice, Initial a Method Oscillat Contact Multiple Multiple	or Weave Bea Nozzle, or G Ind Interpass d of Back Gou tion t Tube to Wor e or Single Pi e or Single El	adas Cup Size Cleaning (Br rging rk Distance _ ass (Per Side lectrodes	ushing, Grin	ding, etc.)						
Other TECHNIC String of Orifice, Initial a Method Oscillat Contact Multiple Electroo	or Weave Bea Nozzle, or G and Interpass d of Back Gou tion t Tube to Wor e or Single Pa e or Single El de Spacing	adas Cup Size Cleaning (Br rging rk Distance _ ass (Per Side lectrodes	ushing, Grin	ding, etc.)						
Other TECHNIC String o Orifice, Initial a Method Oscillat Contact Multiple Electroo Peening	or Weave Bea Nozzle, or G and Interpass d of Back Gou tion t Tube to Wor e or Single Pa e or Single El de Spacing g	adas Cup Size Cleaning (Br rging rk Distance _ ass (Per Side lectrodes	ushing, Grin	ding, etc.)						
Other TECHNIC String of Orifice, Initial a Method Oscillat Contact Multiple Electroo	or Weave Bea Nozzle, or G and Interpass d of Back Gou tion t Tube to Wor e or Single Pa e or Single El de Spacing g	adas Cup Size Cleaning (Br rging rk Distance _ ass (Per Side lectrodes	ushing, Grin	ding, etc.)						
Other TECHNIC String o Orifice, Initial a Method Oscillat Contact Multiple Electroo Peening	or Weave Bea Nozzle, or G and Interpass d of Back Gou tion t Tube to Wor e or Single Pa e or Single El de Spacing g	adas Cup Size Cleaning (Br rging rk Distance _ ass (Per Side lectrodes	ushing, Grin	ding, etc.)						

325

1	а	n	1
(4	.9)

FORM QW-483 SUGGESTED FORMAT FOR PROCEDURE QUALIFICATION RECORDS (PQR) (See QW-200.2, Section IX, ASME Boiler and Pressure Vessel Code) **Record Actual Variables Used to Weld Test Coupon** Organization Name_ Procedure Qualification Record No. .. _ Date ____ WPS No. Welding Process(es) _ Types (Manual, Automatic, Semi-Automatic) -JOINTS (QW-402) Groove Design of Test Coupon (For combination qualifications, the deposited weld metal thickness shall be recorded for each filler metal and process used.) BASE METALS (QW-403) POSTWELD HEAT TREATMENT (QW-407) Material Spec. Temperature _ Type or Grade, or UNS Number____ Time _ P-No. _____ Group No. _____ to P-No. _____ Group No. ___ Other _ Thickness of Test Coupon _____ Diameter of Test Coupon _ Maximum Pass Thickness _

		GAS (QW-408)	Р	ercent Compositi	on
		_	Gas(es)	(Mixture)	
		Shielding			
FILLER METALS (QW-404) 1	2	Trailing			
SFA Specification		 Backing 			
AWS Classification		- Other			
Filler Metal F-No					
Weld Metal Analysis A-No		- ELECTRICAL CHA	ARACTERISTICS	G (QW-409)	
Size of Filler Metal		 Current 			
Filler Metal Product Form		· ·			
		P. 1			
Electrode Flux Classification		 Waveform Contr 	ol		
Flux Type		Power or Energy			
Flux Trade Name		_ Arc Time			
Weld Metal Thickness —		-			
Other					
				AW (FCAW)	
POSITION (QW-405)		Heat Input			
Position(s)		_ Other			
Weld Progression (Uphill, Downhill)					
Other					
		inarter epeca			
		Ũ			
PREHEAT (QW-406)					
Preheat Temperature			-	de)	
Interpass Temperature		onigio or manap			
Other		 Other 			

(07/17)

			Tensi	le Tes	t (QW-1	50)	PQR N	lo
Specimen No.	Width	Thick	ness	Area	a	Ultimate Total Load	Ultimate Unit Stress, (psi or MPa	Type of Failure and Location
Alternative Tension	Specimen Specifi	cation (QW-462	2)		I			1
			Guided-B	Send 1	ests (Q	W-160)		
	Type and I	igure No.					Result	
			Toughn	ess Te	sts (QV	/-170)		
Specimen	Notch	Specimen	Test			Toughness Values	8	
No.	Location	Size	Temperature	€ ft-	lb or J	% Shear	Mils (in.) or mm	Drop Weight Break (Y/N)
Comments								
			Fillet-W	/eld T	est (QW	-180)		
Result — Satisfactor	v: Yes	No			Penetra	ation into Parent	Metal: Yes	No
Jaara Baaulta								
Macro — Results —								
				Other	Tests			
Type of Test								
Deposit Analysis								
Other								
								Stamp No
Tests Conducted by								
Ve certify that the s						prepared, welde	d, and tested in acc	cordance with the
equirements of Sec	tion is of the ASM	IL BOIIER and F	ressure vesse					
				Or	ganization			
Date					Contified			
				_	Cerumed L			

Welder's name		I	dentification no			
			Test Description	1		
Identification of WPS fo	llowed		_ 🗌 Test coupo	n 🗌 Productio	n weld Date weld	led
	grade or UNS Number of bas				Thickness	
	-					
10		lesting va	riables and Qualif		_	Denne Quelfied
Welding process(es)	/elding Variables (QW-350)			Actual Value	5	Range Qualified
Type (i.e.; manual, se	mi-automatic) used					
Backing (with/withou						
-	ter diameter if pipe or tube)					
Base metal P-Numbe						
	ode specification(s) (SFA) (inf	o. only)				
	ode classification(s) (info. onl	-				
Filler metal F-Numbe	er(s)					
Consumable insert (GTAW or PAW)					
Filler Metal Product F	Form (QW-404.23) (GTAW or	PAW)				
Deposit thickness for						
	3 layers minimum	🗌 Yes	🗆 No			
Process 2	3 layers minimum	🗆 Yes	🗆 No			
Position(s)						
Vertical progression						
Type of fuel gas (OF)						
00	GTAW, PAW, GMAW)					
	y, globular, or pulse to short		AVV)			
GTAW current type a	ind polarity (AC, DCEP, DCEN)				
	ompleted weld (QW-302.4) _ root bends [QW-462.3(a)]] Longitudinal ber	uds [QW-462.3(b)]		s (QW-462.2)
☐ Transverse face and	ompleted weld (QW-302.4) root bends [QW-462.3(a)] Pipe bend specime Plate bend specime	en, corrosic en, corrosi] Longitudinal ber n-resistant weld n on-resistant weld i	netal overlay [QW-4 netal overlay [QW-	462.5(c)] 462.5(d)]	
□ Transverse face and □ Pipe	ompleted weld (QW-302.4) root bends [QW-462.3(a)] Pipe bend specime Plate bend specime specimen, macro test for fus	Een, corrosic en, corrosic en, corrosi	Dungitudinal ber n-resistant weld n on-resistant weld i S2.5(b)] Pla	netal overlay [QW-4 netal overlay [QW- te specimen, macro	462.5(c)] 462.5(d)] o test for fusion [QW-4	62.5(e)]
☐ Transverse face and	ompleted weld (QW-302.4) root bends [QW-462.3(a)] Pipe bend specime Plate bend specime	en, corrosic en, corrosi	Dungitudinal ber n-resistant weld n on-resistant weld i S2.5(b)] Pla	netal overlay [QW-4 netal overlay [QW-	462.5(c)] 462.5(d)]	
□ Transverse face and □ Pipe	ompleted weld (QW-302.4) root bends [QW-462.3(a)] Pipe bend specime Plate bend specime specimen, macro test for fus	Een, corrosic en, corrosic en, corrosi	Dungitudinal ber n-resistant weld n on-resistant weld i S2.5(b)] Pla	netal overlay [QW-4 netal overlay [QW- te specimen, macro	462.5(c)] 462.5(d)] o test for fusion [QW-4	62.5(e)]
Transverse face and Pipe Type	ompleted weld (QW-302.4) _ root bends [QW-462.3(a)]	en, corrosic en, corrosi sion [QW-40 Type	Longitudinal ber n-resistant weld n on-resistant weld i 32.5(b)] Pla	netal overlay [QW- netal overlay [QW- te specimen, macro Result	462.5(c)] 462.5(d)] o test for fusion [QW-4 Type	62.5(e)]
Transverse face and Pipe Type Alternative Volumetric	ompleted weld (QW-302.4) _ root bends [QW-462.3(a)]	en, corrosic en, corrosic sion [QW-44 Type 1):	Congitudinal ber Concentration Concentration Content	netal overlay [QW-4 metal overlay [QW- te specimen, macro Result RT or UT (c	462.5(c)] 462.5(d)] o test for fusion [QW-4 Type Sheck one)	62.5(e)] Result
Transverse face and Type Type Alternative Volumetric i Fillet weld — fracture te	ompleted weld (QW-302.4) root bends [QW-462.3(a)] Pipe bend specime Plate bend specime specimen, macro test for fus Result Examination Results (QW-19 st (QW-181.2)	en, corrosic en, corrosis sion (QW-44 Type 1):	Congitudinal ber Concession weld n Concessistant weld n Concessistant weld n Concession weld n Conces	netal overlay [QW-4 metal overlay [QW- te specimen, macro Result RT or UT (c ercent of defects	462.5(c)] 462.5(d)] o test for fusion [QW-4 Type Sheck one)	62.5(e)] Result
Transverse face and Type Type Alternative Volumetric i Fillet weld — fracture te	ompleted weld (QW-302.4) _ root bends [QW-462.3(a)]	en, corrosic en, corrosis sion (QW-44 Type 1):	Congitudinal ber Concession weld n Concessistant weld n Concessistant weld n Concession weld n Conces	netal overlay [QW-4 metal overlay [QW- te specimen, macro Result RT or UT (c ercent of defects	462.5(c)] 462.5(d)] o test for fusion [QW-4 Type Sheck one)	62.5(e)] Result
Transverse face and Type Type Alternative Volumetric Fillet weld — fracture te Fillet weld Fillet weld	ompleted weld (QW-302.4) root bends [QW-462.3(a)] Pipe bend specime Plate bend specime specimen, macro test for fus Result Examination Results (QW-19 st (QW-181.2)	Type 1):	Congitudinal ber Concession weld n Concession well n Concession w	netal overlay [QW-4 metal overlay [QW- te specimen, macro Result RT or UT ((c ercent of defects _ V-462.4(c)]	462.5(c)] 462.5(d)] o test for fusion [QW-4 Type	62.5(e)] Result
Transverse face and Type Type Alternative Volumetric I Fillet weld — fracture te Fillet weld Macro examination (QV Other tests	ompleted weld (QW-302.4) root bends [QW-462.3(a)]	Cen, corrosic en, corrosi ion [QW-44 Type 1): 1):] Filler iillet size (ir	I Longitudinal ber In-resistant weld n 22.5(b)] □ Pla Pla Length and p welds in pipe [Q\ 	netal overlay [QW-4 metal overlay [QW- te specimen, macro Result RT or UT (c ercent of defects V-462.4(c)] Concavity or con	462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type 	62.5(e)]
Transverse face and Pipe Type Alternative Volumetric Fillet weld — fracture te Fillet weld —	ompleted weld (QW-302.4) _ root bends [QW-462.3(a)] Pipe bend specime specimen, macro test for fus Result Examination Results (QW-19 est (QW-181.2)	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	I Longitudinal ber on-resistant weld n siz.5(b)] □ Pla a	netal overlay [QW-4 metal overlay [QW- te specimen, macro Result RT or UT (c ercent of defects V-462.4(c)] Concavity or con Company	462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type theck one) vexity (in.)	62.5(e)]
Transverse face and Pipe Type Alternative Volumetric I Fillet weld — fracture te Comparison (QV Other tests — Fillm or specimens evalue Mechanical tests condue	ompleted weld (QW-302.4) _ root bends [QW-462.3(a)]	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	I Longitudinal ber on-resistant weld n siz.5(b)] □ Pla a	netal overlay [QW-4 metal overlay [QW- te specimen, macro Result RT or UT (c ercent of defects V-462.4(c)] Concavity or con Company	462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type theck one) vexity (in.)	62.5(e)]
Transverse face and Type Type Alternative Volumetric Fillet weld — fracture te Fillet weld — fracture tes Film or specimens evall Mechanical tests condu Welding supervised by	ompleted weld (QW-302.4) _ root bends [QW-462.3(a)] Pipe bend specime Plate bend specime specimen, macro test for fus Result Examination Results (QW-19 est (QW-181.2) ds in plate [QW-462.4(b)] V-184)F uated by	Lillet size (ir	Congitudinal ber Concentration Concentratio	netal overlay [QW- metal overlay [QW- te specimen, macro Result RT or UT (ercent of defects V-462.4(c)] Concavity or con Company Laboratory test no	462.5(c)] 462.5(d)] b test for fusion [QW-4 Type block one) vexity (in.)	62.5(e)]
Transverse face and Pipe Type Alternative Volumetric I Fillet weld — fracture te Fillet weld — fracture te Fillet veld Macro examination (QV Other tests Film or specimens eval Mechanical tests condu Welding supervised by We certify that the state	ompleted weld (QW-302.4)root bends [QW-462.3(a)]	corrosic en, corrosi sion [QW-44 Type 1):] Fille illet size (ir eet and tha	Congitudinal ber Concentration Contraction Contractio	netal overlay [QW- metal overlay [QW- te specimen, macro Result RT or UT (ercent of defects V-462.4(c)] Concavity or con Company Laboratory test no	462.5(c)] 462.5(d)] b test for fusion [QW-4 Type block one) vexity (in.)	62.5(e)]
Transverse face and Pipe Type Alternative Volumetric I Fillet weld — fracture te Fillet weld — fracture te Fillet veld Macro examination (QV Other tests Film or specimens eval Mechanical tests condu Welding supervised by We certify that the state	ompleted weld (QW-302.4) _ root bends [QW-462.3(a)] Pipe bend specime Plate bend specime specimen, macro test for fus Result Examination Results (QW-19 est (QW-181.2) ds in plate [QW-462.4(b)] V-184)F uated by	corrosic en, corrosi sion [QW-44 Type 1):] Fille illet size (ir eet and tha	Longitudinal ber n-resistant weld n on-resistant weld n S2.5(b) Pla Length and p welds in pipe [QN .) t the test coupons RE VESSEL CODE.	etal overlay [QW- metal overlay [QW- te specimen, macro Result RT or UT (c ercent of defects V-462.4(c)] Concavity or con Company Laboratory test no were prepared, we	462.5(c)] 462.5(d)] b test for fusion [QW-4 Type 3heck one) vexity (in.)	62.5(e)]
Transverse face and Pipe Type Alternative Volumetric I Fillet weld — fracture te Fillet weld — fracture te Fillet veld Macro examination (QV Other tests Film or specimens eval Mechanical tests condu Welding supervised by We certify that the state	ompleted weld (QW-302.4)root bends [QW-462.3(a)]	corrosic en, corrosi sion [QW-44 Type 1):] Fille illet size (ir eet and tha	Longitudinal ber n-resistant weld n on-resistant weld n S2.5(b) Pla Length and p welds in pipe [QN .) t the test coupons RE VESSEL CODE.	etal overlay [QW- metal overlay [QW- te specimen, macro Result RT or UT (c ercent of defects V-462.4(c)] Concavity or con Company Laboratory test no were prepared, we	462.5(c)] 462.5(d)] b test for fusion [QW-4 Type block one) vexity (in.)	62.5(e)]
Transverse face and Pipe Type Alternative Volumetric I Fillet weld — fracture te Fillet weld — fracture te Fillet veld Macro examination (QV Other tests Film or specimens eval Mechanical tests condu Welding supervised by We certify that the state	ompleted weld (QW-302.4) root bends [QW-462.3(a)]	Can, corrosic en, corrosic ion [QW-44 Type 1):] Fille iillet size (ir cet and that D PRESSUI	I Longitudinal ber nn-resistant weld n s2.5(b)] □ Pla a □ b □ c □ <tr< td=""><td>Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result</td><td>462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type Scheck one) vexity (in.)</td><td>62.5(e)]</td></tr<>	Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result	462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type Scheck one) vexity (in.)	62.5(e)]
Transverse face and Type Type Alternative Volumetric I Fillet weld — fracture te Fillet weld — fracture te Fillet weld — fracture te Kacro examination (QV Other tests Film or specimens evalu Mechanical tests condu Welding supervised by We certify that the state requirements of Section	ompleted weld (QW-302.4) root bends [QW-462.3(a)]	Can, corrosic en, corrosic ion [QW-44 Type 1):] Fille iillet size (ir cet and that D PRESSUI	I Longitudinal ber nn-resistant weld n s2.5(b)] □ Pla a □ b □ c □ <tr< td=""><td>Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result</td><td>462.5(c)] 462.5(d)] b test for fusion [QW-4 Type 3heck one) vexity (in.)</td><td>62.5(e)]</td></tr<>	Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result	462.5(c)] 462.5(d)] b test for fusion [QW-4 Type 3heck one) vexity (in.)	62.5(e)]
Transverse face and Type Type Alternative Volumetric I Fillet weld — fracture te Fillet weld — fracture te Fillet weld — fracture te Kacro examination (QV Other tests Film or specimens evalu Mechanical tests condu Welding supervised by We certify that the state requirements of Section	ompleted weld (QW-302.4) root bends [QW-462.3(a)]	Can, corrosic en, corrosic ion [QW-44 Type 1):] Fille iillet size (ir cet and that D PRESSUI	I Longitudinal ber nn-resistant weld n s2.5(b)] □ Pla a □ b □ c □ <tr< td=""><td>Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result</td><td>462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type Scheck one) vexity (in.)</td><td>62.5(e)]</td></tr<>	Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result	462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type Scheck one) vexity (in.)	62.5(e)]
Transverse face and Type Type Alternative Volumetric I Fillet weld — fracture te Fillet weld — fracture te Fillet weld — fracture te Kacro examination (QV Other tests Film or specimens evalu Mechanical tests condu Welding supervised by We certify that the state requirements of Section	ompleted weld (QW-302.4) root bends [QW-462.3(a)]	Can, corrosic en, corrosic ion [QW-44 Type 1):] Fille iillet size (ir cet and that D PRESSUI	I Longitudinal ber nn-resistant weld n s2.5(b)] □ Pla a □ b □ c □ <tr< td=""><td>Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result</td><td>462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type check one) vexity (in.) 5 5 5 5</td><td>62.5(e)]</td></tr<>	Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result	462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type check one) vexity (in.) 5 5 5 5	62.5(e)]
Transverse face and Type Type Alternative Volumetric I Fillet weld — fracture te Fillet weld — fracture te Fillet weld — fracture te Kacro examination (QV Other tests Film or specimens evalu Mechanical tests condu Welding supervised by We certify that the state requirements of Section	ompleted weld (QW-302.4) root bends [QW-462.3(a)]	Can, corrosic en, corrosic ion [QW-44 Type 1):] Fille iillet size (ir cet and that D PRESSUI	I Longitudinal ber nn-resistant weld n s2.5(b)] □ Pla a □ b □ c □ <tr< td=""><td>Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result</td><td>462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type check one) vexity (in.) 5 5 5 5</td><td>62.5(e)]</td></tr<>	Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result	462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type check one) vexity (in.) 5 5 5 5	62.5(e)]
Transverse face and Type Type Alternative Volumetric I Fillet weld — fracture te Fillet weld — fracture te Fillet weld — fracture te Kacro examination (QV Other tests Film or specimens evalu Mechanical tests condu Welding supervised by We certify that the state requirements of Section	ompleted weld (QW-302.4) root bends [QW-462.3(a)]	Can, corrosic en, corrosic ion [QW-44 Type 1):] Fille iillet size (ir cet and that D PRESSUI	I Longitudinal ber nn-resistant weld n s2.5(b)] □ Pla a □ b □ c □ <tr< td=""><td>Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result</td><td>462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type check one) vexity (in.) 5 5 5 5</td><td>62.5(e)]</td></tr<>	Antal overlay [QW-4 metal overlay [QW-4 te specimen, macro Result	462.5(c)] 462.5(d)] 5 test for fusion [QW-4 Type check one) vexity (in.) 5 5 5 5	62.5(e)]

			Identification no.		
veruing operators nam			(Information Only)		
dentification of WPS for	llowed		□ Test coupon □ Proc	luction weld Date	welded
			Positior		
🗆 Plate 🛛 Pipe (enter	diameter, if pipe or tube)				
			fication		
	Testing Variables a	and Qualification Limits	When Using Automatic We	lding Equipment	
	Welding Variables (O	2W-361.1)	Act	ual Values	Range Qualified
Type of welding (aut	omatic)				
Welding process					
Filler metal used (Yes	s or No) (EBW or LBW)				
Type of laser for LBV	V (CO ₂ to YAG, etc.)				
Continuous drive or					
Vacuum or out of vac	cuum (EBW)				
	Testing Variables	and Qualification Limits	When Using Machine Wel	ling Equipment	
	Welding Variables (O	2W-361.2)	Act	ual Values	Range Qualified
Type of welding (Ma	chine)				
Welding process					
Direct or remote visu					
Automatic arc voltag					
Automatic joint track	ing				
Position(s)					
Consumable inserts	$(G \Delta M or P \Delta M)$				
Backing (with or with	nout)				
	nout)				
Backing (with or with	nout)				
Backing (with or with	nout)	RES			
Backing (with or with Single or multiple pa	nout)		ULTS		
Backing (with or with Single or multiple pa Visual examination of c	nout) Isses per side	4)	ULTS		ds (QW-462.2)
Backing (with or with Single or multiple pa /isual examination of c	nout) Isses per side ompleted weld (QW-302.4 root bends [QW-462.3(a)]	4) 			ds (QW-462.2)
Backing (with or with Single or multiple pa /isual examination of c	nout) Isses per side ompleted weld (QW-302.4 root bends [QW-462.3(a)] □ Pipe ber	4) Longitud Longitud nd specimen, corrosion-	linal bends [QW-462.3(b)]	/ [QW-462.5(c)]	ds (QW-462.2)
Backing (with or with Single or multiple pa /isual examination of c Transverse face and	nout) Isses per side ompleted weld (QW-302.4 root bends [QW-462.3(a)] □ Pipe ber	4) Longitud nd specimen, corrosion- nd specimen, corrosion	linal bends [QW-462.3(b)] resistant weld metal overlay	y [QW-462.5(c)] y [QW-462.5(d)]	
Backing (with or with Single or multiple pa //isual examination of c □ Transverse face and	nout) Isses per side ompleted weld (QW-302.4 root bends [QW-462.3(a)] Pipe ber Pipe ber Plate be	4) Longitud nd specimen, corrosion- nd specimen, corrosion	dinal bends [QW-462.3(b)] resistant weld metal overlay resistant weld metal overla	y [QW-462.5(c)] y [QW-462.5(d)]	
Backing (with or with Single or multiple pa Visual examination of c Transverse face and Pipe	nout) Isses per side ompleted weld (QW-302.4 root bends [QW-462.3(a)] Pipe ber Plate be specimen, macro test for	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)]	dinal bends [QW-462.3(b)] resistant weld metal overlay -resistant weld metal overla D Plate specimen, macro	r [QW-462.5(c)] y [QW-462.5(d)] o test for fusion [QW-	462.5(e)]
Backing (with or with Single or multiple pa Visual examination of c Transverse face and Pipe Type	nout) Isses per side ompleted weld (QW-302.4 root bends [QW-462.3(a)] Pipe ber Pipe ber Plate be specimen, macro test for Result	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type	dinal bends [QW-462.3(b)] resistant weld metal overlag resistant weld metal overlag Plate specimen, macro Result	r [QW-462.5(c)] y [QW-462.5(d)] test for fusion [QW- Type	462.5(e)]
Backing (with or with Single or multiple pa Visual examination of c Transverse face and Pipe Type	nout) Isses per side ompleted weld (QW-302.4 root bends [QW-462.3(a)] Pipe ber Plate be specimen, macro test for Result Examination Results (QW	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type 	dinal bends [QW-462.3(b)] resistant weld metal overlag resistant weld metal overlag Plate specimen, macro Result Result Result Result RT or UT (r [QW-462.5(c)] y [QW-462.5(d)] o test for fusion [QW- Type heck one)	462.5(e)]
Backing (with or with Single or multiple pa Visual examination of c Transverse face and Pipe Type	nout) Isses per side ompleted weld (QW-302.4 root bends [QW-462.3(a)] Pipe ber Plate be specimen, macro test for Result Examination Results (QW	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type 	dinal bends [QW-462.3(b)] resistant weld metal overlag resistant weld metal overlag Plate specimen, macro Result	r [QW-462.5(c)] y [QW-462.5(d)] o test for fusion [QW- Type heck one)	462.5(e)]
Backing (with or with Single or multiple pa Visual examination of c Transverse face and Pipe Type	nout) Isses per side ompleted weld (QW-302.4 root bends [QW-462.3(a)] Pipe ber Plate be specimen, macro test for Result Examination Results (QW	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type 	dinal bends [QW-462.3(b)] resistant weld metal overlag resistant weld metal overlag Plate specimen, macro Result Result Result Result RT or UT (r [QW-462.5(c)] y [QW-462.5(d)] • test for fusion [QW- Type heck one)	462.5(e)]
Backing (with or with Single or multiple pa Visual examination of c Transverse face and Pipe Type Alternative Volumetric Fillet weld — fracture te	Nout) Insees per side Insees per side Insees per side Insees [QW-462.3(a)] Insees Pipe ber Insees Plate be Ins	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type /-191): L ate [QW-462.4(b)]	inal bends [QW-462.3(b)] resistant weld metal overlav Plate specimen, macro Result Result RT or UT (resign and percent of defect G Fillet welds in pipe [QW	r [QW-462.5(c)] y [QW-462.5(d)] test for fusion [QW- Type theck one) s	462.5(e)] Result
Backing (with or with Single or multiple pa Visual examination of c Transverse face and Pipe Type Alternative Volumetric Fillet weld — fracture te	Nout) Insees per side Insees per side Insees per side Insees [QW-462.3(a)] Insees Pipe ber Insees Plate be Ins	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type /-191): L ate [QW-462.4(b)]	inal bends [QW-462.3(b)] resistant weld metal overlag resistant weld metal overlag Plate specimen, macro Result Result Result RT or UT (co	r [QW-462.5(c)] y [QW-462.5(d)] test for fusion [QW- Type theck one) s	462.5(e)] Result
Backing (with or with Single or multiple pa	Nout) INVENTION CONTRACTOR CONTRA	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type /-191): L ate [QW-462.4(b)] at size (in.) × _	inal bends [QW-462.3(b)] resistant weld metal overlav Plate specimen, macro Result Result RT or UT (resign and percent of defect G Fillet welds in pipe [QW	r [QW-462.5(c)] y [QW-462.5(d)] • test for fusion [QW- Type heck one) s -462.4(c)] xity (in.)	462.5(e)]
Backing (with or with Single or multiple pa	Nout) Insees per side Insees per side Insees per side Insees (QW-462.3(a)) Insees (QW-462.3(a)) Insees per the specimen, macro test for Insees (QW-181.2) In	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type /-191): L ate [QW-462.4(b)] et size (in.) ×	tinal bends [QW-462.3(b)] resistant weld metal overla resistant weld metal overla Plate specimen, macro Result Result RT or UT (ength and percent of defect Fillet welds in pipe [QW Concavity or conve	r [QW-462.5(c)] y [QW-462.5(d)] test for fusion [QW- Type 	462.5(e)]
Backing (with or with Single or multiple pa	Nout) INVENTION CONTRACT OF CO	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type /-191): L ate [QW-462.4(b)] et size (in.) ×	tinal bends [QW-462.3(b)] resistant weld metal overla resistant weld metal overla Plate specimen, macro Result RESULT RT or UT (ength and percent of defect Fillet welds in pipe [QW Concavity or conve	r [QW-462.5(c)] y [QW-462.5(d)] test for fusion [QW- Type 	462.5(e)]
Backing (with or with Single or multiple pa Visual examination of c Transverse face and Pipe Type Alternative Volumetric Fillet weld — fracture te Macro examination (QV Other tests Film or specimens eval Mechanical tests condu	Nout) INVENTION CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CO	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type /-191): L ate [QW-462.4(b)] et size (in.) ×	tinal bends [QW-462.3(b)] resistant weld metal overla resistant weld metal overla Plate specimen, macro Result RESULT RT or UT (ength and percent of defect Fillet welds in pipe [QW Concavity or conve	r [QW-462.5(c)] y [QW-462.5(d)] test for fusion [QW- Type 	462.5(e)]
Backing (with or with Single or multiple pa	Nout) INVENTION CONTRACT OF CONTRACT ON CONTRACT OF CONTRACT ON CO	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type /-191): L ate [QW-462.4(b)] et size (in.) × re correct and that the f	dinal bends [QW-462.3(b)] resistant weld metal overlag resistant weld metal overlag Plate specimen, macro Result RT or UT (ength and percent of defect Fillet welds in pipe [QW Concavity or convect est coupons were prepare	r [QW-462.5(c)] y [QW-462.5(d)] test for fusion [QW- Type 	462.5(e)]
Backing (with or with Single or multiple pa	Nout) INVENTION CONTRACT OF CONTRACTO OF CONTRACTO OF CONTRACTO OF CONTRACT OF CONTRACTO OF CONTRACT O	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type /-191): L ate [QW-462.4(b)] et size (in.) × re correct and that the f	dinal bends [QW-462.3(b)] resistant weld metal overlag resistant weld metal overlag Plate specimen, macro Result RT or UT (ength and percent of defect Fillet welds in pipe [QW Concavity or convect est coupons were prepare	r [QW-462.5(c)] y [QW-462.5(d)] • test for fusion [QW- Type 	462.5(e)]
Backing (with or with Single or multiple pa	Nout) Insees per side Insees p	4) Longitud nd specimen, corrosion- nd specimen, corrosion fusion [QW-462.5(b)] Type /-191): L ate [QW-462.4(b)] et size (in.) × re correct and that the f nd Pressure Vessel Code	dinal bends [QW-462.3(b)] resistant weld metal overlag resistant weld metal overlag resistant weld metal overlag Result Result RT or UT (ength and percent of defect Fillet welds in pipe [QW Concavity or convect est coupons were prepare b.	r [QW-462.5(c)] y [QW-462.5(d)] o test for fusion [QW- Type heck one) s	462.5(e)] Result and the second ance with the sec

Identification of Standard W	elding Procedure Spe	cification Demonstrated _			
		Date of Demonstration _			
		Demonstration Wel	ding Variables		
		of Base Metal(s)			
to Specification and type	or grade or UNS Num	nber of Base Metal(s)			
Base Metal P-Number	ti	o Base Metal P-Number		I hickness	
Welding Process(es) used					
-					
•	•	.)			
	-				
Backing (with or without)					
Filler Metal Specification					
Filler Metal or Electrode Cla					
Filler Metal or Electrode Tra	de Name				
Size of Consumable Electro	de or Filler Metal				
Tungsten Electrode Classific	cation and Size for GT	-AW			
Consumable Insert Class an	d Size for GTAW				
Shielding Gas Composition	and Flow Rate for GT	AW or GMAW (FCAW)			
Preheat Temperature					
Position(s)					
	nhill)				
Interpass Cleaning Method					
Measured Maximum Interp					
		or Electrode Type			
Approximate Deposit Thick	ness for Each Process	or Electrode Type			
Approximate Deposit Thick Current Type and Polarity (A	ness for Each Process AC, DCEP, DCEN)				
Approximate Deposit Thick Current Type and Polarity (A Postweld Heat Treatment Ti	ness for Each Process AC, DCEP, DCEN) me and Temperature	or Electrode Type			
Approximate Deposit Thick Current Type and Polarity (A Postweld Heat Treatment Ti	ness for Each Process AC, DCEP, DCEN) me and Temperature	or Electrode Type			
Approximate Deposit Thick Current Type and Polarity (A Postweld Heat Treatment Ti	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302.	or Electrode Type			
Approximate Deposit Thick Current Type and Polarity (/ Postweld Heat Treatment Ti Visual Examination of Com	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302.	e or Electrode Type 		Date of Test .	
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1)	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302.	e Face and Root [QW-462.3(a)]	Date of Test	2)
Approximate Deposit Thick Current Type and Polarity (<i>I</i> Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1)	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302. Transvers Result	or Electrode Type 4) Face and Root [QW-462.3] Type	a)] Result	Date of Test	2)
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic Es	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302. Transvers Result 	cor Electrode Type	a)] Result	Date of Test	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic Es Specimens Evaluated By	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302. Transvers Result 	cor Electrode Type	a)] Result	Date of Test .	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic Es Specimens Evaluated By Welding Supervised By	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302. Transvers Result 	cor Electrode Type	a)] Result	Date of Test Date of Test Side (QW-462.2 Type Company	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic E: Specimens Evaluated By Welding Supervised By Welder's Name	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302. Transvers Result 	cor Electrode Type 4) ee Face and Root [QW-462.3(Type	a)] Result	Date of Test Date of Test Type Company Company Stamp No	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic E: Specimens Evaluated By Welding Supervised By Welder's Name We certify that the statement	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302. Transvers Result 	cor Electrode Type	a)] Result scribed above was	Date of Test Date of Test Type Company Company Stamp No	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic E: Specimens Evaluated By Welding Supervised By Welder's Name We certify that the statement	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302. Transvers Result 	e Face and Root [QW-462.30 Type W-302.2) Title Title Correct and that the weld de	a)] Result scribed above was	Date of Test Date of Test Type Company Company Stamp No	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic Es Specimens Evaluated By Welding Supervised By Welder's Name We certify that the statement the requirements of Section Organization	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302 Transvers Result	a relectrode Type	a)] Result scribed above was L CODE.	Date of Test .	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic Es Specimens Evaluated By Welding Supervised By Welder's Name We certify that the statement the requirements of Section Organization	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302 Transvers Result	e Face and Root [QW-462.30 Type W-302.2) Title Title Correct and that the weld de	a)] Result scribed above was L CODE.	Date of Test .	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic Es Specimens Evaluated By Welding Supervised By Welder's Name We certify that the statement the requirements of Section Organization	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302 Transvers Result	a relectrode Type	a)] Result scribed above was L CODE.	Date of Test .	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic Es Specimens Evaluated By Welding Supervised By Welder's Name We certify that the statement the requirements of Section Organization	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302 Transvers Result	a relectrode Type	a)] Result scribed above was L CODE.	Date of Test .	2) Result
Approximate Deposit Thick Current Type and Polarity (# Postweld Heat Treatment Ti Visual Examination of Com Bend Test (QW-302.1) Type Alternative Radiographic Es Specimens Evaluated By Welding Supervised By Welder's Name We certify that the statement the requirements of Section Organization	ness for Each Process AC, DCEP, DCEN) me and Temperature pleted Weld (QW-302 Transvers Result	a relectrode Type	a)] Result scribed above was L CODE.	Date of Test .	2) Result

Organization Name	By	
BPS Number		
Supporting PQRs		
Brazing Process(es)		Type(s)
		(Automatic, Manual, Machine, or Semi-Automatic)
	Joint Design (QB-408)	
Joint Design: Type	Joint Clearance	
Overlap: Minimum	Maximum	
Base Metal (QB-402)	Brazing	g Filler Metal (QB-403)
P-Number	_ Specification Number	
to P-Number		
AWS BM-Number	F-Number	
to AWS BM-Number		
Other	-	
Base Metal Thickness	Brazing	Temperature (QB-404)
Minimum	Brazing Temperature Range	
Maximum		
Postbrozo Host Treatment (OP 400)	Brazing Flux, Fu	el Gas, or Atmosphere (QB-406)
Postbraze Heat Treatment (QB-409)	Flux (AWS Class, Composition, or T	rade Name)
Temperature Range	1 401 640	
Time Range	Furnace Temperature	
	Atmosphere Type	
Flow Position (QB-407)	Other	
Positions Permitted	_	
Flow Direction	_	
	Technique (QB-410) and Other Information	n
Initial Cleaning		
Flux Application		
Nature of Flame (Oxidizing, Neutral, Reducing)		
Torch Tip Sizes		
Poetbroza Cleaning		
Postbraze Cleaning		
Inspection		

یک دو سه صنعت 123sanat.com

(**19**)

FORM QB-483 SUGGESTED FORMAT FOR A BRAZING PROCEDURE QUALIFICATION RECORD (PQR) (See QB-200.2, Section IX, ASME Boiler and Pressure Vessel Code) Record of Actual Variables Used to Braze Test Coupon

Organization Na								
3PS Followed Du		Coupon		F	2QR No			
Brazing Process(•	Date Coup	on Was Brazed				
Base Metal (QB-4	402)							
			to Base Metal Spe	ecification				
P-Number			to P-Number					
			_					
Brazing Filler Me	atal (OB-403)							
		sification	F-No	Filler Metal Prod	luct Form			
Joint Design (QB	3-408)							
Overlap	Joir	nt Type	J	oint Clearance				
Brazing Tempera Brazing Tempera			_					
	el Gas, or Atmosphe							
-	-	e Name, or None)	۸+	mosphere Type				
		Furnace Temperature						
Flow Position (Q Position		Flow Direction						
	Freatment (QB-409)	Time						
Fechnique (QB-4	10)							
Postbraze Cleani								
Nature of Flame	(Oxidizing, Neutral, I							
2.1								
Other								
	B-150)			1		1		
-	B-150) Width or Diameter	Thickness	Area	Ultimate Load	UTS (psi or MPa)	Failure Locatior		
Tensile Tests (QE	Width or			Ultimate Load	UTS (psi or MPa)	Failure Location		
Tensile Tests (QE	Width or			Ultimate Load	UTS (psi or MPa)	Failure Location		
Fensile Tests (QE	Width or			Ultimate Load	UTS (psi or MPa)	Failure Location		
Specimen	Width or Diameter			Ultimate Load	UTS (psi or MPa)	Failure Location		
Specimen Bend Tests (QB-	Width or Diameter			Ultimate Load	UTS (psi or MPa)			
Specimen Bend Tests (QB-	Width or Diameter	Thickness						
Bend Tests (QB- T	Width or Diameter	Thickness						
Tensile Tests (QE Specimen Bend Tests (QB- T Peel Tests (QB-1	Width or Diameter 160)	Thickness				lts		
Tensile Tests (QE Specimen Bend Tests (QB- T Peel Tests (QB-1	Width or Diameter 160) Type 170) or Section Tests	Thickness Results		Туре	Resu	lts		
Tensile Tests (QE Specimen Bend Tests (QB- T Peel Tests (QB-1 T	Width or Diameter 160) Type 170) or Section Tests	Thickness Results		Туре	Resu	lts		
Tensile Tests (QE Specimen Bend Tests (QB- T Peel Tests (QB- T T Other Tests	Width or Diameter 160) Type 170) or Section Tests	Thickness Results (QB-180) Results		Type Type	Resu	lts		
Tensile Tests (QE Specimen Bend Tests (QB- T Peel Tests (QB-1 T Peel Tests (QB-1 T Dther Tests Brazer's or Brazil	Width or Diameter 160) Type 170) or Section Tests Type	Thickness Thickness Results (QB-180) Results	Area	Type Type	Resu	lts		
Tensile Tests (QE Specimen Bend Tests (QB- T Peel Tests (QB-1 T Peel Tests (QB-1 T Cother Tests Brazer's or Brazin Brazing of Test C	Width or Diameter 160) Type 170) or Section Tests Type 170) or Section Tests Support Support S	Thickness Results (QB-180) Results	Area	Туре Туре О	Resu	lts		
Tensile Tests (QE Specimen Bend Tests (QB- T Peel Tests (QB-1 T Other Tests Brazer's or Brazin Brazing of Test C Test Specimens	Width or Diameter Jame	Thickness Thickness Results (QB-180) Results	Area	Туре Туре О	Resu	lts		
Tensile Tests (QE Specimen Bend Tests (QB- T T Peel Tests (QB-1 T Peel Tests (QB-1 T T Cother Tests (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T State of Cast (QB-1 State of Cast (QB-1) State of Cast (QB-1 State of Cast (QB-1) State	Width or Diameter Diameter 160) Type 170) or Section Tests Type 170) or Section Tests Evaluated by Evaluated by Number fy that the statement	Thickness Thickness Results (QB-180) Results Thickness T	Area	Type Type 0	Resu	Its		
Tensile Tests (QE Specimen Bend Tests (QB- T T Peel Tests (QB-1 T Peel Tests (QB-1 T T Cother Tests (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T State of Cast (QB-1 State of Cast (QB-1) State of Cast (QB-1 State of Cast (QB-1) State	Width or Diameter Diameter 160) Type 170) or Section Tests Type 170) or Section Tests Evaluated by Evaluated by Number fy that the statement	Thickness Thickness Results COLORING Results Results COLORING Results Results Results Results Results COLORING Results Result	Area Area ID N Compar that the test coupons t SSEL CODE.	Type Type Type o	Resu Resu Resu Resu	Its Its		
Tensile Tests (QE Specimen Bend Tests (QB- T T Peel Tests (QB-1 T Peel Tests (QB-1 T T Dther Tests (QB-1 T State of Cast (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T State of Cast (QB-1 State of Cast (QB-1 T State of Cast (QB-1 State of Cast (QB-1) State of Cast	Width or Diameter Diameter 160) Type 170) or Section Tests Type 170) or Section Tests Evaluated by Evaluated by Number fy that the statement	Thickness Thickness Results (QB-180) Results Thickness T	Area Area Area Area Area Area Area Area	Type Type Type	Resu Resu Resu ed, and tested in acco	Its Its		
Tensile Tests (QE Specimen Bend Tests (QB- T T Peel Tests (QB-1 T Peel Tests (QB-1 T T Dther Tests (QB-1 T State of Cast (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T T State of Cast (QB-1 T State of Cast (QB-1 State of Cast (QB-1 T State of Cast (QB-1 State of Cast (QB-1) State of Cast	Width or Diameter Diameter 160) Type 170) or Section Tests Type 170) or Section Tests Evaluated by Evaluated by Number fy that the statement	Thickness Thickness Results (QB-180) Results Thickness T	Area Area ID N Compar that the test coupons t SSEL CODE.	Type Type Type	Resu Resu Resu ed, and tested in acco	Its Its		

Brazer 5 or Brazing ope	erator's Name			Identification No.	
		Testing Variables	and Ranges Qualified		
	llowed During Brazing of Te			Date Coupon Was Braze	ed
	est Coupon Base Metal d Test Coupon Base Metal _				
	Variables (QB-350)		Actual Values	Ran	nge Qualified
Brazing Process(es)					
	nual, Semi-Automatic, Auto	matic,			
Machine) Torch Brazing: Manu	al or Mechanical				
Base Metal					
	nber to AWS BM-Num				
	Pipe (enter diameter if pipe]				
		Thickness			
	, Scarf, Socket, etc.)				
If Lap or Socket, Ove Joint Clearance	eriap Length				
Filler Metals					
	Classification(s) (in	f = [)			
Brazing Flow Positic	F- Produ	-Number			
Brazing Flow Positic	F- Produ	-Number uct Form			
	F- Prodi ns	-Numberuct Form	and Results		
Visual Examination of	F- Produ	-Number uct Form Testing	and Results		
Visual Examination of	F- Prode ns Completed Joint (QB-141.6)	-Number uct Form Testing	and Results Section (QB-462.4)	0ate of Test	QB-462.1)
Visual Examination of	F- Prode ns Completed Joint (QB-141.6)	-Number uct Form Testing	and Results Section (QB-462.4)	Date of Test	QB-462.1)
Visual Examination of Vechanical Test	F- Produ ns Completed Joint (QB-141.6) Peel (QB-462.3) Transverse	Testing	and Results Section (QB-462.4)] □ Lo	Date of Test Tension (Tension (ngitudinal Bends [QB-462.2	QB-462.1) 2(b)]
Visual Examination of Vechanical Test Position	F- Produ ns Completed Joint (QB-141.6) Peel (QB-462.3) Transverse	-Number uct Form Testing Bends [QB-462.2(a Position	and Results Section (QB-462.4)] Comparison Lo Result	_ Date of Test □ Tension (ngitudinal Bends [QB-462.2 Position	QB-462.1) 2(b)] Result
Visual Examination of Vechanical Test Position Vechanical Tests Cond	F- Produ ns Completed Joint (QB-141.6) Peel (QB-462.3) Transverse Result Result	-Number uct Form Testing Bends [QB-462.2(a Position	and Results Section (QB-462.4)] Company Company Company	Date of Test Tension (ingitudinal Bends [QB-462.2 Position	QB-462.1) 2(b)] Result
Visual Examination of Vechanical Test Position Vechanical Tests Cond Specimens Evaluated b	F- Produ ns Completed Joint (QB-141.6) Peel (QB-462.3) Transverse Result ucted by	-Number uct Form Testing Bends [QB-462.2(a Position	and Results Section (QB-462.4)] Company Company Company	Date of Test Tension (ingitudinal Bends [QB-462.2 Position	QB-462.1) 2(b)] Result
Visual Examination of Mechanical Test Position Mechanical Tests Cond Specimens Evaluated b .ab Test No We certify that the state	F- Produ ns Completed Joint (QB-141.6) Peel (QB-462.3) Transverse Result ucted by	Number	and Results Section (QB-462.4)] Company Company St coupons were prepare	_ Date of Test □ Tension (i ngitudinal Bends [QB-462.2 Position	QB-462.1) 2(b)] Result
Visual Examination of Vechanical Test Position Vechanical Tests Cond Specimens Evaluated E .ab Test No. We certify that the state equirements of Sectio	F- Produ ns Completed Joint (QB-141.6) Peel (QB-462.3) Transverse Result Result Ucted by	Number	and Results Section (QB-462.4)] Company Company St coupons were prepare	_ Date of Test □ Tension (i ngitudinal Bends [QB-462.2 Position	QB-462.1) 2(b)] Result
Visual Examination of Mechanical Test Position Mechanical Tests Cond Specimens Evaluated b ab Test No. We certify that the state equirements of Sectio Drganization	F- Produ ns Completed Joint (QB-141.6) Peel (QB-462.3) Transverse Result Result Ucted by	Number	and Results Section (QB-462.4)] Company Company st coupons were prepare SEL CODE.	_ Date of Test □ Tension (i ngitudinal Bends [QB-462.2 Position	QB-462.1) 2(b)] Result
Visual Examination of Mechanical Test Position Mechanical Tests Cond Specimens Evaluated b Lab Test No We certify that the state	F- Produ ns Completed Joint (QB-141.6) Peel (QB-462.3) Transverse Result Result Ucted by	Number	and Results Section (QB-462.4)] Company Company St coupons were prepare	_ Date of Test □ Tension (i ngitudinal Bends [QB-462.2 Position	QB-462.1) 2(b)] Result

(**19**)

NONMANDATORY APPENDIX D P-NUMBER LISTING

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
	Steel Allo					oys (Cont'd)	
1	1	A/SA-36		1	1 Steel All	A/SA-369	FPA
1	1	A/SA-53	 E, A	1	1	A/SA-369	FPB
1	1	A/SA-53	E, A E, B	1	1	R/3R-309	I'I D
1	1	A/SA-53	F	1	1	A/SA-372	А
1	1	A/SA-53	S, A	1	1	A381	Y35
		,		1	1	A381	Y42
1	1	A/SA-53	S, B	1	1	A381	Y46
1	1	A/SA-106	А	1	1	A381	Y48
1	1	A/SA-106	В	1	1	A381	Y50
1	1	A108	1015	1	1	11001	150
1	1	A108	1013	1	1	A/SA-414	А
1	1	A108	1018	1	1	A/SA-414	В
1	1	A/SA-134		1	1	A/SA-414	C
1	1	A/3A-134		1	1	A/SA-414	D
1	1	A/SA-135	А	1	1	A/SA-414	E
1	1	A/SA-135	В	1	1	A/SA-420	WPL6
1	1	A139	A	1	1	A/ 3A-420	WILD
1	1	A139	B	1	1	A500	В
1	1	A139	C	1	1	A500	С
1	1	A139 A139	D	1	1	A501	Ā
1	1	A139	D	1	1	A/SA-513	1008
1	1	A139	Е	1	1	A/SA-513	1010
1	1	A/SA-178	A	1	1	A/SA-513	1015
1	1	A/SA-178	C	1	1	11/511/5115	1015
1	1	A/SA-179		1	1	A513	1015CW
1	1	A/SA-181	 Cl. 60	1	1	A/SA-515	60
1	1	A/SA-192		1	1	A/SA-515	65
1	1	A/3A-192		1	1	A/SA-516	55
1	1	A/SA-210	A-1	1	1	A/SA-516	60
1	1	A211	A570-30	1	1	A/SA-516	65
1	1	A211	A570-33	-	-	11/011/0110	00
1	1	A211	A570-40	1	1	A519	1018 HR
1	1	A/SA-214		1	1	A519	1020 HR
1	1	A/SA-216	 WCA	1	1	A519	1022 HR
1	1	11/511/210	Won	1	1	A519	1025 HR
1	1	A/SA-234	WPB	1	1	A519	1026 HR
1	1	A/SA-266	1	1	1	A/SA-524	Ι
1	1	A/SA-283	Ā	-	-		•
1	1	A/SA-283	В	1	1	A/SA-524	II
1	1	A/SA-283	C	1	1	A/SA-556	A2
1	1	A/SA-283	D	1	1	A/SA-556	B2
Ŧ	T	11 JII 203	U	1	1	A/SA-557	A2
1	1	A/SA-285	А	1	1	A/SA-557	B2
1	1	A/SA-285	В	1	1	A/SA-562	
1	1	A/SA-285	C	-	-	,	
1	1	A/SA-333	1	1	1	A/SA-572	42
1	1	A/SA-333	6	1	1	A/SA-572	50
1	1	A/SA-334	1	1	1	A573	58
Ŧ	T	11 JI JJ 1	Ŧ	1	1	A573	65
1	1	A/SA-334	6	1	1	A575	M1008
1	1	A/SA-350	LF1	1	1	A575	M1010
1	1	A/SA-352	LCA	-	-		
	-			1	1	A575	

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
		•	OI UNS NO.				UI UNS NO.
		oys (Cont'd)	M1015			oys (Cont'd)	F42
1	1	A575	M1015	1	1	A694	F42 F46
1	1	A575	M1017	1	1	A694	
1	1	A575	M1020	1	1	A694	F48
1	1	A575	M1023	1	1	A694	F50
1	1	A575	M1025	1	1	A694	F52
1	1	A576	G10080	1	1	A/SA-696	В
1	1	A576	G10100	1	1	A707	L1, Cl. 1
1	1	A576	G10120	1	1	A707	L1, Cl. 2
1	1	A576	G10150	1	1	A707	L2, Cl. 1
1	1	A576	G10160	1	1	A707	L2, Cl. 2
1	1	A576	G10170	1	1	A707	L3, Cl. 1
1	1	A576	G10180	1	1	A707	L3, Cl. 2
1	1	A576	G10190	1	1	A/SA-727	
1	1	A576	G10200	1	1	A/SA-765	Ι
1	1	A576	G10210	1	1	A/SA-836	
1	1	A576	G10220	1	1	A860	WPHY 42
1	1	A576	G10230	1	1	A860	WPHY 46
1	1	A576	G10250	1	1	A860	WPHY 52
1	1	A/SA-587		1	1	A992	
1	1	A/SA-618	III	1	1	A/SA-1008	CS A
1	1	A633	A	1	1	A/SA-1008	CS B
1	1	A633	C	1	1	A/SA-1008	DS B
1	1	A633	D	1	1	A/SA-1011	CS B
4			2 50	4	4	A /GA 4044	DCD
1	1	A/SA-656	3, 50	1	1	A/SA-1011	DS B
1	1	A/SA-656	7, 50	1	1	A/SA-1011	HSLAS 45 Cl. 1
1	1	A/SA-660	WCA	1	1	A/SA-1011	HSLAS 45 Cl. 2
1	1	A/SA-662	A	1	1	A/SA-1011	HSLAS 50 Cl. 1
1	1	A/SA-662	В	1	1	A/SA-1011	HSLAS 50 Cl. 2
1	1	A/SA-663		1	1	A/SA-1011	HSLAS 55 Cl. 2
1	1	A/SA-668	Cl. B	1	1	A/SA-1011	SS 33
1	1	A/SA-668	Cl. C	1	1	A/SA-1011	SS 36 2
1	1	A/SA-671	CA55	1	1	A/SA-1011	SS 40
1	1	A/SA-671	CB60	1	1	A/SA-1011	SS 45
1	1	A/SA-671	CB65	1	1	A/SA-1011	SS 50
1	1	A/SA-671	CC60	1	1	API 5L	A (all grades)
1	1	A/SA-671	CC65	1	1	API 5L	A25 (all grades)
1	1	A/SA-671	CE55	1	1	API 5L	A25P (all grades
1	1	A/SA-671	CE60	1	1	API 5L	B (all grades)
1	1	A/SA-672	A45	1	1	API 5L	X42 (all grades)
1	1	A/SA-672	A50	1	1	API 5L	X46 (all grades)
1	1	A/SA-672	A55	1	1	API 5L	X52 (all grades)
1	1	A/SA-672	B55	1	1	AS 1448	КЗ
1	1	A/SA-672	B60	1	1	AS 1448	K8
1	1	A/SA-672	B65	1	1	AS 1448	S1
1	1	A/SA-672	C55	1	1	AS 1448	S3
1	1	A/SA-672	C60	1	1	AS 4728	200 L0
1	1	A/SA-672	C65	1	1	AS 4728	240 L0
1	1	A/SA-672	E55	1	1	AS 4728	290 L0
1	1	A/SA-672 A/SA-672	E55 E60	1	1		290 L0 241
		•		1		CSA Z245.1	241 290
1	1	A/SA-675	45		1	CSA Z245.1	
1	1	A/SA-675	50 55	1	1	CSA Z245.1	359
1 1	1 1	A/SA-675 A/SA-675	55 60	1 1	1 1	CSA Z245.11 CSA Z245.11	207 241
T	T	n/3n-0/3	00	1	1	USA 2243.11	241
1	1	A/SA-675	65	1	1	CSA Z245.11	290

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
		bys (Cont'd)				loys (Cont'd)	
1	1	CSA Z245.11	317	1	2	A513	1025 CW
1	1	CSA Z245.11	359	1	2	A/SA-515	70
1	1	CSA Z245.12	248	1	2	A/SA-516	70
1	1	CSA Z245.12	290	1	2	A519	1018 CW
1	1	CSA Z245.12	317	1	2	A519 A519	1018 CW
			250	1	2	4510	1022 CM
1	1	CSA Z245.12	359	1	2	A519	1022 CW
1	1	MSS SP-75	WPHY-42	1	2	A519	1025 CW
1	1	MSS SP-75	WPHY-46	1	2	A519	1026 CW
1	1	MSS SP-75	WPHY-52	1	2	A521	Cl. CE
1	1	SA/AS 1548	PT430	1	2	A/SA-537	Cl. 1
1	1	SA/AS 1548	PT460	1	2	A/SA-541	1
1	1	SA/CSA G40.21	38W	1	2	A/SA-541	1A
1	1	SA/CSA G40.21	44W	1	2	A/SA-556	C2
1	1	SA/CSA G40.21	50W	1	2	A/SA-557	C2
1	1	SA/EN 10028-2	P235GH	1	2	A/SA-572	55
1	1	SA/EN 10028-2	P265GH	1	2	A/SA-572	60
1	1	SA/EN 10028-2	P295GH	1	2	A573	70
1	1	SA/EN 10028-3	P275NH	1	2	A618	11
1	1	SA/EN 10216-2	P235GH	1	2	A633	C
1	1	SA/EN 10216-2 SA/EN 10216-2	P265GH	1	2	A633	D
1	1	SA/EN 10210-2 SA/EN 10222-2	P280GH	1	2	A/SA-656	3, 60
1	1	SA/EN 10222-2 SA/EN 10025-2		1	2	A/SA-656	5, 60 7, 60
		,	S235JR	1			
1	1	SA/EN 10217-1	P235TR2	1	2	A/SA-660	WCB
1	1	SA/GB 713	Q345R	1	2	A/SA-660	WCC
1	1	SA/IS 2062	E250 A	1	2	A/SA-662	С
1	1	SA/IS 2062	E250 B	1	2	A/SA-671	CB70
1	1	SA/IS 2062	E250 C	1	2	A/SA-671	CC70
1	2	A/SA-105		1	2	A/SA-671	CD70
1	2	A/SA-106	С	1	2	A/SA-671	CK75
1	2	A/SA-178	D	1	2	A/SA-672	B70
1	2	A/SA-181	Cl. 70	1	2	A/SA-672	C70
1	2	A/SA-210	C	1	2	A/SA-672	D70
1	2	A/SA-216	WCB	1	2	A/SA-672	N75
1	2	A/SA-216	WCC	1	2	A/SA-675	70
1	2	A/SA-234	WPC	1	2	A/SA-691	CMS-75
	2	N 10 A 2000	2	1	2	A /CA (01	CMCU 70
1	2	A/SA-266	2	1	2	A/SA-691	CMSH-70
1	2	A/SA-266	3	1	2	A694	F56
1	2	A/SA-266	4	1	2	A694	F60
1	2	A/SA-299	A	1	2	A694	F65
1	2	A/SA-350	LF2	1	2	A/SA-696	С
1	2	A/SA-352	LCC	1	2	A707	L2, Cl. 3
1	2	A356	1	1	2	A707	L3, Cl. 3
1	2	A/SA-372	В	1	2	A/SA-737	В
1	2	A381	Y52	1	2	A/SA-738	А
1	2	A381	Y56	1	2	A/SA-765	II
1	2	A381	Y60	1	2	A/SA-841	A, Cl. 1
1	2	A/SA-414	F	1	2	A860	WPHY 60
1	2	A/SA-414	G	1	2	A860	WPHY 65
1	2	A/SA-455		1	2	A/SA-1011	HSLAS 55 Cl.
1	2	A/SA-487	 16, Cl. A	1	2	A/SA-1011	HSLAS 60 Cl.
1	2	A501	В	1	2	A/SA-1011 A/SA-1011	HSLAS 60 Cl.
			в 1			•	
1 1	2 2	A/SA-508 A/SA-508	1 1A	1 1	2 2	A/SA-1011 A/SA-1011	SS 55 SS 60
T	2	M 3A-300					
1	2	A513	1020 CW	1	2	API 5L	X56 (all grade

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
		oys (Cont'd)				oys (Cont'd)	
1	2	API 5L	X60 (all grades)	1	3	CSA Z245.12	483
1	2	API 5L	X65 (all grades)	1	3	MSS SP-75	WPHY-70
				1			
1	2	AS 1448	K4		4	A/SA-656	3, 80
1	2	AS 1448	K5	1	4	A/SA-656	7, 80
1	2	AS 1448	К9	1	4	A/SA-724	А
1	2	AS 1448	S4	1	4	A/SA-724	В
1	2	AS 1448	S5	1	4	A/SA-724	С
1	2	CSA Z245.1	386	1	4	A/SA-812	80
1	2	CSA Z245.1	414	1	4	API 5L	X80 (all grades)
1	2	CSA Z245.1	448	1	4	CSA Z245.1	550
1	2	CSA Z245.11	386	1	4	CSA Z245.1	620
1	2	CSA Z245.11	414	1	4	CSA Z245.11	550
1	2	CSA Z245.11	448	1	4	CSA Z245.11	620
1	2	CSA Z245.12	386	1	4	CSA Z245.12	550
1	2	CSA Z245.12	414	1	4	CSA Z245.12	620
1	2	CSA Z245.12	448	3	1	A/SA-204	А
1	2	MSS SP-75	WPHY-56	3	1	A/SA-209	T1
1	2	MSS SP-75	WPHY-60	3	1	A/SA-209	T1a
1	2	MSS SP-75	WPHY-65	3	1	A/SA-209	T1b
	2			3	1	A/SA-209	T2
1		SA/AS 1548	PT490				
1	2	SA/EN 10028-2	P355GH	3	1	A/SA-217	WC1
1	2	SA/EN 10028-3	P355NH	3	1	A/SA-234	WP1
1	2	SA/EN 10028-3	P355NL2	3	1	A/SA-250	T1
1	2	SA/EN 10222-2	P305GH	3	1	A/SA-250	T1a
1	2	SA/GB 713	Q345R	3	1	A/SA-250	T1b
1	2	SA/GB 713	Q370R	3	1	A/SA-250	T2
1	2	SA/JIS G3118	SGV480	3	1	A/SA-335	P1
1	3	A/SA-299	В	3	1	A/SA-335	P2
1	3	A/SA-333	10	3	1	A/SA-335	P15
1	3	A/SA-350	LF6, Cl. 2	3	1	A/SA-352	LC1
1	3	A513	1026 CW	3	1	A356	2
1	3	A/SA-537	Cl. 2	3	1	A/SA-369	FP1
1	3	A/SA-537	Cl. 3	3	1	A/SA-369	FP2
	3	•	65			A/SA-309	
1 1	3 3	A/SA-572 A633	E	3 3	1 1	A/SA-387 A/SA-426	2, Cl. 1 CP1
						,	
1	3	A/SA-656	3, 70	3	1	A/SA-426	CP2
1	3	A/SA-656	7, 70	3	1	A/SA-426	CP15
1	3	A/SA-671	CD80	3	1	A588	K11430
1	3	A/SA-672	D80	3	1	A588	K12043
1	3	A/SA-691	CMSH-80	3	1	A/SA-672	L65
1	3	A694	F70	3	1	A/SA-691	¹ / ₂ CR
1	3	A/SA-737	С	3	1	A/SA-691	CM-65
1	3	A/SA-738	В	3	1	A1066	50
1	3	A/SA-738	С	3	1	SA/EN 10216-2	16Mo3
1	3	A/SA-765	IV	3	2	A/SA-182	F1
1	3	A/SA-812	65	3	2	A/SA-182	F2
1	3	A/SA-812 A/SA-841	B, Cl. 2	3	2	A/SA-182 A/SA-204	B
1	3	A860	WPHY 70	3	n	A/SA-204	С
					2		
1	3	API 5L	X70 (all grades)	3	2	A/SA-302	A
1	3	AS 1448	K6	3	2	A/SA-336	F1
1	3	AS 1448	K10	3	2	A/SA-387	2, Cl. 2
1	3	AS 1448	S6	3	2	A/SA-672	H75
1	3	CSA Z245.1	483	3	2	A/SA-672	L70
	3	CSA Z245.11	483	3	2	A/SA-672	L75

یک دو سه صنعت

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
teel and		oys (Cont'd)		Steel and	Steel All	oys (Cont'd)	
3	2	A/SA-691	¹ / ₂ CR, Cl. 2	4	1	A/SA-234	WP12, Cl. 2
3	2	A/SA-691	CM-70	4	1	A/SA-250	T11
3	2	A/SA-691	CM-75	4	1	A/SA-250	T12
						•	
3	2	A1066	60	4	1	A/SA-335	P11
3	3	A108	8620	4	1	A/SA-335	P12
3	3	A/SA-302	В	4	1	A/SA-336	F11, Cl. 2
3	3	A/SA-302	С	4	1	A/SA-336	F11, Cl. 3
3	3	A/SA-302	D	4	1	A/SA-336	F11, Cl. 1
3	3	A/SA-487	2, Cl. A	4	1	A/SA-336	F12
3	3	A/SA-487	2, Cl. B	4	1	A356	6
3	3	A/SA-487	4, Cl. A	4	1	A356	8
3	3	A/SA-508	2, Cl. 1	4	1	A356	9
3	3	A/SA-508	2, Cl. 2	4	1	A/SA-369	FP11
3	3	A/SA-508	3, Cl. 1	4	1	A/SA-369	FP12
3	3	A/SA-508	3, Cl. 2	4	1	A/SA-387	11, Cl. 1
3	3	A/SA-508	4N, Cl. 3	4	1	A/SA-387	11, Cl. 2
3	3	A/SA-533	A, Cl. 1	4	1	A/SA-387	12, Cl. 1
3	3	A/SA-533	A, Cl. 2	4	1	A/SA-387	12, Cl. 2
3	3	A/SA-533	B, Cl. 1	4	1	A/SA-426	CP11
		A/SA-533 A/SA-533		4	1	A/SA-426	CP11 CP12
3	3		B, Cl. 2			,	
3	3	A/SA-533	C, Cl. 1	4	1	A/SA-541	11, Cl. 4
3	3	A/SA-533	C, Cl. 2	4	1	A/SA-691	1CR
3	3	A/SA-533	D, Cl. 1	4	1	A/SA-691	1¼ CR
3	3	A/SA-533	D, Cl. 2	4	1	A/SA-739	B11
3	3	A/SA-533	E, Cl. 1	4	1	SA/EN 10028-2	13CrMo4-5
3	3	A/SA-533	E, Cl. 2	4	1	SA/EN 10028-2	13CrMoSi5-5+Q
3	3	A/SA-541	2, Cl. 1	4	1	SA/EN 10216-2	13CrMo4-5
3	3	A/SA-541	2, Cl. 2	4	1	SA/EN 10222-2	13CrMo4-5
3	3	A/SA-541	3, Cl. 1	4	1	SA/GB 713	15CrMoR
3	3	A/SA-541	3, Cl. 2	4	2	A/SA-333	4
3	3	A/SA-543	B Cl. 3	4	2	A/SA-423	1
3	3	A/SA-543	C Cl. 3	4	2	A/SA-423	2
3	3	A/SA-672	Н80	5A	1	A/SA-182	F21
		•			1		
3 3	3 3	A/SA-672 A/SA-672	J80 J90	5A 5A	1	A/SA-182 A/SA-182	F22, Cl. 1 F22, Cl. 3
5	5		·		T	A/3A-102	F22, Cl. 5
3	3	A/SA-841	F, Cl. 6	5A	1	A199	T21
3	3	A/SA-841	F, Cl. 7	5A	1	A199	T22
3	3	A1066	65	5A	1	A/SA-213	T21
3	3	A1066	70	5A	1	A/SA-213	T22
3	3	A1066	80	5A	1	A/SA-217	WC9
4	1	A/SA-182	F11, Cl. 1	5A	1	A/SA-234	WP22, Cl. 1
4	1	A/SA-182	F11, Cl. 2	5A	1	A/SA-234	WP22, Cl. 3
4	1	A/SA-182	F11, Cl. 3	5A	1	A/SA-250	T22
4	1	A/SA-182	F12, Cl. 1	5A	1	A/SA-335	P21
4	1	A/SA-182	F12, Cl. 1 F12, Cl. 2	5A	1	A/SA-335	P21 P22
	1	A/3A-182 A199	T11	5A		A/SA-335 A/SA-336	F22 F21, Cl. 3
4 4	1	A/SA-213	T11 T11	5A 5A	1 1	A/SA-336 A/SA-336	F21, Cl. 3 F21, Cl. 1
4	1	A/SA-213	T12	5A	1	A/SA-336	F22, Cl. 3
4	1	A/SA-217	WC4	5A	1	A/SA-336	F22, Cl. 1
4	1	A/SA-217	WC5	5A	1	A356	10
4	1	A/SA-217	WC6	5A	1	A/SA-369	FP21
4	1	A/SA-234	WP11, Cl. 1	5A	1	A/SA-369	FP22
4	1	A/SA-234	WP12, Cl. 1	5A	1	A/SA-387	21, Cl. 1

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
		bys (Cont'd)				oys (Cont'd)	
5A	1 Steel Allo	A/SA-387	22, Cl. 1	5C	1	A/SA-541	22V
5A	1	A/SA-387	22, Cl. 1 22, Cl. 2	5C	1	A/SA-541	22, Cl. 3
5A		A/SA-426	CP21	5C	1	A/SA-542	A, Cl. 4
	1	•				•	
5A	1	A/SA-426	CP22	5C	1	A/SA-542	A, Cl. 4a
5A	1	A/SA-691	2 ¹ / ₄ CR	5C	1	A/SA-542	B, Cl. 4
5A	1	A/SA-691	3CR	5C	1	A/SA-542	B, Cl. 4a
5A	1	A/SA-739	B22	5C	1	A/SA-542	C, Cl. 4
5A	1	SA/EN 10028-2	10CrMo9-10	5C	1	A/SA-542	C, Cl. 4a
5A	1	SA/EN 10216-2	10CrMo9-10	5C	1	A/SA-542	D, Cl. 4a
5A	1	SA/EN 10222-2	11CrMo9-10	5C	1	A/SA-542	E, Cl. 4a
5B	1	A/SA-182	F5	5C	1	A/SA-832	21V
5B	1	A/SA-182	F5a	5C	1	A/SA-832	22V
5B	1	A/SA-182	F9	5C	1	A/SA-832	23V
5B	1	A199	Т5	5C	3	A/SA-542	A, Cl. 3
5B	1	A199	Т9	5C	3	A/SA-542	B, Cl. 3
5B	1	A/SA-213	T5	5C	3	A/SA-542	C, Cl. 3
5B	1	A/SA-213	T5b	5C	4	A/SA-487	8 Cl. B
5B	1	A/SA-213	T5c	5C	4	A/SA-487	8 Cl. C
5B	1	A/SA-213 A/SA-213	T9	5C 5C	4	A/SA-487 A/SA-541	22, Cl. 4
		•				•	
5B	1	A/SA-217	C5	5C	4	A/SA-542	A, Cl. 1
5B	1	A/SA-217	C12	5C	4	A/SA-542	B, Cl. 1
5B	1	A/SA-234	WP5	5C	4	A/SA-542	C, Cl. 1
5B	1	A/SA-234	WP9	5C	5	A/SA-541	22, Cl. 5
5B	1	A/SA-234	WP5, Cl.3	5C	5	A/SA-542	A, Cl. 2
5B	1	A/SA-234	WP9, Cl.3	5C	5	A/SA-542	B, Cl. 2
5B	1	A/SA-335	P5	5C	5	A/SA-542	C, Cl. 2
5B	1	A/SA-335	P5b	6	1	A/SA-182	F6a, Cl. 1
5B	1	A/SA-335	P5c	6	1	A/SA-240	410
5B	1	A/SA-335	P9	6	1	A/SA-268	TP410
5B	1	A/SA-336	F5	6	1	A/SA-276	TP410
5B	1	A/SA-336	F5A	6	1	A/SA-479	403
5B	1	A/SA-336	F9	6	1	A/SA-479	410
5B	1	A/SA-369	FP5	6	2	A/SA-182	F429
5B	1	A/SA-369	FP9	6	2	A/SA-240	429
5B	1	A/SA-387	5, Cl. 1	6	2	A/SA-268	429 TP429
ΓD.	1	A /CA 207		G	3	A/SA-182	E6a CL 2
5B	1	A/SA-387	5, Cl. 2	6			F6a, Cl. 2
5B	1	A/SA-387	9, Cl. 1	6	3	A/SA-182	F6b
5B	1	A/SA-387	9, Cl. 2	6	3	A/SA-182	F6a, Cl. 3
5B	1	A/SA-426	CP5	6	3	A/SA-182	F6a, Cl. 4
5B 5B	1 1	A/SA-426 A/SA-426	CP5b CP9	6 6	3 3	A/SA-217 A/SA-336	CA15 F6
ענ	T	11/JA-740				л/зл- <u>з</u> зо	
5B	1	A/SA-691	5CR	6	3	A/SA-426	CPCA15
5C	1	A/SA-182	F3V	6	3	A/SA-487	CA15 Cl. B
5C	1	A/SA-182	F3VCb	6	3	A/SA-487	CA15 Cl. C
5C	1	A/SA-182	F22V	6	3	A/SA-487	CA15 Cl. D
5C	1	A/SA-336	F3V	6	3	A/SA-487	CA15M Cl. A
5C	1	A/SA-336	F3VCb	6	4	A/SA-182	F6NM
5C	1	A/SA-336	F22V	6	4	A/SA-240	S41500
5C	1	A/SA-487	8 Cl. A	6	4	A/SA-268	S41500
5C	1	A/SA-508	3V	6	4	A/SA-352	CA6NM
5C	1	A/SA-508	3VCb	6	4	A/SA-479	414
5C	1	A/SA-508	22, Cl. 3	6	4	A/SA-479	S41500
5C	1	A/SA-541	3V	6	4	A/SA-487	CA6NM Cl. A

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade or UNS No.
		oys (Cont'd)				loys (Cont'd)	
6	4	A/SA-731	S41500	8	1	A/SA-213	TP304LN
6	4	A/SA-815	S41500	8	1	A/SA-213	TP304N
7	1	A/SA-240	405	8	1	A/SA-213	S32615
7	1	,	409	8	1	•	TP316
7	1	A/SA-240		8	1	A/SA-213 A/SA-213	TP316 TP316H
/	1	A/SA-240	410S	o			
7	1	A/SA-268	S40800	8	1	A/SA-213	TP316Ti
7	1	A/SA-268	TP405	8	1	A/SA-213	TP316L
7	1	A/SA-268	TP409	8	1	A/SA-213	TP316LN
7	1	A/SA-479	405	8	1	A/SA-213	TP316N
7	1	A/SA-1010	40	8	1	A/SA-213	TP321
7	1	A/SA-1010	50	8	1	A/SA-213	TP321H
7	1	SA/JIS G4303	SUS405	8	1	A/SA-213	TP347
7	2	A/SA-182	F430	8	1	A/SA-213	TP347H
7	2	A/SA-240	S44400	8	1	A/SA-213	TP347HFG
7	2	A/SA-240	430	8	1	A/SA-213	TP347LN
7	2	A/SA-240	439	8	1	A/SA-213	TP317
7	2	A/SA-240	S43932	8	1	A/SA-213	TP317L
7	2	A/SA-240	S43940	8	1	A/SA-213	TP348
, 7	2	A/SA-240	S44100	8	1	A/SA-213	TP348H
, 7	2	A/SA-268	18Cr-2Mo	8	1	A/SA-213 A/SA-213	XM-15
7	2	A/SA-268	TP430Ti	8	1	A/SA-240	S30500
		,				•	
7	2	A/SA-268	TP430	8	1	A/SA-240	S30600
7	2	A/SA-268	TP439	8	1	A/SA-240	S30601
7	2	A/SA-479	430	8	1	A/SA-240	S31753
7	2	A/SA-479	439	8	1	A/SA-240	S32615
7	2	A/SA-479	S44400	8	1	A/SA-240	S38815
7	2	A/SA-731	18Cr-2Mo	8	1	A/SA-240	301
7	2	A/SA-731	TP439	8	1	A/SA-240	302
7	2	A/SA-803	TP439	8	1	A/SA-240	304
8	1	A167	302B	8	1	A/SA-240	304H
8	1	A/SA-182	S30600	8	1	A/SA-240	304L
8	1	A/SA-182	F304	8	1	A/SA-240	304LN
8	1	A/SA-182	F304H	8	1	A/SA-240	304N
8	1	A/SA-182	F304L	8	1	A/SA-240	316
8	1	A/SA-182	F304LN	8	1	A/SA-240	316Cb
0	1	A (CA 102	F20.4N	0	1	A /CA 240	21(11
8	1	A/SA-182	F304N	8	1	A/SA-240	316H
8	1	A/SA-182	F316	8	1	A/SA-240	316L
8	1	A/SA-182	F316H	8	1	A/SA-240	316LN
8	1	A/SA-182	F316L	8	1	A/SA-240	316N
8	1	A/SA-182	F316LN	8	1	A/SA-240	316Ti
8	1	A/SA-182	F316N	8	1	A/SA-240	317
8	1	A/SA-182	F317	8	1	A/SA-240	317L
8	1	A/SA-182	F317L	8	1	A/SA-240	321
8	1	A/SA-182	F321	8	1	A/SA-240	321H
8	1	A/SA-182	F321H	8	1	A/SA-240	347
8	1	A/SA-182	F347	8	1	A/SA-240	347H
8	1	A/SA-182	F347H	8	1	A/SA-240	348
8	1	A/SA-182	F348	8	1	A/SA-240	348H
8	1	A/SA-182	F348H	8	1	A/SA-240	XM-15
8	1	A/SA-213	S30432	8	1	A/SA-240	XM-15 XM-21
8	1	A/SA-213 A/SA-213	S38815	8	1	A/SA-249	S38815
о 8	1	A/SA-213 A/SA-213	TP304	8	1	A/SA-249 A/SA-249	TP304
8 8	1	A/SA-213 A/SA-213	TP304 TP304H	8	1	A/SA-249 A/SA-249	TP304 TP304H
8	1	A/SA-213	TP304L	8	1	A/SA-249	TP304L

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade or UNS No.
		oys (Cont'd)				oys (Cont'd)	
8	1	A/SA-249	TP304LN	8	1	A/SA-351	CF10
8	1	A/SA-249	TP304N	8	1	A/SA-351	CF10M
8	1	A/SA-249	TP316	8	1	A/SA-351	CG8M
8	1	A/SA-249	TP316H	8	1	A/SA-351	CF10MC
8	1	A/SA-249	TP316L	8	1	A/SA-358	304
8	1	A/SA-249	TP316LN	8	1	A/SA-358	304H
8	1	A/SA-249	TP316N	8	1	A/SA-358	304L
8	1	A/SA-249	TP317	8	1	A/SA-358	304LN
8	1	A/SA-249	TP317L	8	1	A/SA-358	304N
8	1	A/SA-249	TP321	8	1	A/SA-358	316
8	1	A/SA-249	TP321H	8	1	A/SA-358	316H
8	1	A/SA-249	TP347	8	1	A/SA-358	316L
8	1	A/SA-249	TP347H	8	1	A/SA-358	316LN
8	1	A/SA-249	TP348	8	1	A/SA-358	316N
8	1	A/SA-249	TP348H	8	1	A/SA-358	321
8	1	A/SA-249	TPXM-15	8	1	A/SA-358	347
8	1	A269	TP304	8	1	A/SA-358	348
8	1	A269	TP304L	8	1	A/SA-376	16-8-2H
8	1	A269	TP316	8	1	A/SA-376	TP304
8	1	A269	TP316L	8	1	A/SA-376	TP304H
8	1	A/SA-276	304	8	1	A/SA-376	TP304LN
8	1	A/SA-276	304L	8	1	A/SA-376	TP304N
8	1	A/SA-276	316	8	1	A/SA-376	TP316
8	1	A/SA-276	316L	8	1	A/SA-376	TP316H
8	1	A/SA-312	S30600	8	1	A/SA-376	TP316LN
8	1	A/SA-312	S32615	8	1	A/SA-376	TP316N
8	1	A/SA-312	TP304	8	1	A/SA-376	TP321
8	1	A/SA-312	ТР304Н	8	1	A/SA-376	TP321H
8	1	A/SA-312	TP304L	8	1	A/SA-376	TP347
8	1	A/SA-312	TP304LN	8	1	A/SA-376	TP347H
8	1	A/SA-312	TP304N	8	1	A/SA-376	TP348
8	1	A/SA-312	TP316	8	1	A/SA-376	16-8-2H
8	1	A/SA-312	TP316H	8	1	A/SA-403	S38815
8	1	A312	S31635	8	1	A/SA-403	WP304
8	1	A/SA-312	TP316L	8	1	A/SA-403	WP304H
				0	4		
8	1	A/SA-312	TP316LN	8	1	A/SA-403	WP304L
8	1	A/SA-312	TP316N	8	1	A/SA-403	WP304LN
8	1	A/SA-312	TP317	8	1	A/SA-403	WP304N
8	1	A/SA-312	TP317L	8	1	A/SA-403	WP316
8	1	A/SA-312	TP321	8	1	A/SA-403	WP316H
8	1	A/SA-312	TP321H	8	1	A/SA-403	WP316L
8	1	A/SA-312	TP347	8	1	A/SA-403	WP316LN
8	1	A/SA-312	TP347H	8	1	A/SA-403	WP316N
8	1	A/SA-312	TP347LN	8	1	A/SA-403	WP317
8	1	A/SA-312	TP348	8	1	A/SA-403	WP317L
8	1	A/SA-312	TP348H	8	1	A/SA-403	WP321
8	1	A/SA-312	TPXM-15	8	1	A/SA-403	WP321H
8	1	A/SA-351	CF3	8	1	A/SA-403	WP347
8	1	A/SA-351	CF3A	8	1	A/SA-403	WP347H
8	1	A/SA-351	CF3M	8	1	A/SA-403	WP348
8	1	A/SA-351	CF8	8	1	A/SA-403	WP348H
8	1	A/SA-351	CF8A	8	1	A/SA-409	TP304
8	1	A/SA-351	CF8C	8	1	A/SA-409	TP304L

	Grp.		Type, Grade,		Grp.		Type, Grade,
P-No.	No.	Spec. No.	or UNS No.	P-No.	No.	Spec. No.	or UNS No.
teel and	l Steel Allo	oys (Cont'd)		Steel and	l Steel All	oys (Cont'd)	
8	1	A/SA-409	TP316L	8	1	A/SA-813	TP304LN
8	1	A/SA-409	TP317	8	1	A/SA-813	TP304N
8	1	A/SA-409	TP321	8	1	A/SA-813	TP316
8	1	A/SA-409	TP347	8	1	A/SA-813	TP316H
8	1	A/SA-409	TP348	8	1	A/SA-813	TP316L
8	1	A/SA-451	CPF3	8	1	A/SA-813	TP316LN
8	1	A/SA-451	CPF3A	8	1	A/SA-813	TP316N
8	1	A/SA-451	CPF3M	8	1	A/SA-813	TP317
8	1	A/SA-451	CPF8	8	1	A/SA-813	TP317L
8	1	A/SA-451	CPF8A	8	1	A/SA-813	TP321
8	1	A/SA-451	CPF8C	8	1	A/SA-813	TP321H
8	1	A/SA-451	CPF8M	0	1	A/SA-813	TP347
8	1	•		8 8	1	,	
	1	A/SA-451	CPF10MC	8	1	A/SA-813	TP347H
8	1	A/SA-479	302			A/SA-813	TP348
8	1	A/SA-479	304	8	1	A/SA-813	TP348H
8	1	A/SA-479	304H	8	1	A/SA-813	TPXM-15
8	1	A/SA-479	304L	8	1	A/SA-814	TP304
8	1	A/SA-479	304LN	8	1	A/SA-814	TP304H
8	1	A/SA-479	304N	8	1	A/SA-814	TP304L
8	1	A/SA-479	316	8	1	A/SA-814	TP304LN
8	1	A/SA-479	316Cb	8	1	A/SA-814	TP304N
8	1	A/SA-479	316H	8	1	A/SA-814	TP316
8	1	A/SA-479	316L	8	1	A/SA-814	TP316H
8	1	A/SA-479	316LN	8	1	A/SA-814	TP316L
8	1	A/SA-479	316N	8	1	A/SA-814	TP316LN
8	1	A/SA-479	316Ti	8	1	A/SA-814	TP316N
8	1	A/SA-479	321	8	1	A/SA-814	TP317
8	1	A/SA-479	321H	8	1	A/SA-814	TP317L
8	1	A/SA-479	347	8	1	A/SA-814	TP321
0	1	A (CA 470	24711	0	1	A /CA 014	TD22411
8	1	A/SA-479	347H 348	8	1	A/SA-814	TP321H
8	1	A/SA-479		8	1 1	A/SA-814	TP347
8	1	A/SA-479	348H	8		A/SA-814 A/SA-814	TP347H
8	1	A/SA-479	S30600	8	1	,	TP348
8 8	1 1	A/SA-479	S32615 S38815	8 8	1 1	A/SA-814	TP348H TPXM-15
0	1	A/SA-479	320012	o	1	A/SA-814	IFAM-15
8	1	A/SA-666	302	8	1	A/SA-965	F304
8	1	A/SA-666	304	8	1	A/SA-965	F304H
8	1	A/SA-666	304L	8	1	A/SA-965	F304L
8	1	A/SA-666	304LN	8	1	A/SA-965	F304LN
8	1	A/SA-666	304N	8	1	A/SA-965	F304N
8	1	A/SA-666	316	8	1	A/SA-965	F316
8	1	A/SA-666	316L	8	1	A/SA-965	F316H
8	1	A/SA-666	316N	8	1	A/SA-965	F316L
8	1	A/SA-688	TP304	8	1	A/SA-965	F316LN
8	1	A/SA-688	TP304L	8	1	A/SA-965	F316N
8	1	A/SA-688	TP304LN	8	1	A/SA-965	F321
8	1	A/SA-688	TP304N	8	1	A/SA-965	F321H
0	4		TD34 C	0	4		P0 47
8	1	A/SA-688	TP316	8	1	A/SA-965	F347
8	1	A/SA-688	TP316L	8	1	A/SA-965	F347H
8	1	A/SA-688	TP316LN	8	1	A/SA-965	F348
8	1	A/SA-688	TP316N	8	1	A/SA-965	F348H
8	1	A/SA-813	TP304	8	1	SA/EN 10028-7	X5CrNi18-10
8	1	A/SA-813	TP304H	8	1	SA/EN 10028-7	X5CrNiMo17-12

teel and Steel	No. evel Allo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	Spec. No. bys (Cont'd) SA/EN 10028-7 SA/EN 10088-2 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	or UNS No. X5CrNiN19-9 X2CrNiM017-12-2 X2CrNiM017-11-2 X2CrNiM0N17-13-3 X6CrNiTi18-10 X6CrNiMoTi17-12-2 SUS302 SUS304 SUS304L SUS316	P-No. Steel an 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	No. d Steel All 2 2 2 2 2 2 2 2 2 2 2 2 2	Spec. No. oys (Cont'd) A/SA-312 A/SA-312 A/SA-312 A/SA-312 A/SA-312 A/SA-312 A/SA-312	or UNS No. TP309HCb TP309S TP310Cb TP310H TP310HCb
	1 1 1 1 1 1 1 1 1 1 1 1 2 2	SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10088-2 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	X2CrNiN18-10 X2CrNiMo17-12-2 X2CrNiMoN17-11-2 X2CrNiMoN17-13-3 X6CrNiTi18-10 X6CrNiMoTi17-12-2 SUS302 SUS304 SUS304L	8 8 8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2 2 2	A/SA-312 A/SA-312 A/SA-312 A/SA-312 A/SA-312 A/SA-312	TP309S TP310Cb TP310H
8 8 8	1 1 1 1 1 1 1 1 1 1 1 2 2	SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10088-2 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	X2CrNiN18-10 X2CrNiMo17-12-2 X2CrNiMoN17-11-2 X2CrNiMoN17-13-3 X6CrNiTi18-10 X6CrNiMoTi17-12-2 SUS302 SUS304 SUS304L	8 8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2	A/SA-312 A/SA-312 A/SA-312 A/SA-312 A/SA-312	TP309S TP310Cb TP310H
8 8 8	1 1 1 1 1 1 1 1 1 1 1 2 2	SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10088-2 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	X2CrNiMo17-12-2 X2CrNiMoN17-11-2 X2CrNiMoN17-13-3 X6CrNiTi18-10 X6CrNiMoTi17-12-2 SUS302 SUS304 SUS304L	8 8 8 8 8 8 8	2 2 2 2 2 2	A/SA-312 A/SA-312 A/SA-312 A/SA-312	TP310Cb TP310H
8 8 8	1 1 1 1 1 1 1 1 1 2 2	SA/EN 10028-7 SA/EN 10028-7 SA/EN 10028-7 SA/EN 10088-2 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	X2CrNiMoN17-11-2 X2CrNiMoN17-13-3 X6CrNiTi18-10 X6CrNiMoTi17-12-2 SUS302 SUS304 SUS304L	8 8 8 8 8 8	2 2 2 2	A/SA-312 A/SA-312 A/SA-312	TP310H
8 3 8	1 1 1 1 1 1 1 1 1 2 2	SA/EN 10028-7 SA/EN 10028-7 SA/EN 10088-2 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	X2CrNiMoN17-13-3 X6CrNiTi18-10 X6CrNiMoTi17-12-2 SUS302 SUS304 SUS304L	8 8 8 8 8	2 2 2	A/SA-312 A/SA-312	
	1 1 1 1 1 1 1 2 2	SA/EN 10088-2 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	X6CrNiMoTi17-12-2 SUS302 SUS304 SUS304L	8 8 8	2		
	1 1 1 1 1 1 1 2 2	SA/EN 10088-2 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	X6CrNiMoTi17-12-2 SUS302 SUS304 SUS304L	8 8 8	2		TP310S
8 2 8	1 1 1 1 1 1 1 2 2	SA/JIS G4303 SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	SUS302 SUS304 SUS304L	8 8			TP310MoLN
8 8 8	1 1 1 1 1 1 2 2	SA/JIS G4303 SA/JIS G4303 SA/JIS G4303	SUS304 SUS304L	8		A/SA-312 A/SA-351	CH8
8 2 8	1 1 1 1 2 2	SA/JIS G4303 SA/JIS G4303	SUS304L		2	A/SA-351 A/SA-351	CH20
8 2 8	1 1 1 2 2	SA/JIS G4303			2	A/SA-351 A/SA-351	CK20
8 2 8	1 1 1 2 2			8	2	A/SA-351 A/SA-351	CE20N
8 8 8	1 1 2 2	SA/JIS G4303					
8 2 8	1 2 2		SUS316L	8	2	A/SA-351	CH10
8 2 8	2 2	SA/JIS G4303	SUS321	8	2	A/SA-351	HK30
8 2 8	2	SA/JIS G4303	SUS347	8	2	A/SA-351	HK40
8 2 8 <td></td> <td>A167</td> <td>308</td> <td>8</td> <td>2</td> <td>A/SA-358</td> <td>309</td>		A167	308	8	2	A/SA-358	309
8 2 8	2	A167	309	8	2	A/SA-358	309Cb
8 2 8		A167	310	8	2	A/SA-358	309S
8 2 8 <td>2</td> <td>A/SA-182</td> <td>F10</td> <td>8</td> <td>2</td> <td>A/SA-358</td> <td>310Cb</td>	2	A/SA-182	F10	8	2	A/SA-358	310Cb
8 2 8 <td>2</td> <td>A/SA-182</td> <td>F45</td> <td>8</td> <td>2</td> <td>A/SA-358</td> <td>310S</td>	2	A/SA-182	F45	8	2	A/SA-358	310S
8 2 8	2	A/SA-182	F310	8	2	A/SA-358	S30815
8 2 8 <td>2</td> <td>A/SA-182</td> <td>F310H</td> <td>8</td> <td>2</td> <td>A/SA-403</td> <td>WP309</td>	2	A/SA-182	F310H	8	2	A/SA-403	WP309
8 2 8 2	2	A/SA-182	F310MoLN	8	2	A/SA-403	WP310S
8 2 8	2	A/SA-213	S30815	8	2	A/SA-409	S30815
8 2 8	2	A/SA-213	TP309Cb	8	2	A/SA-409	TP309Cb
8 2 8 2	2	A/SA-213	ТРЗОЭН	8	2	A/SA-409	TP309S
8 2 8 2	2	A/SA-213	TP309S	8	2	A/SA-409	TP310Cb
8 2 8 2	2	A/SA-213	TP310Cb	8	2	A/SA-409	TP310S
8 2 8 2	2	A/SA-213	TP310S	8	2	A/SA-451	СРН8
8 2 8 2	2	A/SA-213	ТРЗО9НСЬ	8	2	A/SA-451	CPH20
8 2 8 2	2	A/SA-213	ТР310Н	8	2	A/SA-451	CPK20
8 8	2	A/SA-213 A/SA-213		8	2	•	
8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2		•	TP310MoLN		2	A/SA-451	CPE20N
8 8	2	A/SA-213	TP310HCb	8		SA-479	309Cb
8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	2	A/SA-240	S30815	8	2	A/SA-479	309S
8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	2 2	A/SA-240 A/SA-240	309СЬ 309Н	8 8	2 2	SA/JIS G4303 A/SA-479	SUS309S 310Cb
8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2							
8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	2	A/SA-240	309HCb	8	2	A/SA-479	310S
8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	2	A/SA-240	309S	8	2	SA/JIS G4303	SUS3105
8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	2	A/SA-240	310Cb	8	2	A/SA-479	S30815
8 2 8 2 8 2 8 2 8 2 8 2 8 2	2	A/SA-240	310HCb	8	2	A/SA-813	S30815
8 2 8 2 8 2 8 2 8 2	2	A/SA-240	310MoLN	8	2	A/SA-813	TP309Cb
8 2 8 2 8 2	2	A/SA-240	310S	8	2	A/SA-813	TP309S
8 2 8 2 8 2	2	A/SA-249	S30815	8	2	A/SA-813	TP310Cb
8 2 8 2 8 2	2	A/SA-249	TP309Cb	8	2	A/SA-813	TP310S
8 2 8 2	2	A/SA-249	ТР309Н	8	2	A/SA-814	S30815
8 2	2	A/SA-249	TP309HCb	8	2	A/SA-814	TP309Cb
	2	A/SA-249	TP309S	8	2	A/SA-814	TP309S
8 4	2	A/SA-249	TP310Cb	8	2	A/SA-814	TP310Cb
8 2	2	A/SA-249	TP310H	8	2	A/SA-814	TP310S
		A/SA-249	TP310S	8	2	A/SA-965	F310
		A/SA-249	TP310MoLN	8	3	A/SA-182	FXM-11
	2	A/SA-276	314	8	3	A/SA-182	FXM-11 FXM-19
	2 2	A/SA-312	S30815	8	3	A/SA-213	TP201
	2 2 2	A/SA-312 A/SA-312	TP309Cb	8	3	A/SA-213 A/SA-213	TP201 TP202
8	2 2	A/SA-312	ТР309Н	8	3	A/SA-213	XM-19

یک دو سه صنعت 123sanat.com

ASME BPVC.IX-2019

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
		oys (Cont'd)				oys (Cont'd)	
8	3	A/SA-213	S31042	8	4	A/SA-249	S32053
8	3	A/SA-240	S20100	8	4	A/SA-249	S34565
				8	4	•	
8	3	A/SA-240	S21800			A/SA-312	S31254
8	3	A/SA-240	S20153	8	4	A/SA-312	S31725
8	3	A/SA-240	202	8	4	A/SA-312	S31726
8	3	A/SA-240	S20400	8	4	A/SA-312	S32053
8	3	A/SA-240	XM-17	8	4	A/SA-312	S34565
8	3	A/SA-240	XM-18	8	4	A/SA-351	J93254
8	3	A/SA-240	XM-19	8	4	A/SA-358	S31254
8	3	A/SA-240	XM-29	8	4	A/SA-358	S31725
8	3	A/SA-249	TP201	8	4	A/SA-358	S31726
8	3	A/SA-249	TP202	8	4	A/SA-358	S32053
8	3	A/SA-249	TPXM-19	8	4	A/SA-376	S31725
8	3	A/SA-249	TPXM-29	8	4	A/SA-376	S31726
8	3	A/SA-312	TPXM-11	8	4	A/SA-376	S34565
8	3	A/SA-312	TPXM-19	8	4	A/SA-403	S31254
8	3	A/SA-312	TPXM-29	8	4	A/SA-403	WPS31726
8	3	A/SA-351	CG6MMN	8	4	A/SA-403	S32053
8	3	A/SA-351	XM-19	8	4	A/SA-403	S34565
8	3	A/SA-358	XM-19 XM-29	8	4	A/SA-409	S31254
8		•		8	4	•	
	3	A/SA-403	WPXM-19			A/SA-409	S31725
8	3	A/SA-479	S21800	8	4	A/SA-409	S31726
8	3	A/SA-479	XM-11	8	4	A/SA-409	S32053
8	3	A/SA-479	XM-17	8	4	A/SA-409	S34565
8	3	A/SA-479	XM-18	8	4	A/SA-479	S31254
8	3	A/SA-479	XM-19	8	4	A/SA-479	S31725
8	3	A/SA-479	XM-29	8	4	A/SA-479	S31726
8	3	A/SA-666	201	8	4	A/SA-479	S32053
8	3	A/SA-666	XM-11	8	4	A/SA-479	S34565
8	3	A/SA-688	XM-29	8	4	A/SA-813	S31254
8	3	A/SA-813	TPXM-11	8	4	A/SA-813	S32053
8	3	A/SA-813	TPXM-19	8	4	A/SA-814	S31254
8	3	A/SA-813	TPXM-29	8	4	A/SA-814	S32053
8	3	A/SA-814	TPXM-11	8	4	SA-965	F46
8	3	A/SA-814	TPXM-11 TPXM-19	9A	1	A/SA-182	FR
0	2	A/SA-814	TDYM 20	9A	1	A/SA-203	^
8	3		TPXM-29				A
8	3	A/SA-965	FXM-11	9A	1	A/SA-203	B
8	3	A/SA-965	FXM-19	9A	1	A/SA-234	WPR
8	4	A/SA-182	F44	9A	1	A/SA-333	7
8 8	4	A/SA-182	S32053	9A	1	A/SA-333	9 7
U	4	A/SA-182	S34565	9A	1	A/SA-334	
8	4	A/SA-213	S31254	9A	1	A/SA-334	9
8	4	A/SA-213	S31725	9A	1	A/SA-350	LF5, Cl. 1
8	4	A/SA-213	S31726	9A	1	A/SA-350	LF5, Cl. 2
8	4	A/SA-213	S34565	9A	1	A/SA-350	LF9
8	4	A/SA-240	S31254	9A	1	A/SA-352	LC2
8	4	A/SA-240	S31725	9A	1	A/SA-420	WPL9
8	4	A/SA-240	S31726	9A	1	A714	v
8	4	A/SA-240	S32053	9A	1	A714	V, E
8	4	A/SA-240	S32654	9B	1	A/SA-203	D
8	4	A/SA-240	S34565	9B	1	A/SA-203	E
8	4	A/SA-249	S31254	9B	1	A/SA-203	F
8	4	A/SA-249 A/SA-249	S317254	9B 9B	1	A/SA-203 A/SA-333	3
0							

P-No. teel and 3 9B 9B 9B 9B 9C	No. Steel Allo 1 1	Spec. No. bys (Cont'd)	or UNS No.	P-No.	No.	Spec. No.	or UNS No.
9B 9B 9B 9B	1			Steel and	d Steel All	oys (Cont'd)	
9B 9B 9B		A/SA-350	LF3, Cl. 2	10H	1	A/SA-789	S32304
9B 9B		A/SA-352	LC3	10H	1	A/SA-789	S32550
9B	1	A/SA-420	WPL3	10H	1	A/SA-789	S32750
	1	A/SA-765	III	10H	1	A/SA-789	S32760
<i>.</i>	1	A/SA-352	LC4	10H	1	A/SA-789	S32900
10A	1	A/SA-225	С	10H	1	A/SA-789	S32906
10A	1	A/SA-225	D	10H	1	A/SA-789	S32950
10A	1	A/SA-487	1, Cl. A	10H	1	A/SA-789	S39274
10A	1	A/SA-487	1, Cl. B	10H	1	A/SA-789	S82441
10A	1	SA/NF A 36-215	P440NJ4	10H	1	A/SA-790	S31200
10B	1	A/SA-213	T17	10H	1	A/SA-790	S31260
10C	1	A/SA-612		10H	1	A/SA-790	S31500
10H	1	A/SA-182	F53	10H	1	A/SA-790	S31803
10H	1	A/SA-182	F50	10H	1	A/SA-790	S32003
10H	1	A/SA-182	F51	10H	1	A/SA-790	S32101
10H	1	A/SA-182	F54	10H	1	A/SA-790	S32202
10H	1	A/SA-182	F55	10H	1	A/SA-790	S32205
10H	1	A/SA-182	S32202	10H	1	A/SA-790	S32304
10H	1	A/SA-182	F60	10H	1	A/SA-790	S32550
10H	1	A/SA-240	S31200	10H	1	A/SA-790	S32750
10H	1	A/SA-240	S31260	10H	1	A/SA-790	S32760
10H	1	A/SA-240	S31803	10H	1	A/SA-790	S32900
10H	1	A/SA-240	S32003	10H	1	A/SA-790	S32906
	_						
10H	1	A/SA-240	S32101	10H	1	A/SA-790	S32950
10H	1	A/SA-240	S32202	10H	1	A/SA-790	S39274
10H	1	A/SA-240	S32205	10H	1	A/SA-790	S82441
10H	1	A/SA-240	S32304	10H	1	A/SA-815	S31803
10H	1	A/SA-240	S32550	10H	1	A/SA-815	S32202
10H	1	A/SA-240	S32750	10H	1	A/SA-815	S32101
10H	1	A/SA-240	S32760	10H	1	A/SA-815	S32205
10H	1	A/SA-240	S32906	10H	1	A815	S32750
10H	1	A/SA-240	S32950	10H	1	A/SA-815	S32760
10H	1	A/SA-240	S82012	10H	1	A890	J93380
10H	1	A/SA-240	S82031	10H	1	A890	J92205
10H	1	A/SA-240	S82441	10H	1	A928	S31803
10H	1	A/SA-240	329	10H	1	A928	S32003
10H	1	A/SA-276	S32205	10H	1	A928	S32205
10H	1	A/SA-351	CD3MWCuN	10H	1	A928	S32203
10H	1	A/SA-479	S31803	10H	1	A928	S32504 S32750
10H	1	A/SA-479	S31803 S32202	10H	1	A928	S32750
10H	1	A/SA-479	S32101	10H	1	A/SA-995	J92205
101	1	A /SA 470	C22205	1011	1	A /SA 00E	102245
10H	1	A/SA-479	S32205	10H	1	A/SA-995	J93345
10H	1	A/SA-479	S32550	10H	1	A/SA-995	J93372
10H	1	A/SA-479	S32750	10H	1	A/SA-995	J93380
10H	1	A/SA-479	S32906	10H 10I	1 1	A/SA-995	J93404 FXM-27Cb
10H	1	A/SA-479	S82441			A/SA-182	
10H	1	A/SA-789	S31200	101	1	A/SA-240	S44635
10H	1	A/SA-789	S31260	10I	1	A/SA-240	XM-27
10H	1	A/SA-789	S31500	101	1	A/SA-240	XM-33
10H	1	A/SA-789	S31803	10I	1	A/SA-268	25-4-4
10H	1	A/SA-789	S32003	10I	1	A/SA-268	TP446-1
10H	1	A/SA-789	S32101	10I	1	A/SA-268	TP446-2
10H	1	A/SA-789	S32202	10I	1	A/SA-268	TPXM-27
10H	1	A/SA-789	S32205	10I	1	A/SA-268	TPXM-33

ASME BPVC.IX-2019

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
		oys (Cont'd)				oys (Cont'd)	
10I	1	A/SA-336	FXM-27Cb	11B	9	A514	Q
10I 10I	1	A/SA-479	XM-27	11B 11B	10	A/SA-508	4N, Cl. 2
		,				•	
10I	1	A/SA-731	TPXM-27	11B	10	A/SA-508	5, Cl. 2
10I	1	A/SA-731	TPXM-33	11B	10	A/SA-543	B Cl. 2
10J	1	A/SA-240	S44700	11B	10	A/SA-543	C Cl. 2
10J	1	A/SA-268	S44700	11C	1	A/SA-859	А
10J	1	A/SA-268	S44735	15E	1	A/SA-182	F91
10J	1	A/SA-479	S44700	15E	1	A/SA-182	F92
10J	1	A/SA-731	S44700	15E	1	A/SA-213	T91
10K	1	A/SA-240	S44660	15E	1	A/SA-213	T92
10K	1	A/SA-240	S44800	15E	1	A/SA-217	C12A
10K	1	A/SA-268	S44660	15E	1	A/SA-234	WP91
10K	1	A/SA-268	S44800	15E	1	A/SA-234	WP92
10K	1	A/SA-479	S44800	15E	1	A/SA-335	P91
10K	1	A/SA-731	S44660	15E	1	A/SA-335	P92
10K	1	A/SA-731	S44800	15E	1	A/SA-336	F91
10K	1	A/SA-803	S44660	15E	1	A/SA-336	F92
10K	1	A/3A-003	344000	156	T		1.92
11A	1	A/SA-333	8	15E	1	A356	12A
11A	1	A/SA-334	8	15E	1	A/SA-369	FP91
11A	1	A/SA-353		15E	1	A/SA-369	FP92
11A	1	A/SA-420	WPL8	15E	1	A/SA-387	91, Cl. 2
11A	1	A/SA-522	I	15E	1	A/SA-691	91
11A	1	, A/SA-522	II	15E	1	A/SA-1017	92
	-	1,011022		15E	1	A1091	C91
11A	1	A/SA-553	Ι	15E	1	SA/EN 10222-2	X10CrMoVNb9-1
11A	1	A/SA-553	II	15E 15E	1	SA/EN 10222-2 SA/EN 10216-2	X10CrMoVNb9-
11A	1	A/SA-553	III			,	ATUCIMOVIND9-
11A	1	SA/EN 10028-4	X8Ni9			uminum-Base Alloys	101000
11A 11A	1	SA/EN 10028-4	X7Ni9	21		B/SB-209	A91060
		•		21		B/SB-209	A91100
11A	2	A/SA-645	А	21		B/SB-209	A93003
11A	3	A/SA-487	4, Cl. B	21		B/SB-209	A95050
				21		B/SB-210	A91060
11A	3	A/SA-487	4, Cl. E	21		B/SB-210	A93003
11A	4	A/SA-533	A, Cl. 3				
11A	4	A/SA-533	B, Cl. 3	21		B/SB-221	A91060
11A	4	A/SA-533	C, Cl. 3	21		B/SB-221	A91100
11A	4	A/SA-533	D, Cl. 3	21		B/SB-221	A93003
				21		B/SB-234	A91060
11A	4	A/SA-672	J100	21		B/SB-234	A93003
11A	5	A/SA-352	LC2-1	21		B/SB-241	A91060
11A	5	A/SA-508	4N, Cl. 1			, · · · -	
11A	5	A/SA-508	5, Cl. 1	21		B/SB-241	A91100
11A	5	A/SA-543	B Cl. 1	21		B/SB-241	A93003
11A	5	A/SA-543	C Cl. 1	21		B/SB-247	A93003
				21		B345	A91060
11B	1	A514	А	21		B345 B345	A93003
11B	1	A/SA-517	А				
11B	1	A/SA-592	А	21		B361	A83003
11B	2	A514	Е	21		B361	A91060
11B	2	A/SA-517	E				
11B 11B	2	A/SA-592	E	21		B361	A91100
	-	11/011 072	Ц	21		B361	A93003
11B	3	A514	F	21		B491	A93003
11B	3	A/SA-517	F	21		B547	A93003
11B 11B	3		F	21		B547	A83003
		A/SA-592				D (0D 000	
11B	4	A514	В	22		B/SB-209	A93004
11B	4	A/SA-517	В	22		B/SB-209	A95052
11B	8	A514	Р	22		B/SB-209	A95154
110							
11B 11B	8	A/SA-517	Р	22		B/SB-209	A95254

یک دو سه صنعت 123sanat.com

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
	and Alu	minum-Base Alloys (Cont'd)			Conner	-Base Alloys (Cont'd)	
22		B/SB-209	A95652	31		B68	C12200
22		B/SB-210	A95052	31		B/SB-75	C10200
22		B/SB-210	A95154	31		B/SB-75	C12000
22		B/SB-221	A95154	31		, B/SB-75	C12200
22		B/SB-221	A95454	31		B/SB-75	C14200
		,				•	
22		B/SB-234	A95052	31		B88	C10200
22		B/SB-234	A95454	31		B88	C12000
22		B/SB-241	A95052	31		B88	C12200
22		B/SB-241	A95454	31		B/SB-111	C10200
22		B361	A95154	31		B/SB-111	C12000
22		B547	A95454	31		B/SB-111	C12200
23		B/SB-209	A96061	31		B/SB-111	C14200
23		B/SB-210	A96061	31		B/SB-111	C19200
25		D/3D-210	A90001	51		b/3b-111	C19200
23		B/SB-210	A96063	31		B/SB-152	C10200
23		B/SB-211	A96061	31		B/SB-152	C10400
23		B/SB-221	A96061	31		B/SB-152	C10500
23		B/SB-221	A96063	31		B/SB-152	C10700
23		B/SB-234	A96061	31		B/SB-152	C11000
23		B/SB-241	A96061	31		B/SB-152	C12200
23		B/SB-241	A96063	31		B/SB-152	C12300
						•	
23		B/SB-247	A96061	31		B/SB-152	C14200
23		B/SB-308	A96061	31		B/SB-187	C10200
23		B345	A96061	31		B/SB-187	C11000
23		B345	A96063	31		B280	C10200
23		B361	A96061	31		B280	C12000
23		B361	A96063	31		B280	C12200
23		B547	A96061	31		B/SB-283	C11000
25		B/SB-209	A95083	31		B302	C12000
		•					
25		B/SB-209	A95086	31		B/SB-359	C10200
25		B/SB-209	A95456	31		B/SB-359	C12000
25		B210	A95083	31		B/SB-359	C12200
25		B210	A95086	31		B/SB-359	C14200
25		B210	A95456	31		B/SB-359	C19200
25		B/SB-221	A95083	31		B/SB-395	C10200
25		B/SB-221	A95456	31		, B/SB-395	C12000
25		B/SB-241	A95083	31		B/SB-395	C12200
25		B/SB-241	A95086	31		B/SB-395	C14200
		,					
25		B/SB-241	A95456	31		B/SB-395	C19200
25		B/SB-247	A95083	31		B/SB-543	C12200
25		B345	A95083	31		B/SB-543	C19400
25		B345	A95086	32		B/SB-43	C23000
25		B361	A95083	32		B/SB-111	C23000
25		B547	A95083	32		B/SB-111	C28000
25		B/SB-928	A95083	32		B/SB-111	C44300
25		B/SB-928	A95085 A95086	32		B/SB-111 B/SB-111	C44400
		,				•	
25		B/SB-928	A95456	32		B/SB-111	C44500
26		B/SB-26	A24430	32		B/SB-111	C68700
26		B/SB-26	A03560	32		B/SB-135	C23000
26		SB/EN 1706	EN AC 43000	32		B/SB-171	C36500
		r-Base Alloys	61000	22		P/SP 171	C44300
31		B/SB-42	C10200	32		B/SB-171	C44300
31		B/SB-42	C12000	32		B/SB-171	C44400
		B/SB-42	C12200	32		B/SB-171	C44500
31							
		B68	C10200	32		B/SB-171	C46400

یک دو سه صنعت 123sanat.com

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
Copper a	and Coppe	er-Base Alloys (Cont'd)		Copper a	nd Coppe	er-Base Alloys (Cont'd)	
32		B/SB-283	C67500	34		B/SB-466	C71520
32		B/SB-283	C46400	34		B/SB-467	C70600
32		B/SB-359	C23000	34		B/SB-467	C70620
32		B/SB-359	C44300	34		B/SB-467	C71500
32		B/SB-359	C44400	34		B/SB-467	C71520
32		B/SB-359	C44500	34		B/SB-543	C70400
32		B/SB-359	C68700	34		B/SB-543	C70600
32		B/SB-395	C23000	34		B/SB-543	C70620
32		B/SB-395	C44300	34		B/SB-543	C71500
32		B/SB-395	C44400	34		B/SB-543	C71520
32		B/SB-395	C44500	34		B/SB-543	C71640
32		B/SB-395	C68700	34		B/SB-956	C70600
32		B/SB-543	C23000	34		B/SB-956	C70620
32		B/SB-543	C44300	34		B/SB-956	C71500
32		B/SB-543	C44400	34		B/SB-956	C71520
32		B/SB-543	C44500	35		B/SB-111	C60800
32		B/SB-543	C68700	35		B/SB-148	C95200
33		B/SB-96	C65500	35		B/SB-148	C95400
33		B/SB-98	C65100	35		B/SB-148	C95300
33		B/SB-98	C65500	35		B/SB-148	C95500
33		B/SB-98	C66100	35		B/SB-148	C95600
33		B/SB-283	C65500	35		B/SB-148	C95800
33		B/SB-315	C65500	35		B/SB-148	C95820
34		B/SB-111	C70600	35		B/SB-150	C61400
34		B/SB-111	C70620	35		B/SB-150	C62300
34		B/SB-111	C71000	35		B/SB-150	C63000
34		B/SB-111	C71500	35		B/SB-150	C64200
34		B/SB-111	C71520	35		B/SB-169	C61400
34		B/SB-111	C71640	35		B/SB-171	C61400
34		B/SB-111	C72200	35		B/SB-171	C63000
34		B/SB-151	C70600	35		B/SB-271	C95200
34		B/SB-151	C70620	35		B/SB-271	C95400
34		B/SB-171	C70600	35		B/SB-359	C60800
34		B/SB-171	C70620	35		B/SB-395	C60800
34		B/SB-171	C71500	35		B/SB-505	C95200
34		B/SB-171	C71520		nd Nickel-	Base Alloys	
34		B/SB-283	C70620	41		B/SB-160	N02200
24		D/CD 202	671520	41		B/SB-160	N02201
34		B/SB-283	C71520	41		B/SB-161	N02200
34 34		B/SB-359 B/SB-350	C70400	41		B/SB-161	N02201
34 34		B/SB-359	C70600 C70620	41		B/SB-162	N02200
34 34		B/SB-359 B/SB-359	C71000	41		B/SB-162	N02201
34 34		•	C71500	41		B/SB-163	N02200
54		B/SB-359	C/1500	41		B/SB-163	
34		B/SB-359	C71520	41 41		B/SB-366	N02201 N02200
34		B/SB-369	C96200	41 41		B/SB-366	N02200 N02201
34		B/SB-395	C70600	41		B725	N02201 N02200
34		B/SB-395	C70620	41		B725	N02200
34		B/SB-395	C71000	41		5165	1102201
34		B/SB-395	C71500	41		B730	N02200
				41		B730	N02201
34		B/SB-395	C71520	42		B/SB-127	N04400
34		B/SB-466	C70600	42		B/SB-163	N04400
34		B/SB-466	C70620	42		B/SB-164	N04400
34		B/SB-466	C71000	42		B/SB-164	N04405
34		B/SB-466	C71500				

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
		Base Alloys (Cont'd)				Base Alloys (Cont'd)	
42		B/SB-165	N04400	43		A/SA-494	N26455
42		B/SB-366	N04400	43		A/SA-494	N26625
12 12		A/SA-494	N04400 N04020	43		B/SB-516	N06025
						•	
12		A/SA-494	N24130	43		B/SB-516	N06600
12		A/SA-494	N24135	43		B/SB-517	N06025
42		B/SB-564	N04400	43		B/SB-517	N06600
42		B725	N04400	43		B/SB-564	N06022
42		B730	N04400	43		B/SB-564	N06025
43		B/SB-163	N06025	43		B/SB-564	N06035
43		B/SB-163	N06600	43		B/SB-564	N06059
43		B/SB-163	N06601	43		B/SB-564	N06200
43		B/SB-163	N06690	43		B/SB-564	N06210
43		B/SB-166	N06025	43		B/SB-564	N06230
		•		43		,	N06230
43		B/SB-166	N06600			B/SB-564	
43		B/SB-166	N06601	43		B/SB-564	N06617
43		B/SB-166	N06617	43		B/SB-564	N06625
43		B/SB-166	N06690	43		B/SB-564	N06686
43		B/SB-167	N06025	43		B/SB-564	N06690
43		B/SB-167	N06600	43		B/SB-564	N10276
43		B/SB-167	N06601	43		B/SB-564	N10362
43		B/SB-167	N06617	43		B/SB-572	N06002
43		B/SB-167	N06690	43		B/SB-572	N06002
43		B/SB-168	N06025	43			N060230
43 43		B/SB-168	N06600	43		B/SB-574 B/SB-574	N06022
43		B/SB-168	N06601	43		B/SB-574	N06059
43		B/SB-168	N06617	43		B/SB-574	N06200
43		B/SB-168	N06690	43		B/SB-574	N06210
43		B/SB-366	N06002	43		B/SB-574	N06455
43		B/SB-366	N06022	43		B/SB-574	N06686
43		B/SB-366	N06025	43		B/SB-574	N10276
43		B/SB-366	N06035	43		B/SB-574	N10362
43		B/SB-366	N06059	43		B/SB-575	N06022
43		B/SB-366	N06200	43		B/SB-575	N06035
43		B/SB-366	N06210	43		B/SB-575	N06059
43		B/SB-366	N06230	43		B/SB-575	N06200
43		B/SB-366	N06455	43		B/SB-575	N06200
		,					
43		B/SB-366	N06600	43		B/SB-575	N06455
43		B/SB-366	N06625	43		B/SB-575	N06686
43		B/SB-366	N10276	43		B/SB-575	N10276
43		B/SB-366	N10362	43		B/SB-575	N10362
43		B/SB-435	N06002	43		B/SB-619	N06002
43		B/SB-435	N06230	43		B/SB-619	N06022
43		B/SB-443	N06625	43		B/SB-619	N06035
43 43		B/SB-444	N06625	43		B/SB-619	N06055
43 43		,		43		B/SB-619	
		B/SB-446	N06625			,	N06200
43		B/SB-462	N06022	43		B/SB-619	N06210
43		B/SB-462	N06035	43		B/SB-619	N06230
43		B/SB-462	N06059	43		B/SB-619	N06455
43		B/SB-462	N06200	43		B/SB-619	N06686
43		B/SB-462	N06686	43		B/SB-619	N10276
		B/SB-462	N10276	43		B/SB-619	N10362
43							
		B/SB-462	N10362	43		B/SB-622	N06002
43 43 43		B/SB-462 A/SA-494	N10362 N06040	43 43		B/SB-622 B/SB-622	N06002 N06022

یک دو سه صنعت

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade or UNS No.
		Base Alloys (Cont'd)				Base Alloys (Cont'd)	
43		B/SB-622	N06059	44		B/SB-622	N10242
43		B/SB-622	N06200	44		B/SB-622 B/SB-622	N10242 N10629
43 43		B/SB-622	N06210	44		B/SB-622 B/SB-622	
		•				•	N10665
43		B/SB-622	N06230	44		B/SB-622	N10675
43		B/SB-622	N06455	44		B/SB-626	N10001
43		B/SB-622	N06686	44		B/SB-626	N10242
43		B/SB-622	N10276	44		B/SB-626	N10629
43		B/SB-622	N10362	44		B/SB-626	N10665
43		B/SB-626	N06002	44		B/SB-626	N10675
43		B/SB-626	N06022	45		A/SA-182	N08367
43		B/SB-626	N06035	45		A/SA-182	S31266
43		B/SB-626	N06059	45		A/SA-240	S31266
43		B/SB-626	N06200	45		A/SA-240	S31277
43		B/SB-626	N06210	45		A/SA-249	N08904
43		B/SB-626	N06230	45		A403	N08367
43		B/SB-626	N06455	45		A/SA-403	N08904
43		B/SB-626	N06686	45		A/SA-479	N08367
43		B/SB-626	N10276	45		B/SB-163	N08120
40		D/CD (2)	N10262	45		D/CD 1/2	NARRA
43		B/SB-626	N10362	45		B/SB-163	N08800
43		B/SB-704	N06625	45		B/SB-163	N08801
43		B/SB-705	N06625	45		B/SB-163	N08810
44		B/SB-333	N10001	45		B/SB-163	N08811
44		B/SB-333	N10629	45 45		B/SB-163	N08825
44		B/SB-333	N10665	45		A/SA-351	CN3MN
44		B/SB-333	N10675	45		A/SA-351	N08007
44		B/SB-335	N10001	45		A/SA-351	N08151
44		B/SB-335	N10629	45		A/SA-351	N08603
44		B/SB-335	N10665	45		A/SA-358	S31266
44		B/SB-335	N10675	45		B/SB-366	N06007
44		B/SB-366	N10001	45		B/SB-366	N06030
44		B/SB-366	N10003	45		B/SB-366	N06985
44		B/SB-366	N10242	45		B/SB-366	N08020
44		B/SB-366	N10629	45		B/SB-366	N08031
44		B/SB-366	N10665	45		B/SB-366	N08120
44		B/SB-366	N10675	45		B/SB-366	N08367
44		B/SB-434	N10003	45		B/SB-366	N08800
44		B/SB-434	N10242	45		B/SB-366	N08825
44		B/SB-462	N10242	45		B/SB-366	N08825
44		B/SB-462	N10625	45		B/SB-366	R20033
44 44		B/SB-462 B/SB-462		45			R30556
44 44			N10675 N30007	45 45		B/SB-366	N08926
44 44		A/SA-494 A/SA-494	N30107	45 45		B/SB-366 B/SB-407	N08926 N08120
44		B/SB-564	N10242	45		B/SB-407	N08800
44		B/SB-564	N10629	45		B/SB-407	N08801
44		B/SB-564	N10665	45		B/SB-407	N08810
44		B/SB-564	N10675	45		B/SB-407	N08811
44		B/SB-573	N10003	45		B/SB-408	N08120
44		B/SB-573	N10242	45		B/SB-408	N08800
44		B/SB-619	N10001	45		B/SB-408	N08810
44		B/SB-619	N10242	45		B/SB-408	N08811
44		B/SB-619	N10629	45		B/SB-409	N08120
44		B/SB-619	N10665	45		B/SB-409	N08800
44		B/SB-619	N10675	45		B/SB-409	N08810
44		B/SB-622	N10001	45		B/SB-409	N08811

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade or UNS No.
	nd Nickel-	Base Alloys (Cont'd)			nd Nickel-	Base Alloys (Cont'd)	
45		B/SB-423	N08825	45		B/SB-582	N06985
45		B/SB-424	N08825	45		B/SB-599	N08700
45		B/SB-425	N08825	45		B/SB-619	N06007
45		B/SB-435	R30556	45		B/SB-619	N06030
45		B/SB-462	N06030	45		B/SB-619	N06975
45		B/SB-462	N08020	45		B/SB-619	N06985
45		B/SB-462	N08031	45		B/SB-619	N08031
45		A/SA-182	N08904	45		B/SB-619	N08320
45		A/SA-240	N08367	45		B/SB-619	R20033
45		A/SA-240	N08904	45		B/SB-619	R30556
45		A/SA-249	N08367	45		B/SB-620	N08320
45		A/SA-312	N08367	45		B/SB-621	N08320
45		A/SA-312	N08904	45		B/SB-622	N06007
45		A/SA-358	N08367	45		B/SB-622	N06030
45		, A479	N08904	45		B/SB-622	N06975
45		A/SA-813	N08367	45		B/SB-622	N06985
45		A/SA-814	N08367	45		B/SB-622	N08031
45		B/SB-462	N08367	45		B/SB-622	N08320
45		B/SB-462	R20033	45		B/SB-622	R20033
45		B/SB-463	N08020	45		B/SB-622	R30556
45		B/SB-463	N08024	45		B/SB-625	N08031
45		B/SB-463	N08026	45		B/SB-625	N08904
45		, B/SB-464	N08020	45		B/SB-625	N08925
45		B/SB-464	N08024	45		B/SB-625	R20033
45		B/SB-464	N08026	45		B/SB-625	N08926
45		B/SB-468	N08020	45		B/SB-626	N06007
45		B/SB-468	N08024	45		B/SB-626	N06030
45		B/SB-468	N08026	45		B/SB-626	N06975
45		B/SB-473	N08020	45		B/SB-626	N06985
45		A/SA-494	N08826	45		B/SB-626	N08031
45		B/SB-514	N08120	45		B/SB-626	N08320
45		B/SB-514	N08800	45		B/SB-626	R20033
45		B/SB-514	N08810	45		B/SB-626	R30556
45		B/SB-515	N08120	45		B/SB-649	N08904
45		B/SB-515	N08800	45		B/SB-649	N08925
45		B/SB-515	N08810	45		B/SB-649	R20033
45		B/SB-515	N08811	45		B/SB-649	N08926
45		B/SB-564	N08031	45		B/SB-668	N08028
45		B/SB-564	N08120	45		B/SB-672	N08700
45		B/SB-564	N08367	45		B/SB-673	N08904
45		B/SB-564	N08800	45		B/SB-673	N08925
45		B/SB-564	N08810	45		B/SB-673	N08926
45		B/SB-564	N08811	45		B/SB-674	N08904
45		B/SB-564	N08825	45		B/SB-674	N08925
45		B/SB-564	R20033	45		B/SB-674	N08926
45		B/SB-572	R30556	45		B/SB-675	N08367
45		B/SB-581	N06007	45		B/SB-676	N08367
45		B/SB-581	N06030	45		B/SB-677	N08904
45		B/SB-581	N06975	45		B/SB-677	N08925
45		B/SB-581	N06985	45		B/SB-677	N08926
45		B/SB-581	N08031	45		B/SB-688	N08367
45		B/SB-582	N06007	45		B/SB-690	N08367
45		B/SB-582	N06030	45		B/SB-691	N08367
		B/SB-582	N06975	45		B/SB-704	N08825

یک دو سه صنعت 123sanat.com

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grad or UNS No
		Base Alloys (Cont'd)				e Alloys (Cont'd)	
INICKCI all	u Mickel-1	base Anoys (cont u)		51		B/SB-861	R50400
45		B/SB-705	N08825	01		5/05 001	100100
45		B/SB-709	N08028	51		B/SB-861	R52400
45		, B/SB-729	N08020	51		B/SB-861	R52404
46		B/SB-166	N06045	51		B/SB-862	R50250
46		B/SB-167	N06045	51		B/SB-862	R50400
46		B/SB-168	N06045	51		B/SB-862	R52400
40		D/3D-100	100045	51		B/SB-862	R52404
46		B/SB-366	N06045	51		D/ 3D-002	K32404
46		B/SB-366	N08330	52		B/SB-265	R50550
46		B/SB-366	N12160	52		B/SB-265	R53400
46		B/SB-435	N12160	52		B/SB-338	R50550
46		B/SB-462	N06045	52		B/SB-338	R53400
46		B/SB-511	N08330	52		B/SB-348	R50550
40		D/3D-311	100550	52		B/SB-348	R53400
46		B/SB-516	N06045	52		D/ 3D-3+0	135400
46		B/SB-517	N06045	52		B/SB-363	R50550
46		B/SB-535	N08330	52		B/SB-363	R53400
46		B/SB-536	N08330	52		B/SB-367	R50550
46		B/SB-564	N06045	52		B/SB-381	R50550
		,	N12160	52			
46		B/SB-564	N12160			B/SB-381	R53400
46		B/SB-572	N12160	52		B/SB-861	R50550
46		B/SB-619	N12160	52		B/SB-861	R53400
		,				•	
46		B/SB-622	N12160	52		B/SB-862	R50550
46		B/SB-626	N12160	52		B/SB-862	R53400
46		B/SB-710	N08330	53		B/SB-265	R56320
49		B/SB-815	R31233	53		B/SB-338	R56320
49		B/SB-818	R31233	53		B/SB-348	R56320
	and -Base	•		53		D/CD 262	DE 6220
51		B/SB-265	R50250			B/SB-363	R56320
51		B/SB-265	R50400	53		B/SB-381	R56320
51		B/SB-265	R52250	53		B/SB-861	R56320
51		B/SB-265	R52252	53		B/SB-862	R56320
51		B/SB-265	R52254	53		B/SB-265	R56323
51		B/SB-265	R52400	53		B/SB-338	R56323
				53		B/SB-348	R56323
51		B/SB-265	R52402	53		,	R56323
51		B/SB-265	R52404	53		B/SB-363	
51		B/SB-338	R50250			B/SB-381	R56323
51		B/SB-338	R50400	53		B/SB-861	R56323
51		B/SB-338	R52400	53		B/SB-862	R56323
51		B/SB-338	R52402	54		B/SB-265	R54250
				54		B/SB-338	R54250
51		B/SB-338	R52404			•	
51		B/SB-348	R50250	54		B/SB-348	R54250
51		B/SB-348	R50400	54		B/SB-363	R54250
51		B/SB-348	R50402	54		B/SB-381	R54250
51		B/SB-348	R52400	54		B/SB-861	R54250
51		B/SB-348	R52404	54		B/SB-862	R54250
					m and Ziro	conium-Base Alloys	
51		B/SB-363	R50250	61		B/SB-493	R60702
51		B/SB-363	R50400	61		B/SB-523	R60702
51		B/SB-363	R52400	61		B/SB-550	R60702
51		B/SB-363	R52404	61		B/SB-551	R60702
51		B/SB-367	R50400	61		B/SB-653	R60702
51		B/SB-381	R50250	61		B/SB-658	R60702
51		B/SB-381	R50400	62		B/SB-493	R60705
51		B/SB-381	R50402	62		B/SB-523	R60705
51		B/SB-381	R52400	62		B/SB-550	R60705
51		B/SB-381	R52404	62		B/SB-551	R60705
		B/SB-861	R50250	62		B/SB-658	R60705

MANDATORY APPENDIX E PERMITTED SWPSS

The following AWS Standard Welding Procedure Specifications may be used under the requirements given in Article V:

Specification	Designation
Carbon Steel	
Shielded Metal Arc Welding	
Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), 1/8	B2.1-1-016-94
through $1^{ m I}_{ m Z}$ inch Thick, E7018, As-Welded or PWHT Condition	(R05)
Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{8}$	B2.1-1-017-94
through $1^{ m J}_{ m Z}$ inch Thick, E6010, As-Welded or PWHT Condition	(R05)
Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), 1/8	B2.1-1-022-94
through 1_{12}^{\prime} inch Thick, E6010 (Vertical Uphill) Followed by E7018, As-Welded or PWHT Condition	(R05)
Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ½	B2.1-1-026-94
through $1^{1}_{/2}$ inch Thick, E6010 (Vertical Downhill) Followed by E7018, As-Welded or PWHT Condition	(R05)
Combination GTAW and SMAW	
Standard Welding Procedure Specification for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of Carbon	B2.1-1-021-94
Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, ER70S-2 and E7018, As-Welded or PWHT Condition	(R05)
Flux Cored Arc Welding	
Standard Welding Procedure Specification (WPS) for CO ₂ Shielded Flux Cored Arc Welding of Carbon Steel (M-1/ P-1/S-1,	B2.1-1-019-94
Group 1 or 2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, E70T-1 and E71T-1, As-Welded Condition	(R05)
Standard Welding Procedure Specification (WPS) for 75% Ar/25% CO ₂ Shielded Flux Cored Arc Welding of Carbon Steel	B2.1-1-020-94
(M-1/P-1/S-1, Group 1 or 2), ¹ / ₈ through 1 ¹ / ₂ inch Thick, E70T-1 and E71T-1, As-Welded or PWHT Condition	(R05)
Carbon Steel — Primarily Pipe Applications	
Shielded Metal Arc Welding	
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or	B2.1-1-201-96
2), $\frac{1}{18}$ through $\frac{3}{4}$ inch Thick, E6010 (Vertical Uphill) Followed by E7018 (Vertical Uphill), As- Welded Condition, Primarily	(R07)
Pipe Applications	
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or	B2.1-1-202-96
2), $\frac{1}{16}$ through $\frac{3}{4}$ inch Thick, E6010 (Vertical Downhill) Followed by E7018 (Vertical Uphill), As- Welded Condition,	(R07)
Primarily Pipe Applications	
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or	B2.1-1-203-96
2), $\frac{1}{8}$ through $\frac{3}{4}$ inch Thick, E6010 (Vertical Uphill), As-Welded Condition, Primarily Pipe Applications	(R07)
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or	B2.1-1-204-96
2), 1/8 through 3/4 inch Thick, E6010 (Vertical Downhill Root with the Balance Vertical Uphill), As- Welded Condition,	(R07)
Primarily Pipe Applications	
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or	B2.1-1-205-96
2), $\frac{1}{16}$ through $\frac{1}{2}$ inch Thick, E6010 (Vertical Uphill) Followed by E7018 (Vertical Uphill), As- Welded or PWHT	(R07)
Condition, Primarily Pipe Applications Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or	B2.1-1-206-96
2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, E6010 (Vertical Downhill) Followed by E7018 (Vertical Uphill), As- Welded or PWHT	(R07)
Condition, Primarily Pipe Applications	(KU7)
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or	B2.1-1-208-96
2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, E7018, As-Welded or PWHT Condition, Primarily Pipe Applications	(R07)
Gas Tungsten Arc Welding Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or	B2.1-1-207-96
2), $\frac{1}{8}$ through $\frac{1}{2}$ inch Thick, ER70S-2, As-Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-207-96 (R07)
2), 78 through 172 inch 1 hick, EK705-2, As-weided of PWH1 Condition, Primarily Pipe Applications Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root of Carbon	(R07) B2.1-1-210:
Standard weiging Procedure Specification (SWPS) for Gas Tungsten Arc weiging with Consumable Insert Root of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, INMs-1 and ER70S-2, As-Welded or PWHT Condition,	2001 (R12)
Primarily Pipe Applications	2001 (K12)

(**19**)

ASME BPVC.IX-2019

Specification	Designation
Carbon Steel — Primarily Pipe Applications (Cont'd)	
Flux Cored Arc Welding	
Standard Welding Procedure Specification (SWPS) for Argon plus 25% Carbon Dioxide Shielded Flux Cored Arc Welding of Carbon Steel (M-1/P-1/S-1, Groups 1 and 2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, E7XT-X, As-Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-234: 2006
Gas Metal Arc Welding — Spray Transfer Standard Welding Procedure Specification (SWPS) for Argon plus 2% Oxygen Shielded Gas Metal Arc Welding (Spray Transfer Mode) of Carbon Steel (M-1/P-1/S-1, Groups 1 and 2), ¹ / ₈ through 1 ¹ / ₂ inch Thick, E70S-3, Flat Position Only, As-Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-235: 2006
Combination GTAW and SMAW Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ¹ / ₈ through 1 ¹ / ₂ inch Thick, ER70S-2 and E7018, As- Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-209-9 (R07)
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root followed by Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ¹ / ₈ through 1 ¹ / ₂ inch Thick, INMs-1, ER70S-2, and E7018, As-Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-211: 2001 (R12
Austenitic Stainless Steel Plate and Pipe	
Shielded Metal Arc Welding Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/ S-8, Group 1), ¹ / ₈ through 1 ¹ / ₂ inch Thick, As-Welded Condition	B2.1-8-023-9 (R05)
Gas Tungsten Arc Welding Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ¹ / ₁₆ through 1 ¹ / ₂ inch Thick, ER3XX, As-Welded Condition, Primarily Plate and Structural Applications	B2.1-8-024: 2001 (R12
Combination GTAW and SMAW Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ½ through 1½ inch Thick, ER3XX and 3XX-XX, As-Welded Condition, Primarily Plate and Structural Applications	B2.1-8-025: 2001 (R12
Austenitic Stainless Steel Primarily Pipe Applications	
Shielded Metal Arc Welding Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/ S-8, Group 1), ¹ / ₈ through 1 ¹ / ₂ inch Thick, E3XX-XX, As-Welded Condition, Primarily Pipe Applications	B2.1-8-213-9 (R12)
Gas Tungsten Arc Welding Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ¹ / ₁₆ through 1 ¹ / ₂ inch Thick, ER3XX, As-Welded Condition, Primarily Pipe Applications Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ¹ / ₈ through 1 ¹ / ₂ inch Thick, IN3XX and ER3XX, As-Welded Condition, Primarily Pipe Applications	B2.1-8-212: 2001 (R11 B2.1-8-215: 2001 (R12
 Combination GTAW and SMAW Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ¹/₈ through 1¹/₂ inch Thick, ER3XX and E3XX-XX, As-Welded Condition, Primarily Pipe Applications Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root followed by Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ¹/₈ through 1¹/₂ inch Thick, IN3XX, 	B2.1-8-214: 2001 (R12 B2.1-8-216: 2001 (R12
ER3XXX, and E3XX-XX, As-Welded Condition, Primarily Pipe Applications	
Carbon Steel to Austenitic Stainless Steel	
Gas Tungsten Arc Welding Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), ¹ / ₁₆ through 1 ¹ / ₂ inch Thick, ER309(L), As-Welded Condition, Primarily Pipe Applications	B2.1-1/8-227 2002 (R13
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), $\frac{1}{16}$ through $\frac{1}{2}$ inch Thick, IN309 and R309(L), As-Welded Condition, Primarily Pipe Applications	B2.1-1/8-230 2002 (R13

ASME BPVC.IX-2019

1	
Table	continued

Carbon Steel to Austenitic Stainless Steel (Cont'd) Shielded Metal Arc Welding Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), ¹ / ₈ through 1 ¹ / ₂ inch Thick, E309(L)-15, -16, or -17, As-Welded Condition, Primarily Pipe Applications	B2.1-1/8-228: 2002 (R13)
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, E309(L)-15, -16, or -17,	,
Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), 1/8 through 11/2 inch Thick, E309(L)-15, -16, or -17,	,
	2002 (R13)
As-Welded Condition, Primarily Pipe Applications	()
Combination GTAW and SMAW	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of	B2.1-1/8-229:
Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1 Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), $\frac{1}{8}$ through $1\frac{1}{2}$	2002 (R13)
inch Thick, ER309(L) and E309(L)-15, -16, or -17, As-Welded Condition, Primarily Pipe Applications	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root, Followed by	B2.1-1/8-231:
Shielded Metal Arc Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1 Groups 1 and 2 Welded to M-8/P-8/	2002
S-8, Group 1) $\frac{1}{2}$ through $\frac{1}{2}$ inch Thick, IN309, ER309(L), and E309(L)-15, -16, -17, As-Welded Condition, Primarily Pipe	

MANDATORY APPENDIX F STANDARD UNITS FOR USE IN EQUATIONS

Table F-100Standard Units for Use in Equations			
Quantity	U.S. Customary Units	SI Units	
Linear dimensions (e.g., length, height, thickness, radius, diameter)	inches (in.)	millimeters (mm)	
Area	square inches (in. ²)	square millimeters (mm ²)	
Volume	cubic inches (in. ³)	cubic millimeters (mm ³)	
Section modulus	cubic inches (in. ³)	cubic millimeters (mm ³)	
Moment of inertia of section	inches ⁴ (in. ⁴)	millimeters ⁴ (mm ⁴)	
Mass (weight)	pounds mass (lbm)	kilograms (kg)	
Force (load)	pounds force (lbf)	newtons (N)	
Bending moment	inch-pounds (inlb)	newton-millimeters (N·mm)	
Pressure, stress, stress intensity, and modulus of elasticity	pounds per square inch (psi)	megapascals (MPa)	
Energy (e.g., Charpy impact values)	foot-pounds (ft-lb)	joules (J)	
Temperature	degrees Fahrenheit (°F)	degrees Celsius (°C)	
Absolute temperature	Rankine (°R)	kelvin (K)	
Fracture toughness	ksi square root inches (ksi√in.)	MPa square root meters (MPa√m)	
Angle	degrees or radians	degrees or radians	
Boiler capacity	Btu/hr	watts (W)	

٦

Г

NONMANDATORY APPENDIX G GUIDANCE FOR THE USE OF U.S. CUSTOMARY AND SI UNITS IN THE ASME BOILER AND PRESSURE VESSEL CODE

(19) G-100 USE OF UNITS IN EQUATIONS

The equations in this Section are suitable for use with either the U.S. Customary or the SI units provided in Mandatory Appendix F, or with the units provided in the nomenclatures associated with the equations. It is the responsibility of the individual and organization performing the calculations to ensure that appropriate units are used. Either U.S. Customary or SI units may be used as a consistent set. When necessary to convert from one system of units to another, the units shall be converted to at least three significant figures for use in calculations and other aspects of construction.

G-200 GUIDELINES USED TO DEVELOP SI EQUIVALENTS

The following guidelines were used to develop SI equivalents:

(*a*) SI units are placed in parentheses after the U.S. Customary units in the text.

(b) In general, separate SI tables are provided if interpolation is expected. The table designation (e.g., table number) is the same for both the U.S. Customary and SI tables, with the addition of suffix "M" to the designator for the SI table, if a separate table is provided. In the text, references to a table use only the primary table number (i.e., without the "M"). For some small tables, where interpolation is not required, SI units are placed in parentheses after the U.S. Customary unit.

(c) Separate SI versions of graphical information (charts) are provided, except that if both axes are dimensionless, a single figure (chart) is used.

(*d*) In most cases, conversions of units in the text were done using hard SI conversion practices, with some soft conversions on a case-by-case basis, as appropriate. This was implemented by rounding the SI values to the number of significant figures of implied precision in the existing U.S. Customary units. For example, 3,000 psi has an implied precision of one significant figure. Therefore, the conversion to SI units would typically be to 20 000 kPa. This is a difference of about 3% from the "exact" or soft conversion of 20 684.27 kPa. However, the precision of the conversion was determined by the Committee on a case-by-case basis. More significant digits were included in the SI equivalent if there was any question. The values of allowable stress in Section II, Part D generally include three significant figures.

(e) Minimum thickness and radius values that are expressed in fractions of an inch were generally converted according to the following table:

Fraction, in.	Proposed SI Conversion, mm	Difference, %
1/32	0.8	- 0.8
3/64	1.2	- 0.8
1/16	1.5	5.5
³ /32	2.5	- 5.0
1/8	3	5.5
5/32	4	- 0.8
3/16	5	- 5.0
7/32	5.5	1.0
¹ / ₄	6	5.5
5/16	8	- 0.8
³ /8	10	- 5.0
7/16	11	1.0
¹ / ₂	13	- 2.4
9/16	14	2.0
5/8	16	- 0.8
¹¹ / ₁₆	17	2.6
3/4	19	0.3
⁷ /8	22	1.0
1	25	1.6

(f) For nominal sizes that are in even increments of inches, even multiples of 25 mm were generally used. Intermediate values were interpolated rather than converting and rounding to the nearest millimeter. See examples in the following table. [Note that this table does not apply to nominal pipe sizes (NPS), which are covered below.]

Size, in.	Size, mm
1	25
$1^{1}/_{8}$	29
$1^{1}/_{4}$	32
$1^{1}/_{2}$	38
2	50
$2^{1}/_{4}$	57
$2^{1}/_{2}$	64
3	75
3 ¹ / ₂	89
4	100
4 ¹ / ₂	114
5	125
6	150

Table continued	
Size, in.	Size, mm
8	200
12	300
18	450
20	500
24	600
36	900
40	1 000
54	1 350
60	1 500
72	1 800

Size or Length, ft	Size or Length, m
3	1
5	1.5
200	60

(g) For nominal pipe sizes, the following relationships were used:

U.S. Customary Practice	SI Practice	U.S. Customary Practice	SI Practice
NPS ¹ / ₈	DN 6	NPS 20	DN 500
NPS ¹ / ₄	DN 8	NPS 22	DN 550
NPS ³ / ₈	DN 10	NPS 24	DN 600
NPS ¹ / ₂	DN 15	NPS 26	DN 650
NPS ³ / ₄	DN 20	NPS 28	DN 700
NPS 1	DN 25	NPS 30	DN 750
NPS $1^{1}/_{4}$	DN 32	NPS 32	DN 800
NPS $1^{1}/_{2}$	DN 40	NPS 34	DN 850
NPS 2	DN 50	NPS 36	DN 900
NPS $2^{1}/_{2}$	DN 65	NPS 38	DN 950
NPS 3	DN 80	NPS 40	DN 1000
NPS $3^{1}/_{2}$	DN 90	NPS 42	DN 1050
NPS 4	DN 100	NPS 44	DN 1100
NPS 5	DN 125	NPS 46	DN 1150
NPS 6	DN 150	NPS 48	DN 1200
NPS 8	DN 200	NPS 50	DN 1250
NPS 10	DN 250	NPS 52	DN 1300
NPS 12	DN 300	NPS 54	DN 1350
NPS 14	DN 350	NPS 56	DN 1400
NPS 16	DN 400	NPS 58	DN 1450
NPS 18	DN 450	NPS 60	DN 1500

(*h*) Areas in square inches $(in.^2)$ were converted to square millimeters (mm^2) , and areas in square feet (ft^2) were converted to square meters (m^2) . See examples in the following table:

Area (U.S. Customary)	Area (SI)
1 in. ²	650 mm ²
6 in. ²	4 000 mm ²
10 in. ²	6 500 mm ²
5 ft ²	0.5 m ²

(i) Volumes in cubic inches (in.³) were converted to cubic millimeters (mm³), and volumes in cubic feet (ft³) were converted to cubic meters (m³). See examples in the following table:

Volume (U.S. Customary)	Volume (SI)
1 in. ³	16 000 mm ³
6 in. ³	100 000 mm ³
10 in. ³	160 000 mm ³
5 ft ³	0.14 m ³

(*j*) Although the pressure should always be in MPa for calculations, there are cases where other units are used in the text. For example, kPa is used for small pressures. Also, rounding was to one significant figure (two at the most) in most cases. See examples in the following table. (Note that 14.7 psi converts to 101 kPa, while 15 psi converts to 100 kPa. While this may seem at first glance to be an anomaly, it is consistent with the rounding philosophy.)

Pressure (U.S. Customary)	Pressure (SI)
0.5 psi	3 kPa
2 psi	15 kPa
3 psi	20 kPa
10 psi	70 kPa
14.7 psi	101 kPa
15 psi	100 kPa
30 psi	200 kPa
50 psi	350 kPa
100 psi	700 kPa
150 psi	1 MPa
200 psi	1.5 MPa
250 psi	1.7 MPa
300 psi	2 MPa
350 psi	2.5 MPa
400 psi	3 MPa
500 psi	3.5 MPa
600 psi	4 MPa
1,200 psi	8 MPa
1,500 psi	10 MPa

(*k*) Material properties that are expressed in psi or ksi (e.g., allowable stress, yield and tensile strength, elastic modulus) were generally converted to MPa to three significant figures. See example in the following table:

 Strength (U.S. Customary)	Strength (SI)
95,000 psi	655 MPa

(*l*) In most cases, temperatures (e.g., for PWHT) were rounded to the nearest 5°C. Depending on the implied precision of the temperature, some were rounded to the nearest 1°C or 10°C or even 25°C. Temperatures colder than 0°F (negative values) were generally rounded to

Temperature, °F	Temperature, °C
70	20
100	38
120	50
150	65
200	95
250	120
300	150
350	175
400	205
450	230
500	260
550	290
600	315
650	345
700	370
750	400
800	425
850	455
900	480
925	495
950	510
1,000	540
1,050	565
1,100	595
1,150	620
1,200	650
1,250	675
1,800	980
1,900	1 040
2,000	1 095
2,050	1 120

the nearest 1°C. The examples in the table below were created by rounding to the nearest 5°C, with one exception:

G-300 SOFT CONVERSION FACTORS

The following table of "soft" conversion factors is provided for convenience. Multiply the U.S. Customary value by the factor given to obtain the SI value. Similarly, divide the SI value by the factor given to obtain the U.S. Customary value. In most cases it is appropriate to round the answer to three significant figures.

U.S. Customary	SI	Factor	Notes
in.	mm	25.4	
ft	m	0.3048	
in. ²	mm ²	645.16	
ft ²	m ²	0.09290304	
in. ³	mm ³	16,387.064	
ft ³	m ³	0.02831685	
U.S. gal	m ³	0.003785412	
U.S. gal	liters	3.785412	
psi	MPa (N/mm ²)	0.0068948	 Used exclusively in
psi	in a (ity init)	0.0000710	equations
psi	kPa	6.894757	Used only in text
por	iii u	0.071707	and for
			nameplate
psi	bar	0.06894757	namopiato
ft-lb	I	1.355818	
°F	°C	⁵ / ₆ × (°F – 32)	Not for
		/9 ()	temperature
			difference
°F	°C	5/9	For temperature
		19	differences only
°R	К	⁵ /9	Absolute
		19	temperature
lbm	kg	0.4535924	
lbf	N	4.448222	
inlb	N·mm	112.98484	Use exclusively in
			equations
ft-lb	N∙m	1.3558181	Use only in text
ksi√in.	MPa√m	1.0988434	
Btu/hr	W	0.2930711	Use for boiler
,			rating and heat
			transfer
lb/ft ³	kg/m ³	16.018463	
	0/		

NONMANDATORY APPENDIX H WAVEFORM CONTROLLED WELDING

H-100 BACKGROUND

Advances in microprocessor controls and welding power source technology have resulted in the ability to develop waveforms for welding that improve the control of droplet shape, penetration, bead shape and wetting. Some welding characteristics that were previously controlled by the welder or welding operator are controlled by software or firmware internal to the power source. It is recognized that the use of controlled waveforms in welding can result in improvements in productivity and quality. The intention of this Code is to enable their use with both new and existing procedure qualifications.

The ASME Section IX heat input measurement methods in QW-409.1(a) and QW-409.1(b), were developed at a time when welding power source output was relatively constant. The heat input of welds made using waveform controlled power sources is not accurately represented by QW-409.1(a) due to the rapidly-changing outputs, phase shifts, and synergic changes, but is correctly represented by QW-409.1(b) or QW-409.1(c). During waveform controlled welding, current and voltage and values observed on the equipment meters no longer are valid for heat input determination, and must be replaced by instantaneous energy (joules) or power (joules/second or watts) to correctly calculate heat input. QW-409.1(c) more accurately reflects heat input changes when performing waveform controlled welding, but is also suitable for nonwaveform controlled (conventional) welding.

H-200 WAVEFORM CONTROLLED WELDING AND HEAT INPUT DETERMINATION

Power sources that support rapidly pulsing processes (e.g., GMAW-P) are the most common waveform controlled power sources. Power sources that are marketed as synergic, programmable, or microprocessor controlled are generally capable of waveform controlled welding. In these cases, heat input is calculated by the methods outlined in either QW-409.1(b) or QW-409.1(c) when performing procedure qualification or to determine compliance with a qualified procedure. If any doubt exists on whether waveform controlled welding is being performed, the welding equipment manufacturer should be consulted. It is recognized that waveform controls may not be active for all of the welding processes or equipment settings for a particular power source. When the

waveform control features of the equipment are not used, the heat input determination methods of either QW-409.1(a), QW-409.1(b), or QW-409.1(c) are used.

When the welding equipment does not display instantaneous energy or power, an external meter with high frequency sampling capable of displaying instantaneous energy or power is typically used, or the welding equipment is upgraded or modified to display instantaneous energy or power.

Welding power sources or external meters typically display instantaneous energy as cumulative measurements of instantaneous energy, i.e., the sum of instantaneous energy measurements made during a time period such as trigger-on to trigger-off. The units of measurement may be joules (J). Other conveniently obtained units of energy, such as calories or British thermal units (Btu), may be used with the appropriate conversion factors. The other measurement that is needed to use the calculations given in QW-409.1(c)(1) is weld length.

Welding power sources or external meters typically display instantaneous power as average measurements, i.e., the average value of instantaneous power measurements made during a time period such as trigger-on to trigger-off. The unit of measurement may be watts (W). One watt is equal to 1 joule/second (J/s). Other conveniently obtained units of power such as horsepower (hp) or kilowatts (kW) may be used with the appropriate conversion factors. Because power must be multiplied by time to obtain energy, the arc-on time needs to be recorded, and the distance traveled during that time needs to be measured; with these data, the calculation in QW-409.1(c)(2) can be made. Either of the equations in QW-409.1(c)(1) and QW-409.1(c)(2) may be used, depending on whether total instantaneous energy (IE) or average instantaneous power (IP) is displayed.

H-300 NEW PROCEDURES QUALIFICATIONS

When qualifying a new procedure using waveform controlled welding, the instantaneous energy or power range is used in lieu of the current (amperage) and voltage ranges to determine the heat input per QW-409.1(c).

When qualifying a new procedure using nonwaveform controlled welding, either the current and voltage is recorded and heat input determined using the methods of QW-409.1(a) or QW-409.1(b), as previously required, or the instantaneous energy or power is recorded and the heat input determined by the method in QW-409.1(c).

H-400 EXISTING QUALIFIED PROCEDURES

Welding procedures previously qualified using nonwaveform controlled welding and heat input determined by QW-409.1(a) may continue to be used for waveform controlled welding, provided they are amended to require heat input determination for production welds using the methods of QW-409.1(c). Welding procedures previously qualified using nonwaveform controlled welding and heat input determined by QW-409.1(b) continue to be applicable for waveform controlled welding without changes to the heat input determination method.

(a) To determine if the heat input of a waveform controlled production weld meets the heat input range of a welding procedure qualified with nonwaveform controlled welding with heat input determined using QW-409.1(a)

(1) the heat input of the production weld is determined using instantaneous power or energy per the method of QW-409.1(c)

(2) the heat input of the production weld is compared to the heat input range of the welding procedure specification

(b) to determine if the heat input of a nonwaveform controlled production weld meets the heat input range of a welding procedure qualified with waveform controlled welding with heat input determined using QW-409.1(c)

(1) the heat input of the production weld is determined using QW-409.1(a) or QW-409.1(c)

(2) the heat input of the production weld is compared to the heat input range of the welding procedure specification

H-500 PERFORMANCE QUALIFICATIONS

Separate performance qualifications are not required for waveform controlled welding. However, it is recognized that a welder or welding operator may require instruction on proper use of the equipment. The extent of such instruction is best determined by the organization, as needed to understand how to properly set up and adjust the equipment for welding and conformance to the WPS requirements.

Power sources capable of waveform controlled welding often have additional operator settings that are typically not used during nonwaveform controlled welding. It is important for a welder to be familiar with other equipment parameters that can influence the overall welding performance. These can include the mode, arc control, program, cable length, wire feed speed, trim, and other machine and software settings.

MANDATORY APPENDIX J GUIDELINE FOR REQUESTING P-NUMBER ASSIGNMENTS FOR BASE METALS NOT LISTED IN TABLE QW/QB-422

J-100 INTRODUCTION

This Mandatory Appendix provides requirements to Code users for submitting requests for P-Number assignments to base metals not listed in Table OW/OB-422. Such requests shall be limited to base metals that are listed in ASME Code Section II. Parts A or B: ASTM: or other recognized national or international specifications. OW-420 should be referenced before requesting a P-Number, to see if the base metal can be considered a P-Number under existing rules. For new materials, users shall reference the Submittal of Technical Inquiries to the Boiler and Pressure Vessel Committee in this Section and the Guideline on the Approval of New Materials, under ASME Boiler and Pressure Vessel Code in Section II, Part D. P-Number assignment does not constitute approval of a base metal for ASME Code construction. The applicable Construction Code shall be consulted for base metals that are acceptable for use.

J-200 REQUEST FORMAT

A request for a P-Number shall include the following: *(a)* product application or use

(*b*) the material specification, grade, class, and type as applicable

(c) the mechanical properties and chemical analysis requirements

(*d*) welding or brazing data, such as comparable P-Numbers; published welding or brazing data; welding procedure specifications and procedure qualification data; or brazing procedure specifications and procedure qualification data

(e) properties of welded or brazed base metal joints, if less than the minimum specified in the applicable specification

J-300 SUBMITTALS

Submittals to and responses from the Committee shall meet the following:

(a) Submittal. Requests for P-Number assignments shall be in English and preferably in the type-written form. However, legible handwritten requests will also be considered. They shall include the name, address, telephone number, fax number, and e-mail address, if available, of the requester and be mailed to The American Society of Mechanical Engineers, Attn: Secretary, BPV IX Committee, Two Park Avenue, New York, NY 10016-5990. As an alternative, requests may be submitted via e-mail to secretaryBPV@asme.org.

(b) Response. The Secretary of the ASME BPV IX Committee shall acknowledge receipt of each properly prepared request and shall provide written response to the requester upon completion of the requested action by the Code Committee.

NONMANDATORY APPENDIX K GUIDANCE ON INVOKING SECTION IX REQUIREMENTS IN OTHER CODES, STANDARDS, SPECIFICATIONS, AND CONTRACT DOCUMENTS

K-100 BACKGROUND AND PURPOSE

ASME Section IX provides rules for the qualification of welding, brazing, and fusing personnel and the procedures that they follow in welding, brazing and fusing. While the historical application of Section IX has been in service to the ASME Boiler and Pressure Vessel Code and the ASME B31 Codes for Pressure Piping, Section IX is invoked by many other standards without the benefit of members of the Section IX Committee participating in those committees. In addition, Section IX is invoked in specifications and related contract documents. The purpose of this Nonmandatory Appendix is to provide guidance on invoking Section IX in other documents in a clear, concise, and accurate manner.

K-200 SCOPE OF SECTION IX AND WHAT REFERENCING DOCUMENTS MUST ADDRESS

Section IX addresses only the mandatory content of welding, brazing, and fusing procedures; the qualification of those procedures; and the qualification of personnel who follow those procedures in the manufacture, fabrication, assembly, and installation of welded, brazed, and fused products. Accordingly, to ensure construction of suitable products, the requirements for the service conditions, materials used, the design of joints, preheating, postweld heat treatment (PWHT), metallurgical effects of welding, acceptance criteria for weld quality, and related examinations must be addressed in the Codes, standards, specifications, or contract documents that invoke Section IX.

Further, construction codes may specify different requirements than those specified by Section IX; for example, ASME Section III has requirements for PWHT of procedure qualification test coupons that are more restrictive than those of Section IX, and ASME B31.1 allows organizations to use welding procedure specifications (WPSs) qualified by a technically competent group or agency, whereas Section IX requires each organization to qualify WPSs themselves. When such requirements are specified in the referencing construction Codes that invoke Section IX, these requirements take precedence over those of Section IX, and the organization is required to comply with them.

Specifications or contract documents that are required to follow Section IX may add additional requirements, and the organization shall comply with both sets of requirements.

When the reference to Section IX is not the result of mandatory requirements, such as laws, but is a matter of choice, the specification or contract document may impose additional or different requirements than those in Section IX, and the organization shall comply with them. Material specifications are an example of this.

Most standards that refer to Section IX consider the requirements of Section IX to be adequate to cover the basic needs for the content of welding, brazing, and fusing procedures and for qualification of those procedures, as well as for the qualification of the personnel who use them. However, for some applications, additional information may be required from the invoking party, as noted in K-300.

K-300 RECOMMENDED WORDING — GENERAL

When invoking Section IX in general, the following wording is recommended:

"Welding, brazing, and fusing shall be performed using procedures and personnel qualified in accordance with the requirements of ASME BPVC Section IX."

When the above is specified, qualification for the following are automatically included:

(*a*) all welding processes that are listed in QW-250 for groove and fillet welding

(b) use of standard welding procedures specifications (SWPSs) listed in Mandatory Appendix E

(c) application of hard-facing weld metal overlay (hardness values shall be a matter of agreement between the supplier and the purchaser)

(d) application of corrosion-resistant weld metal overlay (chemical composition of the weld overlay surface shall be a matter of agreement between the supplier and the purchaser)

(e) laser beam lap joints

(19)

- (f) joining of clad materials
- (g) attachment of applied linings

K-301 RECOMMENDED WORDING FOR TOUGHNESS — QUALIFIED APPLICATIONS

When invoking Section IX and qualification of the WPS for toughness applications is required, the following wording is recommended:

"Welding procedures shall be qualified for toughness, and the supplementary essential variables of Section IX shall apply."

The referencing construction code shall also be specified.

K-302 RECOMMENDED WORDING — TUBE-TO-TUBESHEET WELDING

When invoking Section IX for qualification of tube-totubesheet welding procedures and personnel, and qualification by use of mock-ups is desired, the following wording is recommended:

"Welding procedures, welders, and welding operators shall be qualified using mock-ups in accordance with Section IX." Note that if qualification using mock-ups is not specified but qualification to Section IX is, tube-to-tubesheet welding procedures and personnel may also be qualified following the standard groove welding rules.

K-303 RECOMMENDED WORDING — TEMPER BEAD WELDING

When invoking Section IX for qualification of temper bead welding procedures, the following wording is recommended:

"Temper bead welding procedures shall be prepared and qualified in accordance with Section IX."

K-304 RECOMMENDED CODE CASE TEMPLATE (19)

Figure K-305 provides a proposed Code Case template to assist users and ensure consistent presentation of welding qualification requirements for material Code Cases.

Figure K-305 Proposed Code Case Template				
Approval Date: [Month Day, Year] Code Cases will remain available for use until annulled by the applicable Standards Committee.				
 Case [Number] Material Grade, Type, and Form(s) Section(s) [Number(s)] Inquiry: Under what conditions may [material grade, type, and form] be used in the welded construction of [pressure vessel type or piping system]? Reply: It is the opinion of the Committee that the material described in the Inquiry may be used in the welded construction of [pressure vessel type or piping system], provided the following requirements are met: (a) Product specification or product form limitations, if any. (b) Thickness limitations, if any. (c) Specific chemical composition ranges (refer to applicable tables). (d) Allowable stresses (refer to applicable tables). (e) Special tests, if required. 	 (f) Welding process limitations, if any. (g) Heat treatment requirements, if any. (h) Welding qualification requirements. The following examples provide standard wording for two common Code Case situations: Example 1: For Code Cases specifying a non ASME recognized material, the following standard sentence may be considered: "Separate welding procedure and performance qualifications shall be conducted in accordance with Section IX." Example 2: For Code Cases where the material has been assigned to a P-Number, the following standard sentences may be considered: "Welding procedure and performance qualifications shall be conducted in accordance with Section IX." Example 2: For Code Cases where the material has been assigned to a P-Number, the following standard sentences may be considered: "Welding procedure and performance qualifications shall be conducted in accordance with Section IX. Thi material shall be considered P-Number [XX]." (i) All other applicable rules of Section [number] shall be met. (j) This Case number shall be referenced in the documentation and marking of the material and shown on the Manufacturer's Data Report. 			

NONMANDATORY APPENDIX L WELDERS AND WELDING OPERATORS QUALIFIED UNDER ISO 9606-1:2012 AND ISO 14732-2013

L-100 INTRODUCTION

When a welder or a welding operator welds a test coupon or makes a production weld, that person does not weld one way when the applicable standard is ASME and another way when the applicable standard is AWS, EN, JIS, or ISO. Recognizing this, recent revisions by ISO TC44, to ISO 9606-1, and ISO 14732 bring them much closer to the requirements of Section IX. This Appendix discusses what is necessary for an organization that is testing welders or welding operators under the above ISO standards to also certify that those welders and welding operators are qualified to Section IX.

This Appendix is based on the requirements of ISO 9606-1:2012 and ISO 14732:2013.

L-200 ADMINISTRATIVE REQUIREMENTS

The following nontechnical requirements must be met: *(a)* When a welder or welding operator is tested, the WPS followed during the test must be a WPS qualified to Section IX.

(*b*) Welding of the test coupon must be done under the full supervision and control of the organization that will employ that welder or welding operator; this may not be delegated to another organization.

(c) Testing of test coupon may be performed by others, but the qualifying organization is responsible for ensuring that work performed by others is in compliance with the requirements of Section IX.

(*d*) The completed qualification record must be certified by signature or other means described in the organization's quality control system by the organization that supervised the welder or welding operator during welding of the test coupon.

L-300 TECHNICAL REQUIREMENTS

The qualification record must record the essential variables for the welding process and list the ranges qualified. While the "actual values" recorded on the test record will be the same as for a test record prepared according to ISO 9606-1 or ISO 14732, the ranges qualified will be different for a record prepared according to Section IX.

Care should be taken to select material used for the test coupon from those that are assigned a P-Number under QW-420 and filler metals that are assigned F-Numbers in accordance with QW-432 in order to ensure full interchangeability with other materials that are assigned P-Numbers or F-Numbers.

Since the forms may be in any format as long as the actual values, ranges qualified, and test results are recorded, a record showing the ranges qualified under both ISO and ASME may be on separate forms or they may be on one form at the discretion of the organization.

L-400 TESTING REQUIREMENTS

When evaluating a test coupon, the following should be noted by the organization:

(*a*) The requirements for test coupons that have been mechanically tested according to the requirements of ISO 9606-1 or ISO 14732 and found acceptable also satisfy the requirements of Section IX.

(*b*) Radiographic and ultrasonic examination technique and personnel requirements satisfying the requirements of ISO 9606-1 or ISO 14732 satisfy the requirements of Section IX.

(c) Radiographic and ultrasonic examination acceptance criteria satisfying the requirements of ISO 9606-1 or ISO 14732 also satisfy the requirements of Section IX, except that indications characterized as linear slag may not exceed the thickness of the test coupon divided by 3 (i.e., the flaw length may not exceed t/3); this is more restrictive than ISO 5817, quality level B, which allows elongated slag inclusions to be equal in length to the thickness of the test coupon.

(*d*) When using the ultrasonic test method, the test coupon must be $\frac{1}{4}$ in. (6 mm) thick or thicker.

(e) Test coupons tested by fracture test according to ISO 9017 do not satisfy the requirements of Section IX.

2019 ASME Boiler and Pressure Vessel Code

Since its first issuance in 1914, the ASME Boiler and Pressure Vessel Code (BPVC) has been a flagship for modern international standards development. Each new edition reaffirms ASME's commitment to enhance public safety and encourage technological advancement to meet the needs of a changing world. Sections of the BPVC have been incorporated into law in the United States and Canada, and are used in more than 100 countries. The BPVC has long been considered essential within the electric power generation, petrochemical, and transportation industries, among others.

ASME also provides BPVC users with integrated suites of related offerings, including

- referenced standards
- related standards and guidelines
- conformity assessment programs
- personnel certification programs
- learning and development solutions
- ASME Press books and journals

You gain unrivaled insight direct from the BPVC source, along with the professional quality and real-world solutions you have come to expect from ASME.

For additional information and to order: Phone: 1.800.THE.ASME (1.800.843.2763) Email: customercare@asme.org Website: go.asme.org/bpvc

Copyright ASME International (BPVC)